Hydrothermal Corrosion of Latest Generation of FeCrAl Alloys for Nuclear Fuel Cladding
Abstract
:1. Introduction
2. Experimental Conditions
3. Results
3.1. TEM Analysis of Alloys Tested in BWR-NWC Environment
3.1.1. Zirc-2 Tube
3.1.2. FA-SMT Tube
3.1.3. PM-C26M Tube
3.1.4. Fe17Cr5.5Al Flat Coupon
3.1.5. SS316 Tube
3.2. TEM Analysis of Alloys Tested in BWR-HWC Environment
3.2.1. Zirc-2 Tube
3.2.2. FA-SMT Tube
3.2.3. PM-C26M Tube
3.2.4. Fe17Cr5.5Al Flat Coupon
3.2.5. SS316 Tube
3.3. Comparison of Oxide Thickness on Alloys as Function of Water Chemistry
4. Discussion
5. Conclusions
- All three variants of FeCrAl displayed a weight gain in BWR-NWC. However, in BWR-HWC, all variants displayed a mass loss.
- For the Fe17Cr5.5Al specimen in simulated BWR-NWC, due to the low partial pressure of oxygen, an Al oxide layer formed beneath the Cr oxide layer.
- In BWR-HWC, only the FA-SMT specimen displayed a slight enrichment of Al under the protective Cr oxide.
- Unlike the BWR-NWC specimens, no surface spinel was observed in any FeCrAl alloy variants tested in BWR-HWC.
- Overall, the latest generation of FeCrAl alloys fabricated via powder metallurgy have little sensitivity to microstructural impact when compared to previous generations of alloys.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kharecha, P.A.; Hansen, J.E. Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power. Environ. Sci. Technol. 2013, 47, 4889–4895. [Google Scholar] [CrossRef] [PubMed]
- Motta, A.T.; Couet, A.; Comstock, R.J. Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding. Annu. Rev. Mater. Res. 2015, 45, 311–343. [Google Scholar] [CrossRef]
- Santisteban, J.; Vicente-Alvarez, M.; Vizcaino, P.; Banchik, A.; Vogel, S.; Tremsin, A.; Vallerga, J.; McPhate, J.; Lehmann, E.; Kockelmann, W. Texture imaging of zirconium based components by total neutron cross-section experiments. J. Nucl. Mater. 2012, 425, 218–227. [Google Scholar] [CrossRef]
- Katoh, Y.; Vasudevamurthy, G.; Nozawa, T.; Rana, D.S.; Farnan, I.; Snead, L.L. Properties of Zirconium Carbide for Nuclear Fuel Applications. Compr. Nucl. Mater. Second Ed. 2020, 441, 718–742. [Google Scholar] [CrossRef]
- Tanaka, S.-I. Accident at the Fukushima Dai-ichi Nuclear Power Stations of TEPCO—Outline & lessons learned—. Proc. Jpn. Acad. Ser. B 2012, 88, 471–484. [Google Scholar] [CrossRef]
- Terrani, K.; Zinkle, S.; Snead, L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 2014, 448, 420–435. [Google Scholar] [CrossRef]
- Global, G.E.; Fuels, N.; Power, G.E.; Fawcett, R.; Augi, R.; Paone, C.; Davis, P.; Lutz, D.; Powers, M.; Keck, D.; et al. DE-NE0008221 GE Final Technical and Scientific Report. 2018; pp. 1–47. Available online: https://www.osti.gov/servlets/purl/1488931 (accessed on 11 March 2024).
