Turning Waste into Treasure: Invasive Plant Ambrosia trifida L Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Solution
2.2. ATL Extract Preparation
2.3. Electrochemical Tests
2.4. Weight Loss and Morphology Analysis
2.5. Calculation Details
3. Results and Discussion
3.1. The Chemical Ingredient of ATL Extract
3.2. DFT Calculations
3.3. EIS Analysis
3.4. Polarization Curve Analysis
3.5. Immersion Test and Adsorption Type
3.6. Morphology Observation
3.7. Inhibition Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Zhang, Q.-H.; Meng, X.-Z.; Yan, H.-J.; Hu, H.-S.; Wu, L.-K.; Cao, F.-H. Active/passive protection and anti-UV waterborne epoxy coatings based on low defect functionalized PDA-GO-CeO2 material for excellent corrosion control. Chem. Eng. J. 2024, 479, 147859. [Google Scholar] [CrossRef]
- Badea, G.E.; Fodor, A.; Petrehele, A.I.G.; Maior, I.; Toderas, M.; Morgovan, C.M. Evaluation of Phosphopolyoxometalates with Mixed Addenda (Mo, W, V) as Corrosion Inhibitors for Steels. Materials 2023, 16, 7600. [Google Scholar] [CrossRef]
- Shalabi, K.; Abd El-Lateef, H.M.; Hammouda, M.M.; Osman, A.M.A.; Tantawy, A.H.; Abo-Riya, M.A. Perspectives on Corrosion Inhibition Features of Novel Synthesized Gemini-Fluorinated Cationic Surfactants Bearing Varied Spacers for Acid Pickling of X60-Steel: Practical, and In Silico Calculations. Materials 2023, 16, 5192. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, R.; Tan, B.; Li, W.; Liu, H.; Wu, S. Locust Bean Gum as a green and novel corrosion inhibitor for Q235 steel in 0.5 M H2SO4 medium. J. Mol. Liq. 2020, 310, 113239. [Google Scholar] [CrossRef]
- Tan, B.; He, J.; Zhang, S.; Xu, C.; Chen, S.; Liu, H.; Li, W. Insight into anti-corrosion nature of Betel leaves water extracts as the novel and eco-friendly inhibitors. J. Colloid Interf. Sci. 2021, 585, 287–301. [Google Scholar] [CrossRef]
- Sheit, H.M.K.; Kani, S.M.; Sathiq, M.A.; Abuthahir, S.S.S.; Subhapriya, P.; Nivedhitha, K.S.; Umarfarooq, M.A.; Badruddin, I.A.; Kamangar, S.; Shaik, A.S. Experimental Studies on the Effect of Expired Amiodarone Drug (EAD) as a Corrosion Inhibitor on Mild Steel in 1 M HCl. Materials 2024, 17, 751. [Google Scholar] [CrossRef]
- Vaszilcsin, N.; Kellenberger, A.; Dan, M.L.; Duca, D.A.; Ordodi, V.L. Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review. Materials 2023, 16, 5555. [Google Scholar] [CrossRef]
- Habibullah, M.I.; Veawab, A. Cysteine as an Alternative Eco-Friendly Corrosion Inhibitor for Absorption-Based Carbon Capture Plants. Materials 2023, 16, 3496. [Google Scholar] [CrossRef]
- Yang, H.; Deng, S.; Shao, D.; Lei, R.; Du, G.; Li, X. Eupatorium adenophorum Spreng leaves extract/potassium iodide as a highly sustainable inhibitor for the corrosion protection of steel in citric acid solution. J. Mol. Liq. 2023, 387, 122614. [Google Scholar] [CrossRef]
- Liao, B.; Luo, Z.; Wan, S.; Chen, L. Insight into the anti-corrosion performance of Acanthopanax senticosus leaf extract as eco-friendly corrosion inhibitor for carbon steel in acidic medium. J. Ind. Eng. Chem. 2023, 117, 238–246. [Google Scholar] [CrossRef]
- Winkler, D.A.; Breedon, M.; White, P.; Hughes, A.E.; Sapper, E.D.; Cole, I. Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitors. Corros. Sci. 2016, 106, 229–235. [Google Scholar] [CrossRef]
- El-Asri, A.; Jmiai, A.; Bourzi, H.; Lin, Y.; El Issami, S. Chemistry of the interaction between Imidazole derivatives as corrosion inhibitors molecules and copper/brass/zinc surfaces: A DFT, reactive and classical molecular force fields study. Surf. Interfaces 2024, 44, 103799. [Google Scholar] [CrossRef]
