Phosphonic Acids as Corrosion Inhibitors and Adhesion Promoters for Organic Coatings and Bronze
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Electrochemical Measurements
2.4. AFM Measurements
2.5. Pull-Off Test
3. Results and Discussion
3.1. Monolayer Preparation
3.2. Polyurethane Coating
3.3. Paraloid B72 in Acid Rain
3.4. Paraloid B72 Outdoor Exposure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watt, J.; Tidblad, J.; Hamilton, R.; Kucera, V. The Effects of Air Pollution on Cultural Heritage. Springer: New York, NY, USA, 2009. [Google Scholar]
- Rocca, E.; Mirambet, F. Corrosion inhibitors for metallic artefacts: Temporary protection. In Corrosion of Metallic Heritage Artefacts; Dillmann, P., Béranger, G., Piccardo, P., Matthiesen, H., Eds.; Woodhead Publishing Limited: Oxford, UK, 2007; pp. 308–334. [Google Scholar]
- Watkinson, D. Preservation of metallic cultural heritage. In Shreir’s Corrosion; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3307–3340. [Google Scholar]
- Masi, G.; Aufray, M.; Balbo, A.; Bernardi, E.; Bignozzi, M.; Chiavari, C.; Esvan, J.; Gartner, N.; Grassi, V.; Josse, C.; et al. B-IMPACT project: Eco-friendly and non-hazardous coatings for the protection of outdoor bronzes. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012097. [Google Scholar] [CrossRef]
- Masi, G.; Josse, C.; Esvan, J.; Chiavari, C.; Bernardi, E.; Martini, C.; Bignozzi, M.; Monticelli, C.; Zanotto, F.; Balbo, A.; et al. Evaluation of the protectiveness of an organosilane coating on patinated Cu-Si-Mn bronze for contemporary art. Prog. Org. Coat. 2019, 127, 286–299. [Google Scholar] [CrossRef]
- Rapin, C.; D’Huysser, A.; Labbe, J.R.; Gengembre, L.; Steinmetz, P. Etude de l’inhibition de la corrosion aqueuse du cuivre par les carboxylates linéaires saturés. II. Caractérisation des films superficiels formés par réaction entre le cuivre et l’anion heptanoate. Rev. Met. 1996, 93, 719–727. [Google Scholar] [CrossRef]
- Elia, A.; De Wael, K.; Dowsett, M.; Adriaens, A. Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor. J. Solid State Electrochem. 2012, 16, 143–148. [Google Scholar] [CrossRef]
- Kosec, T.; Škrlep, L.; Fabjan, E.Š.; Škapin, A.S.; Masi, G.; Bernardi, E.; Chiavari, C.; Josse, C.; Esvan, J.; Robbiola, L. Development of multi-component fluoropolymer based coating on simulated outdoor patina on quaternary bronze. Prog. Org. Coat. 2019, 131, 27–35. [Google Scholar] [CrossRef]
- Kosec, T.; Novak, Ž.; Fabjan, E.Š.; Škrlep, L.; Finšgar, M. Exploring the protection mechanism of a combined fluoropolymer coating on sulphide patinated bronze. Prog. Org. Coat. 2022, 172, 107071. [Google Scholar] [CrossRef]
- Shedlosky, T.J.; Huovinen, A.; Webster, D.; Bierwagen, G. Development and Evaluation of Removable Protective Coatings on Bronze. In Proceedings of the Metal 2004, Canberra, ACT, Australia, 4–8 October 2024. [Google Scholar]
- Pellis, G.; Giussani, B.; Letardi, P.; Poli, T.; Rizzi, P.; Salvadori, B.; Sansonetti, A.; Scalarone, D. Improvement in the sustainability and stability of acrylic protective coatings for outdoor bronze artworks. Polym. Degrad. Stab. 2023, 218, 110575. [Google Scholar] [CrossRef]
- Otmačić Ćurković, H.; Kosec, T.; Marušić, K.; Legat, A. An electrochemical impedance study of the corrosion protection of artificially formed patinas on recent bronze. Electrochim. Acta 2012, 83, 28–39. [Google Scholar] [CrossRef]