- Rebak, R.B. Current materials in light water reactors. Why do we need a materials renewal? In Accident-Tolerant Materials for Light Water Reactor Fuels; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–41. [Google Scholar] [CrossRef]
- Mandal, D.; Dabhade, P.; Chougule, B. Thin film coating of silicon carbide on zircaloy-4 tube by FCVD process and a study on its kinetics. J. Nucl. Mater. 2021, 552, 152996. [Google Scholar] [CrossRef]
- Raiman, S.S.; Field, K.G.; Rebak, R.B.; Yamamoto, Y.; Terrani, K.A. Hydrothermal corrosion of 2nd generation FeCrAl alloys for accident tolerant fuel cladding. J. Nucl. Mater. 2020, 536, 152221. [Google Scholar] [CrossRef]
- Terrani, K.; Pint, B.; Kim, Y.-J.; Unocic, K.; Yang, Y.; Silva, C.; Meyer, H.; Rebak, R. Uniform corrosion of FeCrAl alloys in LWR coolant environments. J. Nucl. Mater. 2016, 479, 36–47. [Google Scholar] [CrossRef]
- Rajendran, R.; Chikhalikar, A.S.; Roy, I.; Abouelella, H.; Qu, H.J.; Umretiya, R.V.; Hoffman, A.K.; Rebak, R.B. Effect of aging and α’ segregation on oxidation and electrochemical behavior of FeCrAl alloys. J. Nucl. Mater. 2024, 588, 154751. [Google Scholar] [CrossRef]
- Qu, H.J.; Higgins, M.; Abouelella, H.; Cappia, F.; Burns, J.; He, L.; Massey, C.; Harp, J.; Field, K.G.; Howard, R.; et al. FeCrAl fuel/clad chemical interaction in light water reactor environments. J. Nucl. Mater. 2023, 587, 154717. [Google Scholar] [CrossRef]
- Rebak, R.B.; Larsen, M.; Kim, Y.-J. Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments. Corros. Rev. 2017, 35, 177–188. [Google Scholar] [CrossRef]
- Briggs, S.A.; Edmondson, P.D.; Littrell, K.C.; Yamamoto, Y.; Howard, R.H.; Daily, C.R.; Terrani, K.A.; Sridharan, K.; Field, K.G. A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater. 2017, 129, 217–228. [Google Scholar] [CrossRef]
- Field, K.G.; Littrell, K.C.; Briggs, S.A. Precipitation of α′ in neutron irradiated commercial FeCrAl alloys. Scr. Mater. 2018, 142, 41–45. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Pint, B.; Terrani, K.; Field, K.; Yang, Y.; Snead, L. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater. 2015, 467, 703–716. [Google Scholar] [CrossRef]
- Umretiya, R.; Zhang, W.; Motyl, R.; Blair, R.; Yin, L.; Hoffman, A.; Gupta, V.; Rebak, R.; Dolley, E. Effect of Microstructure, Manufacturing Method and Composition on Corrosion Behavior of FeCrAl Alloys. In Proceedings of the TopFuel 2022 Light Water Reactor Fuel Performance Conference, Raleigh, NC, USA, 9–13 October 2022. [Google Scholar] [CrossRef]
- Yin, L.; Jurewicz, T.; Larsen, M.; Drobnjak, M.; Graff, C.; Lutz, D.; Rebak, R. Uniform corrosion of FeCrAl cladding tubing for accident tolerant fuels in light water reactors. J. Nucl. Mater. 2021, 554, 153090. [Google Scholar] [CrossRef]
- Rebak, R.B.; Yin, L.; Zhang, W.; Umretiya, R.V. Effect of the redox potential on the general corrosion behavior of industrial nuclear alloys. J. Nucl. Mater. 2023, 576, 154257. [Google Scholar] [CrossRef]
- Available online: https://www.astm.org/g0031-21.html (accessed on 11 March 2024).