- Gong, S.; Li, Y.; Li, H.; He, L.; Yan, Z.; Wang, S.; Sun, X.; Song, C. Glutamic Acid Enhances the Corrosion Inhibition of Polyaspartic Acid on Q235 Carbon Steel. ACS Omega 2023, 8, 39709–39719. [Google Scholar] [CrossRef]
- Jia, H.; Jia, H.; Lu, Y.; Li, X.; Guo, C.; Li, C.; Shen, Z.; Pei, P.; Sun, H.; Lv, K.; et al. Experimental and theoretical investigation of novel ammonium-derived dihydroxyl ionic liquid as corrosion inhibitor for mild steel in 1 M HCl: Effects of dihydroxyl and head groups. J. Mol. Liq. 2024, 402, 124777. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhi, H.; Guo, L.; Fu, A.; Xiang, T.; Jin, Y. Experimental and molecular modeling studies of multi-active tetrazole derivative bearing sulfur linker for protecting steel from corrosion. J. Mol. Liq. 2022, 351, 118638. [Google Scholar] [CrossRef]
- Pour-Ali, S.; Tavangar, R.; Hejazi, S. Comprehensive assessment of some l-amino acids as eco-friendly corrosion inhibitors for mild steel in HCl: Insights from experimental and theoretical studies. J. Phys. Chem. Solids 2023, 181, 111550. [Google Scholar] [CrossRef]
- Aslam, R.; Zhao, J.; Sun, X.; Zhou, X.; Wang, Q.; Aslam, J.; Yan, Z. Bio-based ionic liquid as a corrosion inhibitor for mild steel in 5% HCl solution: Experimental and theoretical investigation. Sustain. Chem. Pharm. 2024, 39, 101614. [Google Scholar] [CrossRef]
- Dehghani, A.; Hossein Mostafatabar, A.; Bahlakeh, G.; Ramezanzadeh, B. Poppy-leaf extract-derived biomolecules adsorption on the rGO-nanoplatforms and application as smart self-healing material for epoxy coating. J. Mol. Liq. 2023, 370, 120931. [Google Scholar] [CrossRef]
- Cevallos-Morillo, C.; Cisneros-Perez, P.; Llive, R.; Ricaurte, M.; Reinoso, C.; Meneses, M.A.; Guaman, M.D.C.; Palma-Cando, A. Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid. Molecules 2021, 26, 7417. [Google Scholar] [CrossRef]
- Li, H.; Qiang, Y.J.; Zhao, W.J.; Zhang, S.T. A green Brassica oleracea L extract as a novel corrosion inhibitor for Q235 steel in two typical acid media. Colloid. Surf. A 2021, 616, 126077. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Zhi, H.; Qiang, Y.; Liu, X.; Zhang, Y.; Wan, Y.; Xiang, T.; Li, X. Experimental and computational exploration of the biodegradable platanus acerifolia leaf extract against mild steel corrosion in hydrochloric acid. J. Mater. Res. Technol. 2024, 30, 7830–7842. [Google Scholar] [CrossRef]
- Liao, B.; Ma, S.; Zhang, S.; Li, X.; Quan, R.; Wan, S.; Guo, X. Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. Int. J. Biol. Macromol. 2023, 239, 124358. [Google Scholar] [CrossRef]
- Kellal, R.; Benmessaoud Left, D.; Safi, Z.S.; Wazzan, N.; Al-Qurashi, O.S.; Zertoubi, M. A new approach for the evaluation of liquid waste generated from plant extraction process for the corrosion mitigation of carbon steel in acidic medium: Case of Chrysanthemum Coronarium stems. J. Ind. Eng. Chem. 2023, 125, 370–389. [Google Scholar] [CrossRef]
- Tan, B.; Gong, Z.; He, W.; Xiong, J.; Guo, L.; Marzouki, R. Insight into the anti-corrosion mechanism of crop waste Arachis hypogaea L. leaf extract for copper in sulfuric acid medium. Sustain. Chem. Pharm. 2024, 38, 101449. [Google Scholar] [CrossRef]
- Sucur, J.; Konstantinovic, B.; Crnkovic, M.; Bursic, V.; Samardzic, N.; Malencic, D.; Prvulovic, D.; Popov, M.; Vukovic, G. Chemical Composition of Ambrosia trifida L. and Its Allelopathic Influence on Crops. Plants 2021, 10, 2222. [Google Scholar] [CrossRef] [PubMed]