- Maege, I.; Jaehne, E.; Henke, A.; Adler, H.-J.P.; Bram, C.; Jung, C.; Stratmann, M. Self-assembling adhesion promoters for corrosion resistant metal polymer interfaces. Prog. Org. Coat. 1998, 34, 1–12. [Google Scholar] [CrossRef]
- Wapner, K.; Stratmann, M.; Grundmeier, G. Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interfaces. Int. J. Adhes. Adhes. 2008, 28, 59–70. [Google Scholar] [CrossRef]
- Jaehne, E.; Oberoi, S.; Adler, H.J.P. Ultra thin layers as new concepts for corrosion inhibition and adhesion promotion. Prog. Org. Coat. 2008, 61, 211–223. [Google Scholar] [CrossRef]
- Torras, J.; Azambuja, D.S.; Wolf, J.M.; Alemán, C.; Armelin, E. How Organophosphonic Acid Promotes Silane Deposition ontoAluminum Surface: A Detailed Investigation on Adsorption Mechanism. J. Phys. Chem. C 2014, 118, 17724–17736. [Google Scholar] [CrossRef]
- Nicho, M.E.; Medrano-Baca, M.G.; León-Silva, U.; Escalante, J.; González-Rodríguez, G.; Güizado-Rodríguez, M.; Linzaga-Elizalde, I. Effect of Adhesion Promoter in Corrosion Protection of 1018 Mild Steel by Using Poly(3-Hexylthiophene) Coatings in 0.5 M H2SO4 Solution. Corrosion 2011, 67, 105002. [Google Scholar] [CrossRef]
- Fuerbeth, W.; Harm, U.; Mangold, K.M.; Juettner, K. Novel protective coatings for steel based on a combination of self-assembled monolayers and conducting polymers. In Proceedings of the EUROCORR 2004, Nice, France, 12–16 September 2004. [Google Scholar]
- Harun, M.K.; Lyon, S.B.; Marsh, J. A surface analytical study of functionalised mild steel for adhesion promotion of organic coatings. Prog. Org. Coat. 2003, 46, 21–27. [Google Scholar] [CrossRef]
- Müller, R.; Heckmann, K.; Habermann, M.; Paul, T.; Stratmann, M. New adhesion promoters for copper leadframes and epoxy resin. J. Adhes. 2000, 72, 65–83. [Google Scholar] [CrossRef]
- Denayer, J.; Delhalle, J.; Mekhalif, Z. Aminealkylthiol and dithiol self-assembly as adhesion promoter between copper substrate and epoxy resin. Appl. Surf. Sci. 2011, 257, 10686–10691. [Google Scholar] [CrossRef]
- Mikić, D.; Otmačić Ćurković, H. Protection of Patinated Bronze with Long-Chain Phosphonic Acid/Organic Coating Combined System. Materials 2023, 16, 1660. [Google Scholar] [CrossRef] [PubMed]
- Kapitanović, A.; Otmačić Ćurković, H. The influence of phosphonic acid pretreatment on the bronze corrosion protection by waterborne coating. J. Solid State Electrochem. 2023, 27, 1861–1875. [Google Scholar] [CrossRef]
- Sathyanarayana, M.N.; Yaseen, M. Role of promoters in improving adhesions of organic coatings to a substrate. Prog. Org. Coat. 1995, 26, 275–313. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J. Am. Chem. Soc. 1992, 114, 9022–9028. [Google Scholar] [CrossRef]
- Fonder, G.; Volcke, C.; Csoka, B.; Delhalle, J.; Mekhalif, Z. Electrochemical and spectroscopic study of C12H25X molecules adsorption on copper sheets, X (-SH, -S-S-, -SeH and -Se-Se-). Electrochim. Acta 2010, 55, 1557–1567. [Google Scholar] [CrossRef]
- Raman, A.; Quiñones, R.; Barriger, L.; Eastman, R.; Parsi, A.; Gawalt, E.S. Understanding organic film behavior on alloy and metal oxides. Langmuir 2010, 26, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Pawsey, S.; Yach, K.; Reven, L. Self-assembly of carboxyalkylphosphonic acids on metal oxide powders. Langmuir 2002, 18, 5205–5212. [Google Scholar] [CrossRef]
