Visible-Light-Driven Z-Type Pg-C3N4/Nitrogen Doped Biochar/BiVO4 Photo-Catalysts for the Degradation of Norfloxacin
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Reagents
2.2. Synthesis of Photo-Catalysts
2.2.1. Preparation of Nitrogen Doped Biochar (N-Biochar)
2.2.2. Preparation of N-Biochar/BiVO4 (NCB)
2.2.3. Preparation of Pg-C3N4/N-Biochar/BiVO4 (NCBN)
2.3. Characterization
2.4. Photo-Catalytic Tests
2.5. Free Radical Trapping Experiments
3. Results and Discussion
3.1. Physicochemical Properties of the Photo-Catalysts
3.2. Photo-Catalytic Properties
3.2.1. Photo-Catalytic Degradation of NOR
3.2.2. Stability and Recyclability of Photo-Catalytic Materials
3.3. Photo-Catalytic Mechanism
3.3.1. Photoluminescence, Electrochemical Properties
3.3.2. Free Radical Bursts
3.3.3. Degradation Intermediates and Pathways
3.3.4. Photo-Catalytic Degradation Mechanism of NOR
3.4. Economic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.N.; Yost, C.K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere 2021, 263, 128177. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hu, Z.; Simplicio, W.S.; Qiu, S.; Xiao, L.; Harhen, B.; Zhan, X. Antibiotics in nutrient recovery from pig manure via electrodialysis reversal: Sorption and migration associated with membrane fouling. J. Membr. Sci. 2020, 597, 117633. [Google Scholar] [CrossRef]
- Vu, T.N.; Le, P.H.P.; Truong, T.T.T.; Nguyen, P.T.; Dinh, T.D.; Tran, T.K.; Hoang, T.H.; Pham, T.D. Highly adsorptive removal of antibiotic and bacteria using lysozyme protein modified nanomaterials. J. Mol. Liq. 2023, 382, 121903. [Google Scholar] [CrossRef]
- Cho, H.J.; Kang, E.; Kim, S.; Yang, D.C.; Nam, J.; Jin, E.; Choe, W. Impact of Zr6 Node in a Metal–Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorg. Chem. 2021, 60, 16966–16976. [Google Scholar] [CrossRef]
- Fonseca, R.F.; de Oliveira, G.H.D.; Zaiat, M. Modeling anaerobic digestion metabolic pathways for antibiotic-contaminated wastewater treatment. Biodegradation 2020, 31, 341–368. [Google Scholar] [CrossRef] [PubMed]
- Poza-Nogueiras, V.; Gomis-Berenguer, A.; Pazos, M.; Sanroman, A.; Ania, C.O. Exploring the use of carbon materials as cathodes in electrochemical advanced oxidation processes for the degradation of antibiotics. J. Environ. Chem. Eng. 2022, 10, 107506. [Google Scholar] [CrossRef]
- Nanda, B.; Behera, S.A.; Subhadarshini, A.; Mishra, P.M.; Achary, P.G.R. Sunlight assisted photocatalytic degradation of antibiotics by boron-doped lanthanum ferrite. J. Mol. Struct. 2024, 1306, 137921. [Google Scholar] [CrossRef]
- Ahmed, Y.; Zhong, J.; Yuan, Z.; Guo, J. Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. J. Hazard. Mater. 2022, 430, 128408. [Google Scholar] [CrossRef]
- Suwanboon, S.; Graidist, P.; Maungchanburi, S.; Randorn, C.; Amornpitoksuk, P. Photocatalytic degradation of organic pollutants by Ag2O/AgSiOx. Mater. Sci. Semicond. Process. 2022, 152, 107066. [Google Scholar] [CrossRef]
- Porcu, S.; Secci, F.; Ricci, P.C. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022, 27, 6828. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Mohan, B.; Madaan, V.; Ranga, R.; Kumari, P.; Kumar, S.; Bhankar, V.; Kumar, P.; Kumar, K. Nanomaterials photocatalytic activities for waste water treatment: A review. Environ. Sci. Pollut. Res. 2022, 29, 69294–69326. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.; Chawla, H.; Albargi, H.B.; Algethami, J.S.; Zaki Ahmad, M.; Chandra, A.; Garg, S. Bismuth-Based nanophotocatalysts for environmental reintegration. Inorg. Chem. Commun. 2023, 155, 111016. [Google Scholar] [CrossRef]
- Prabhakar Vattikuti, S.V.; Zeng, J.; Ramaraghavulu, R.; Shim, J.; Mauger, A.; Julien, C.M. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts. Int. J. Mol. Sci. 2023, 24, 663. [Google Scholar] [CrossRef] [PubMed]