- Rebak, R.B.; Blair, R.J.; Lutz, D.R. Localized corrosion behavior of FeCrAl nuclear fuel cladding in pool storage. In Proceedings of the American Nuclear Society Global, Seattle, WA, USA, 22–27 September 2019; pp. 1056–1062. [Google Scholar]
- Chikhalikar, A.; Roy, I.; Abouelella, H.; Umretiya, R.; Hoffman, A.; Larsen, M.; Rebak, R.B. Effect of aluminum on the FeCr(Al) alloy oxidation resistance in steam environment at low temperature (400 °C) and high temperature (1200 °C). Corros. Sci. 2022, 209, 110765. [Google Scholar] [CrossRef]
- Rebak, R.B. Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors. Metall. Mater. Trans. E 2015, 2, 197–207. [Google Scholar] [CrossRef]
- Cubicciotti, D. Potential-pH diagrams for alloy-water systems under LWR conditions. J. Nucl. Mater. 1993, 201, 176–183. [Google Scholar] [CrossRef]
- Wang, J.; Ling, Y.; Lu, Z.; Zhou, Q.; Wang, R.; Zhang, Z. Enhanced formation of α-Al2O3 at low temperature on Cr/Al coating by controlling oxygen partial pressure. Appl. Surf. Sci. 2020, 515, 146053. [Google Scholar] [CrossRef]
- Wu, W.; Ran, G.; Li, Y.; Cong, S.; Ye, C.; Zhang, R.; Sun, Y. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment. Corros. Sci. 2020, 174, 108824. [Google Scholar] [CrossRef]
- Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.; Fukuya, K. Corrosion Behavior of Stainless Steels in Simulated PWR Primary Water—Effect of Chromium Content in Alloys and Dissolved Hydrogen—. J. Nucl. Sci. Technol. 2008, 45, 975–984. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G.R. A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part II, Prediction of Corrosion Damage in Operating Reactors. Corros. Mater. Degrad. 2022, 3, 694–758. [Google Scholar] [CrossRef]
Alloy | Geometry | Chemical Composition in wt% | No. of Samples Tested |
---|---|---|---|
FA-SMT | Tube | Fe + 21Cr + 5Al + 3Mo | 16 |
Fe17Cr5.5Al | Flat coupon | Fe + 17Cr + 5.5Al | 6 |
PM-C26M | Tube | Fe + 12Cr + 6Al + 2Mo | 16 |
Zirc-2 | Tube | Zr + 1.5Sn + 0.15Fe + 0.1Cr + 0.05Ni | 16 |
SS316 | Tube | Fe + 17Cr + 10Ni + 2Mo | 16 |
Autoclave | Test Conditions, Six-Month Immersion |
---|---|
S-12 | Simulated BWR, Normal Water Chemistry (BWR-NWC), 0.5 ppm O2, 288 °C |
S-13 | Simulated BWR, Hydrogen Water Chemistry (BWR-HWC), 0.3 ppm H2 (<5 ppb O2), 288 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagothi, B.S.; Qu, H.; Zhang, W.; Umretiya, R.V.; Dolley, E.; Rebak, R.B. Hydrothermal Corrosion of Latest Generation of FeCrAl Alloys for Nuclear Fuel Cladding. Materials 2024, 17, 1633. https://doi.org/10.3390/ma17071633
Nagothi BS, Qu H, Zhang W, Umretiya RV, Dolley E, Rebak RB. Hydrothermal Corrosion of Latest Generation of FeCrAl Alloys for Nuclear Fuel Cladding. Materials. 2024; 17(7):1633. https://doi.org/10.3390/ma17071633
Chicago/Turabian StyleNagothi, Bhavani Sasank, Haozheng Qu, Wanming Zhang, Rajnikant V. Umretiya, Evan Dolley, and Raul B. Rebak. 2024. "Hydrothermal Corrosion of Latest Generation of FeCrAl Alloys for Nuclear Fuel Cladding" Materials 17, no. 7: 1633. https://doi.org/10.3390/ma17071633
APA StyleNagothi, B. S., Qu, H., Zhang, W., Umretiya, R. V., Dolley, E., & Rebak, R. B. (2024). Hydrothermal Corrosion of Latest Generation of FeCrAl Alloys for Nuclear Fuel Cladding. Materials, 17(7), 1633. https://doi.org/10.3390/ma17071633