- Raman, A.; Dubey, M.; Gouzman, I.; Gawalt, E.S. Formation of self-assembled monolayers of alkylphosphonic acid on the native oxide surface of SS316L. Langmuir 2006, 22, 6469–6472. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Göthelid, M.; Hosseinpour, S.; Johansson, M.B.; Li, G.; Leygraf, C.; Johnson, C.M. The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates. J. Colloid Interface Sci. 2021, 581, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Mioč, E.K.; Gretić, Z.H.; Ćurković, H.O. Modification of cupronickel alloy surface with octadecylphosphonic acid self–assembled films for improved corrosion resistance. Corros. Sci. 2018, 134, 189–198. [Google Scholar] [CrossRef]
- Mikić, D.; Otmačić Ćurković, H.; Hosseinpour, S. Bronze corrosion protection by long-chain phosphonic acids. Corros. Sci. 2022, 205, 110445. [Google Scholar] [CrossRef]
- Kosec, T.; Legat, A.; Milošev, I. The comparison of organic protective layers on bronze and copper. Prog. Org. Coat. 2010, 69, 199–206. [Google Scholar] [CrossRef]
- Al-Khaldi, T.A.; Lyon, S.B. The effect of interfacial chemistry on coating adhesion and performance: A mechanistic study using aminobutylphosphonic acid. Prog. Org. Coat. 2012, 75, 449–455. [Google Scholar] [CrossRef]
- Elia, A.; Dowsett, M.; Adriaens, A. On the use of alkoholic carboxylic acid solutions for the deposition od protective coatings on copper. In Proceedings of the Interim Meeting of the ICOM-CC Metal Working Group, Metal 2010, Charleston, SC, USA, 11–15 October 2010. [Google Scholar]
- Marušić, K.; Hajdari, Z.; Otmačić Ćurković, H. Optimizing the preparation procedure of self-Assembled monolayer of stearic acid for protection of cupronickel alloy. Acta Chim. Slov. 2014, 61, 328–339. [Google Scholar]
- Gretić, Z.H.; Mioč, E.K.; Čadež, V.; Šegota, S.; Otmačić Ćurković, H.; Hosseinpour, S. The Influence of Thickness of Stearic Acid Self-Assembled Film on Its Protective Properties. J. Electrochem. Soc. 2016, 163, C937–C944. [Google Scholar] [CrossRef]
- Kvaliteta Zraka u Republici Hrvatskoj (Air Quality in Republic of Croatia). Available online: https://iszz.azo.hr/iskzl/podatak.htm?pid=267 (accessed on 14 July 2024).
- EN ISO 9223:2012; Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. European Committee for Standardization: Brussels, Belgium, 2012.
- De Pauli, M.; Pauli, M.; Castro Prado, M.; Souza Matos, M.J.; Nogueira Fontes, G.; Perez, C.A.; Carvalho Mazzoni, M.S.; Almeida Neves, B.R.; Malachias, A. Thermal stability and ordering study of long- and short-alkyl chain phosphonic acid multilayers. Langmuir 2012, 28, 15124–15133. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, K.M.; Nistico, L.; Longwell, M.J.; Hynes, M.J.; Maurer, J.A.; Hall-Stoodley, L.; Gawalt, E.S. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers. Mater. Sci. Eng. C 2013, 33, 2059–2069. [Google Scholar] [CrossRef]
- Quinones, R.; Gawalt, E.S. Study of the Formation of Self-Assembled Monolayers on Nitinol. Langmuir 2007, 23, 10123–10130. [Google Scholar] [CrossRef] [PubMed]
- Folkers, J.P.; Gorman, C.B.; Laibinis, P.E.; Buchholz, S.; Whitesides, G.M.; Nuzzo, R.G. Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on the Native Oxides of Metals. Langmuir 1995, 11, 813–824. [Google Scholar] [CrossRef]