- Ioannidi, A.A.; Zappa, J.; Petala, A.; Souliotis, M.; Mantzavinos, D.; Frontistis, Z. Solar Light-Induced Photocatalytic Degradation of Sulfamethoxazole by Cobalt Phosphide-Promoted Bismuth Vanadate. Water 2023, 15, 1370. [Google Scholar] [CrossRef]
- Essenni, S.; Ali Khan, M.; El kaim billah, R.; Jeon, B.-H.; Sundaramurthy, S.; Agunaou, M. Template assisted hydrothermal synthesis of bismuth vanadate for Rhodamine B photodegradation. J. Mol. Liq. 2024, 398, 124270. [Google Scholar] [CrossRef]
- Rather, R.A.; Mehta, A.; Lu, Y.; Valant, M.; Fang, M.; Liu, W. Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: A review. Int. J. Hydrogen Energy 2021, 46, 21866–21888. [Google Scholar] [CrossRef]
- Rangarajan, G.; Jayaseelan, A.; Farnood, R. Photocatalytic reactive oxygen species generation and their mechanisms of action in pollutant removal with biochar supported photocatalysts: A review. J. Clean. Prod. 2022, 346, 131155. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Marques, I.S.; Jarrais, B.; Ramos, R.; Abdelkader-Fernandez, V.K.; Yaremchenko, A.; Freire, C.; Fernandes, D.M.; Peixoto, A.F. Nitrogen-doped biochar-supported metal catalysts: High efficiency in both catalytic transfer hydrogenation of furfural and electrocatalytic oxygen reactions. Catal. Today 2023, 418, 114080. [Google Scholar] [CrossRef]
- Weidner, E.; Karbassiyazdi, E.; Altaee, A.; Jesionowski, T.; Ciesielczyk, F. Hybrid Metal Oxide/Biochar Materials for Wastewater Treatment Technology: A Review. ACS Omega 2022, 7, 27062–27078. [Google Scholar] [CrossRef] [PubMed]
- Amir, M.; Fazal, T.; Iqbal, J.; Din, A.A.; Ahmed, A.; Ali, A.; Razzaq, A.; Ali, Z.; Rehman, M.S.U.; Park, Y.-K. Integrated adsorptive and photocatalytic degradation of pharmaceutical micropollutant, ciprofloxacin employing biochar-ZnO composite photocatalysts. J. Ind. Eng. Chem. 2022, 115, 171–182. [Google Scholar] [CrossRef]
- Kahkeci, J.; Gamal El-Din, M. Biochar-supported photocatalysts: Performance optimization and applications in emerging contaminant removal from wastewater. Chem. Eng. J. 2023, 476, 146530. [Google Scholar] [CrossRef]
- Guo, M.; Xiang, H.; Tang, S.; Guo, X.; Yang, Y.; Zhang, X. Effect of pyrolysis temperature on structure and photocatalytic properties of biochar-coupled BiVO4. J. Environ. Chem. Eng. 2022, 10, 107255. [Google Scholar] [CrossRef]
- Wei, X.; Xu, X.; Yang, X.; Liu, Z.; Naraginti, S.; Sen, L.; Weidi, S.; Buwei, L. Novel assembly of BiVO4@N-Biochar nanocomposite for efficient detoxification of triclosan. Chemosphere 2022, 298, 134292. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Jiang, X.; Wang, Y.; Ren, J.; Xu, B.B.; Gao, G.; Huang, Z.; Guo, Z. Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg. Chem. Front. 2023, 10, 6045–6057. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y.; Fan, W.; Ji, Y. Synergistic adsorption-photocatalysis for dyes removal by a novel biochar–based Z-scheme heterojunction BC/2ZIS/WO3: Mechanistic investigation and degradation pathways. Chem. Eng. J. 2022, 445, 136677. [Google Scholar] [CrossRef]
- Zhao, H.; Li, G.; Tian, F.; Jia, Q.; Liu, Y.; Chen, R. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: Theoretical calculation and photodegradation of antibiotics in actual water matrix. Chem. Eng. J. 2019, 366, 468–479. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhang, X.; Han, J.; Wang, Y.; Gu, L.; Zhang, Z.; Wang, X.; Jian, J.; Xu, P.; et al. Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2015, 7, 19626–19634. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, S.; Zhang, L.; Yang, R. Ultrasound-assisted synthesis of BiVO4/C-dots/g-C3N4Z-scheme heterojunction photocatalysts for degradation of minocycline hydrochloride and Rhodamine B: Optimization and mechanism investigation. New J. Chem. 2020, 44, 17641–17653. [Google Scholar] [CrossRef]