- Haruna, K.; Saleh, T.A. Dopamine functionalized graphene oxide (DGO) as a corrosion inhibitor against X60 carbon steel corrosion in a simulated acidizing environment; An electrochemical, weight loss, SERS, and computational study. Surf. Interfaces 2024, 44, 103688. [Google Scholar] [CrossRef]
- Shahini, M.H.; Keramatinia, M.; Ramezanzadeh, M.; Ramezanzadeh, B.; Bahlakeh, G. Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution. J. Mol. Liq. 2021, 342, 117570. [Google Scholar]
- Abdelshafi, N.S.; Farag, A.A.; Heakal, F.E.-T.; Badran, A.-S.; Abdel-Azim, K.M.; Manar El Sayed, A.-R.; Ibrahim, M.A. In-depth experimental assessment of two new aminocoumarin derivatives as corrosion inhibitors for carbon steel in HCl media combined with AFM, SEM/EDX, contact angle, and DFT/MDs simulations. J. Mol. Struc. 2024, 1304, 137638. [Google Scholar] [CrossRef]
- Liu, H.; Lin, Y.; Luo, Q.; Xu, W.; He, J.; Bao, B.; Xu, Y.; Zeng, B.; Yuan, C.; Chen, G.; et al. Expounding protection mechanisms of ring charge density and ligand number for N-containing heterocyclic as corrosion inhibitors using experimental and calculation. Appl. Surf. Sci. 2024, 648, 159069. [Google Scholar] [CrossRef]
- Lasri, M.; Bimoussa, A.; Ait-karra, A.; Laamari, Y.; Zakir, O.; Idouhli, R.; Maatallah, M.; Khadiri, M.E.; Auhmani, A.; Itto, M.Y.A.; et al. Synthesis and evaluation of benzo[1,2,3]selenadiazole-isoxazoles as corrosion inhibitors for copper in NaCl: An integrated experimental and theoretical approach. Colloid. Surf. A 2024, 695, 134227. [Google Scholar] [CrossRef]
- Guo, L.; Tan, J.; Kaya, S.; Leng, S.; Li, Q.; Zhang, F. Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation. J. Colloid Interface Sci. 2020, 570, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Rajeswari, V.; Kesavan, D.; Gopiraman, M.; Viswanathamurthi, P.; Poonkuzhali, K.; Palvannan, T. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium. Appl. Surf. Sci. 2014, 314, 537–545. [Google Scholar] [CrossRef]
- Gapsari, F.; Utaminingrum, F.; Lai, C.W.; Anam, K.; Sulaiman, A.M.; Haidar, M.F.; Julian, T.S.; Ebenso, E.E. A convolutional neural network -VGG16 method for corrosion inhibition of 304SS in sulfuric acid solution by timoho leaf extract. J. Mater. Res. Technol. 2024, 30, 1116–1127. [Google Scholar] [CrossRef]
- Hau, N.N.; Huong, D.Q. Effect of aromatic rings on mild steel corrosion inhibition ability of nitrogen heteroatom-containing compounds: Experimental and theoretical investigation. J. Mol. Struct. 2023, 1277, 134884. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Chen, X. 2-Benzylsulfanyl-1H-benzimidazole and its mixture as highly efficient corrosion inhibitors for carbon steel under dynamic supercritical CO2 flow conditions. Corros. Sci. 2024, 235, 112170. [Google Scholar] [CrossRef]
- Fu, Z.; Guo, X.; Zhang, X.; Legut, D.; Zhang, D. Towards rational design of organic copper corrosion inhibitors: High-throughput computational evaluation of standard adsorption Gibbs energy. Corros. Sci. 2024, 227, 111783. [Google Scholar] [CrossRef]
- Chang, P.; Huang, Z.; Ling, H.; Wu, Y.; Li, M.; Hang, T. First-principles insight into the pH-dependency of the corrosion inhibition ability of benzotriazole and 1,2,4-triazole for copper in chemical mechanical polishing slurry. Corros. Sci. 2024, 232, 112002. [Google Scholar] [CrossRef]
- Li, C.; Xia, Z.; Yan, H.; Shi, Q.; Weng, J. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy coatings in salt environment. Corros. Sci. 2022, 199, 110150. [Google Scholar] [CrossRef]
- Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E. Characterization of passive films on shape memory stainless steels. Corros. Sci. 2012, 57, 154–161. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.H.; Meng, X.Z.; Liu, P.; Wu, L.K.; Cao, F.H. A novel cerium organic network modified graphene oxide prepared multifunctional waterborne epoxy-based coating with excellent mechanical and passive/active anti-corrosion properties. Chem. Eng. J. 2023, 465, 142997. [Google Scholar] [CrossRef]
- Gong, W.; Yin, X.; Liu, Y.; Chen, Y.; Yang, W. 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium. Prog. Org. Coat. 2019, 126, 150–161. [Google Scholar] [CrossRef]
- Odewunmi, N.A.; Umoren, S.A.; Gasem, Z.M. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J. Environ. Chem. Eng. 2015, 3, 286–296. [Google Scholar] [CrossRef]
- Alvarez, P.E.; Fiori-Bimbi, M.V.; Neske, A.; Brandán, S.A.; Gervasi, C.A. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J. Ind. Eng. Chem. 2018, 58, 92–99. [Google Scholar] [CrossRef]
- Kaya, F.; Solmaz, R.; Halil Geçibesler, İ. The use of methanol extract of Rheum Ribes (Işgın) flower as a natural and promising corrosion inhibitor for mild steel protection in 1 M HCl solution. J. Ind. Eng. Chem. 2023, 122, 102–117. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Zhu, B.; Huang, C.; Li, W. Magnolia grandiflora leaves extract as a novel environmentally friendly inhibitor for Q235 steel corrosion in 1 M HCl: Combining experimental and theoretical researches. J. Mol. Liq. 2020, 311, 113312. [Google Scholar] [CrossRef]
- Carmona-Hernandez, A.; Campechano-Lira, C.; Espinoza-Vázquez, A.; Ramírez-Cano, J.A.; Orozco-Cruz, R.; Galván-Martínez, R. Electrochemical and DFT theoretical evaluation of the Randia monantha Benth extract as an eco-friendly corrosion inhibitor for mild steel in 1 M HCl solution. J. Taiwan Inst. Chem. Eng. 2023, 147, 104913. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, X.; Sun, X.; Zhang, Q.; Wang, R.; Zhao, J.; Aslam, R.; Sun, Y.; Yan, Z.; Li, X. Seaweed extract as green corrosion inhibitor for carbon steel in hydrochloric acid solution. Colloid. Surf. A 2024, 700, 134751. [Google Scholar] [CrossRef]
- Li, H.; Qiang, Y.J.; Zhao, W.J.; Zhang, S.T. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating. Corros. Sci. 2021, 191, 109715. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Liu, X.; Liu, A.; Hang, P.; Ding, R.; Li, T.; Zhang, Y.; Wang, W.; Xiong, C. Preparation of corrosion inhibitor loaded zeolites and corrosion resistance of carbon steel in simulated concrete pore solution. Constr. Build. Mater. 2019, 225, 90–98. [Google Scholar] [CrossRef]
- Bobina, M.; Kellenberger, A.; Millet, J.-P.; Muntean, C.; Vaszilcsin, N. Corrosion resistance of carbon steel in weak acid solutions in the presence of l-histidine as corrosion inhibitor. Corros. Sci. 2013, 69, 389–395. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Alvarez, L.X.; dos Santos, N.E.; Maldonado Barrios, A.C.; Ponzio, E.A. Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses. Corros. Sci. 2019, 149, 185–194. [Google Scholar] [CrossRef]
- Ansari, K.R.; Singh Chauhan, D.; Sorour, A.A.; Quraishi, M.A.; Adesina, A.Y.; Singh, A. Experimental and computational approach on the development of a new Green corrosion inhibitor formulation for N80 steel in 20% formic acid. J. Colloid Interf. Sci. 2023, 652, 2085–2097. [Google Scholar] [CrossRef] [PubMed]