- Dubey, M.; Weidner, T.; Gamble, L.J.; Castner, D.G. Structure and order of phosphonic acid-based self-assembled monolayers on Si(100). Langmuir 2010, 26, 14747–14754. [Google Scholar] [CrossRef] [PubMed]
- Gouzman, I.; Dubey, M.; Carolus, M.D.; Schwartz, J.; Bernasek, S.L. Monolayer vs. multilayer self-assembled alkylphosphonate films: X-ray photoelectron spectroscopy studies. Surf. Sci. 2005, 600, 773–781. [Google Scholar] [CrossRef]
- Kaufmann, C.R.; Mani, G.; Marton, D.; Johnson, D.M.; Agrawal, C.M. Long-term stability of self-assembled monolayers on 316L stainless steel. Biomed. Mater. 2010, 5, 025008. [Google Scholar] [CrossRef]
- Kosec, T.; Merl, D.K.; Milošev, I. Impedance and XPS study of benzotriazole films formed on copper, copper–zinc alloys and zinc in chloride solution. Corros. Sci. 2008, 50, 1987–1997. [Google Scholar]
- Dermaj, A.; Hajjaji, N.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V. Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative. Electrochim. Acta 2007, 52, 4654–4662. [Google Scholar]
- Raman, A.; Gawalt, E.S. Self-Assembled Monolayers of Alkanoic Acids on the Native Oxide Surface of SS316L by Solution Deposition. Langmuir 2007, 23, 2284. [Google Scholar] [CrossRef] [PubMed]
- Ruhm, L.; Löseke, J.; Vieth, P.; Prüßner, T.; Grundmeier, G. Adhesion promotion and corrosion resistance of mixed phosphonic acid monolayers on AA 2024. Appl. Surf. Sci. 2024, 670, 160655. [Google Scholar] [CrossRef]
- Cano, E.; Lafuente, D.; Bastidas, D.M. Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: A review. J. Solid State Electrochem. 2010, 14, 381–391. [Google Scholar] [CrossRef]
- Loveday, D.; Peterson, P.; Rodgers, B. Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy, Part 2: Application of EIS to Coatings. JCT CoatingsTech 2004, 1, 88–93. [Google Scholar]
- Chiavari, C.; Rahmounib, K.; Takenouti, H.; Joiret, S.; Vermaut, P.; Robbiola, L. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim. Acta 2007, 52, 7760–7769. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Mansfeld, F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J. Appl. Electrochem. 1995, 25, 187–202. [Google Scholar] [CrossRef]
- Mansfeld, F. Models for the impedance behavior of protective coatings and cases of localized corrosion. Electrochim. Acta 1993, 38, 1891–1897. [Google Scholar] [CrossRef]
CuSn12 | Element | Cu | Sn | Pb | Ni | P | Zn | Rest |
Wt. (%) | 87.94 | 11.02 | 0.54 | 0.29 | 0.10 | 0.07 | 0.04 |
Method | Steps | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Ultrasonic bath 1 | Bronze oxidation 24 h at 80 °C | Film adsorption 20 h at 40 °C | 30 min in ethanol in ultrasonic bath | Film drying 5 h at 80 °C | / |
Ultrasonic bath 2 | Film drying 5 h at 80 °C | 30 min in ethanol in ultrasonic bath | Film drying 30 min at 80 °C | ||
Rinsing | Rinsing under a stream of ethanol for 10 s | ||||
Wiping | Wiping with lens tissue soaked in ethanol |
Method | Rf (kΩ cm2) | Qf (µS sn cm−2) | nf | Rct (kΩ cm2) | Qdl (µS sn cm−2) | ndl |
---|---|---|---|---|---|---|
Ultrasonic: 30 min after adsorption | 13 | 4.88 | 0.79 | 80 | 9.74 | 0.64 |
Ultrasonic: 30 min after drying | 32 | 1.91 | 0.88 | 203 | 4.34 | 0.59 |
Rinsing | 9.6 | 5.77 | 0.79 | 48 | 15.32 | 0.65 |
Wiping | 22 | 3.94 | 0.79 | 65 | 8.69 | 0.67 |
Sample | Rq (nm) | Sq (nm) |
---|---|---|
Blank | 2.3 | 3.5 |
COOH-PA before wiping | 11.5 | 10.0 |
COOH-PA after wiping | 2.8 | 2.3 |
Rpore (kΩ cm2) | Qcoat (nS sn cm−2) | ncoat | Rct (MΩ cm2) | Qdl (nS sn cm−2) | ndl | |
---|---|---|---|---|---|---|
Polyurethane | ||||||
1st day | 473 | 0.3 | 0.98 | 157 | 0.5 | 0.74 |
After 3 weeks | 2.44 | 0.5 | 0.79 | 170 | 0.3 | 0.99 |
COOH-PA/Polyurethane | ||||||
1st day | 5000 | 0.2 | 0.98 | 215 | 0.3 | 0.77 |
After 3 weeks | 2301 | 0.2 | 1.00 | 275 | 0.4 | 0.77 |
NH2-PA/Polyurethane | ||||||
1st day | 4727 | 0.2 | 0.98 | 256 | 0.5 | 0.70 |
After 3 weeks | 1584 | 0.3 | 0.97 | 349 | 1 | 0.62 |
System | Pull-Off Strength (MPa) |
---|---|
CuSn12/Polyurethane | 7.54 ± 0.33 |
CuSn12/COOH-PA/Polyurethane | 8.13 ± 0.17 |
CuSn12/NH2-PA/Polyurethane | 8.60 ± 0.21 |
B72 | |||||||||
Rpore (MΩ cm2) | Qcoat (nS sn cm−2) | ncoat | Rcp (MΩ cm2) | Qcp (µS sn cm−2) | ncp | Rct (MΩ cm2) | Qdl (µS sn cm−2) | ndl | |
1st day | 0.007 | 290 | 0.62 | - | - | - | 3.1 | 0.001 | 0.95 |
After 3 weeks | 0.011 | 3 | 0.81 | 0.352 | 0.36 | 0.65 | 1.3 | 2.78 | 0.50 |
COOH-PA/B72 | |||||||||
Rpore (MΩ cm2) | Qcoat (nS sn cm−2) | ncoat | Rct (MΩ cm2) | Qdl (µS sn cm−2) | ndl | Coth Yo (nS s0.5 cm−2) | B (s0.5) | ||
1st day | 8300 | 0.5 | 0.97 | 1.3 × 104 | 0.001 | 1.00 | - | - | |
After 3 weeks | 18 | 0.5 | 0.97 | 966 | 3 × 10−4 | 0.73 | 2.2 | 4.3 | |
NH2-PA/B72 | |||||||||
Rpore (MΩ cm2) | Qcoat (nS sn cm−2) | ncoat | Rct (MΩ cm2) | Qdl (µS sn cm−2) | ndl | ||||
1st day | 810 | 0.6 | 0.81 | 8930 | 3 × 10−4 | 0.65 | |||
After 3 weeks | 320 | 0.7 | 0.96 | 350 | 8 × 10−3 | 0.50 |
Rpore (MΩ cm2) | Qcoat (nS sn cm−2) | ncoat | Rcp (MΩ cm2) | Qcp (nS sn cm−2) | ncp | Rct (MΩ cm2) | Qdl (nS sn cm−2) | nct | |
---|---|---|---|---|---|---|---|---|---|
B72 | |||||||||
1st day | 0.006 | 150 | 0.50 | - | - | - | 6.55 | 4.01 | 0.92 |
After 3 weeks | 0.029 | 50 | 0.71 | 1.63 | 5 | 0.70 | 7.60 | 350 | 0.56 |
COOH-PA/B72 | |||||||||
1st day | 100 | 1.26 | 0.97 | - | - | - | 910 | 2.37 | 0.59 |
After 3 weeks | 12 | 1.88 | 0.94 | - | - | - | 540 | 8.23 | 0.50 |
System | Pull-Off Strength (MPa) |
---|---|
CuSn12/Paraloid B72 | 5.51 ± 1.13 |
CuSn12/COOH-PA/Paraloid B72 | 8.03 ± 0.34 |
CuSn12/NH2-PA/Paraloid B72 | 7.96 ± 2.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikić, D.; Radovanović-Perić, F.; Otmačić Ćurković, H. Phosphonic Acids as Corrosion Inhibitors and Adhesion Promoters for Organic Coatings and Bronze. Materials 2024, 17, 3710. https://doi.org/10.3390/ma17153710
Mikić D, Radovanović-Perić F, Otmačić Ćurković H. Phosphonic Acids as Corrosion Inhibitors and Adhesion Promoters for Organic Coatings and Bronze. Materials. 2024; 17(15):3710. https://doi.org/10.3390/ma17153710
Chicago/Turabian StyleMikić, Dajana, Floren Radovanović-Perić, and Helena Otmačić Ćurković. 2024. "Phosphonic Acids as Corrosion Inhibitors and Adhesion Promoters for Organic Coatings and Bronze" Materials 17, no. 15: 3710. https://doi.org/10.3390/ma17153710
APA StyleMikić, D., Radovanović-Perić, F., & Otmačić Ćurković, H. (2024). Phosphonic Acids as Corrosion Inhibitors and Adhesion Promoters for Organic Coatings and Bronze. Materials, 17(15), 3710. https://doi.org/10.3390/ma17153710