- Haque, J.; Saleh, T.A.; Murmu, M.; Chauhan, D.S.; Wan Nik, W.B.; Banerjee, P.; Quraishi, M.A. Synthesis of multi donating sites grafted on graphene oxide nanosheets: Anti-corrosion study for mild steel in 1 M HCl with DFT calculations. J. Mol. Liq. 2023, 389, 122820. [Google Scholar] [CrossRef]
- Garai, S.; Garai, S.; Jaisankar, P.; Singh, J.K.; Elango, A. A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution. Corros. Sci. 2012, 60, 193–204. [Google Scholar] [CrossRef]
C | Rs | n1 | n2 | η | χ2 | ||||
---|---|---|---|---|---|---|---|---|---|
(mg/L) | (Ω cm2) | (Ω cm2) | (Ω cm2) | (μF cm−2) | (μF cm−2) | (%) | 10−4 | ||
Blank | 1.3 | 2.9 | 17.1 | 362.3 | 1 | 134.0 | 0.78 | - | 1.4 |
50 | 1.4 | 19.0 | 138.8 | 20.5 | 1 | 3.4 | 0.72 | 87.3 | 6.9 |
100 | 1.4 | 21.2 | 231.6 | 16.6 | 1 | 1.8 | 0.69 | 92.1 | 6.7 |
200 | 1.3 | 28.7 | 310.0 | 15.5 | 1 | 1.6 | 0.71 | 94.1 | 9.4 |
1000 | 1.4 | 39.0 | 765.0 | 14.4 | 1 | 1.5 | 0.69 | 97.5 | 6.6 |
Inhibitor | Metal | Acid (HCl) | Concentration | η (%) | Reference |
---|---|---|---|---|---|
E. aegyptiaca | cast iron | 1 M | 2400 ppm | 91.5 | [32] |
Citrullus lanatus | mild steel | 1 M | 2000 mg/L | 83.3 | [42] |
Rollinia occidentalis | carbon steel | 1 M | 1000 mg/L | 79.7 | [43] |
Rheum Ribes | mild steel | 1 M | 2000 mg/L | 94.2 | [44] |
Magnolia grandiflora | Q235 steel | 1 M | 500 mg/L | 85.5 | [45] |
Randia monantha | mild steel | 1 M | 1000 mg/L | 91.8 | [46] |
Seaweed | carbon steel | 1 M | 500 mg/L | 92.0 | [47] |
Ambrosia trifida L | Q235 steel | 1 M | 1000 mg/L | 97.5 | This work |
Time | C | Rs | n1 | n2 | η | χ2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
(h) | (mg/L) | (Ω cm2) | (Ω cm2) | (Ω cm2) | (μF cm−2) | (μF cm−2) | (%) | 10−4 | ||
2 | 0 | 1.3 | 2.5 | 16.4 | 366.4 | 1 | 158.5 | 0.69 | - | 8.4 |
1000 | 1.4 | 37.9 | 978.0 | 12.0 | 1 | 0.96 | 0.67 | 98.1 | 4.7 | |
12 | 0 | 1.3 | 2.2 | 14.2 | 441.8 | 1 | 170.4 | 0.72 | - | 1.7 |
1000 | 1.4 | 43.4 | 1265.0 | 10.9 | 1 | 0.79 | 0.67 | 98.7 | 7.7 | |
24 | 0 | 1.2 | 2.6 | 12.7 | 507.4 | 1 | 176.6 | 0.73 | - | 7.2 |
1000 | 1.4 | 51.4 | 1462.0 | 0.94 | 1 | 0.57 | 0.67 | 99.0 | 7.0 |
C (mg/L) | (V/SCE) | (μA cm–2) | (mV dec–1 ) | (mV dec–1 ) | η (%) |
---|---|---|---|---|---|
Blank | −0.441 | 1101.0 | −115.4 | 95.5 | - |
50 | −0.460 | 123.8 | −122.1 | 73.9 | 88.8 |
100 | −0.458 | 82.8 | −120.8 | 75.1 | 92.5 |
200 | −0.452 | 68.3 | −111.5 | 77.1 | 93.8 |
1000 | −0.430 | 29.4 | −152.9 | 64.1 | 97.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Tian, H.; Zou, F.; Li, W.; Qiang, Y.; Hou, B. Turning Waste into Treasure: Invasive Plant Ambrosia trifida L Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions. Materials 2024, 17, 3758. https://doi.org/10.3390/ma17153758
Sun X, Tian H, Zou F, Li W, Qiang Y, Hou B. Turning Waste into Treasure: Invasive Plant Ambrosia trifida L Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions. Materials. 2024; 17(15):3758. https://doi.org/10.3390/ma17153758
Chicago/Turabian StyleSun, Xin, Huiwen Tian, Fangxin Zou, Weihua Li, Yujie Qiang, and Baorong Hou. 2024. "Turning Waste into Treasure: Invasive Plant Ambrosia trifida L Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions" Materials 17, no. 15: 3758. https://doi.org/10.3390/ma17153758
APA StyleSun, X., Tian, H., Zou, F., Li, W., Qiang, Y., & Hou, B. (2024). Turning Waste into Treasure: Invasive Plant Ambrosia trifida L Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions. Materials, 17(15), 3758. https://doi.org/10.3390/ma17153758