- Li, S.; Huang, Z.; Wang, Y.; Liu, Y.-Q.; Luo, R.; Shang, J.-G.; Liao, Q.-J.-H. Migration of two antibiotics during resuspension under simulated wind–wave disturbances in a water–sediment system. Chemosphere 2018, 192, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Zhu, L.; Li, Y.; Wang, K.; Qiu, K.; Tippayawong, N.; Aggarangsi, P.; Reubroycharoen, P.; Wang, S. Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation. J. CO2 Util. 2019, 34, 733–741. [Google Scholar] [CrossRef]
- Lv, J.; Dai, K.; Zhang, J.; Liu, Q.; Liang, C.; Zhu, G. Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Sep. Purif. Technol. 2017, 178, 6–17. [Google Scholar] [CrossRef]
- Dabodiya, T.S.; Selvarasu, P.; Murugan, A.V. Tetragonal to Monoclinic Crystalline Phases Change of BiVO4 via Microwave-Hydrothermal Reaction: In Correlation with Visible-Light-Driven Photocatalytic Performance. Inorg. Chem. 2019, 58, 5096–5110. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772. [Google Scholar] [CrossRef]
- Pawar, R.C.; Kang, S.; Park, J.H.; Kim, J.H.; Ahn, S.; Lee, C.S. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability. Sci. Rep. 2016, 6, 31147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, D.; Wang, W.; Gao, P.; Zhong, S.; Zhang, L.; Zhao, Q.; Liu, B. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Sep. Purif. Technol. 2020, 239, 116562. [Google Scholar] [CrossRef]
- Dou, L.; Ma, D.; Chen, J.; Li, J.; Zhong, J. F127-assisted hydrothermal preparation of BiOI with enhanced sunlight-driven photocatalytic activity originated from the effective separation of photo-induced carriers. Solid State Sci. 2019, 90, 1–8. [Google Scholar] [CrossRef]
- Su, J.; Zhang, T.; Wang, L. Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation. J. Mater. Sci. Mater. Electron. 2017, 28, 4481–4491. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, W.; Li, J.; Dong, X.; Zhang, X. Carbon quantum dots decorated BiVO4 quantum tube with enhanced photocatalytic performance for efficient degradation of organic pollutants under visible and near-infrared light. J. Mater. Sci. 2019, 54, 6488–6499. [Google Scholar] [CrossRef]
- Wu, C.; Chen, R.; Ma, C.; Cheng, R.; Gao, X.; Wang, T.; Liu, Y.; Huo, P.; Yan, Y. Construction of upconversion nitrogen doped graphene quantum dots modified BiVO4 photocatalyst with enhanced visible-light photocatalytic activity. Ceram. Int. 2019, 45, 2088–2096. [Google Scholar] [CrossRef]
- Soni, V.; Sonu; Singh, P.; Thakur, S.; Thakur, P.; Ahamad, T.; Nguyen, V.-H.; Van Le, Q.; Hussain, C.M.; Raizada, P. Fabricating cattle dung-derived nitrogen-doped biochar supported oxygen-deficient ZnO and Cu2O-based novel step-scheme photocatalytic system for aqueous Doxycycline hydrochloride mitigation and Cr (VI) reduction. J. Environ. Chem. Eng. 2023, 11, 110856. [Google Scholar] [CrossRef]
- Xu, M.; Yang, J.; Sun, C.; Cui, Y.; Liu, L.; Zhao, H.; Liang, B. Facile assembly of BiVO4/protonated g-C3N4/AgI with a novel dual Z-scheme mechanism for visible-light photocatalytic degradation of Rhodamine B. J. Mater. Sci. 2021, 56, 1328–1346. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, Y.; Liu, Y.; Shen, H.; Ni, Z.; Xia, S.; Han, W.; Li, Y.; Tang, H. Boosted photocatalytic degradation of norfloxacin on LaOCl/LDH: Synergistic effect of Z-scheme heterojunction and O vacancies. J. Environ. Chem. Eng. 2022, 10, 107812. [Google Scholar] [CrossRef]
- Song, D.; Li, M.; Liao, L.; Guo, L.; Liu, H.; Wang, B.; Li, Z. High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation. Nanomaterials 2023, 13, 1841. [Google Scholar] [CrossRef] [PubMed]
- Baral, B.; Reddy, K.H.; Parida, K.M. Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of Norfloxacine and Oxygen evolution reaction. J. Colloid Interface Sci. 2019, 554, 278–295. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hao, Y.; Song, Z.; Liu, M.; Chen, D.; Zhu, B.; Chen, J.; Chen, Z. Optimization of photocatalytic degradation conditions and toxicity assessment of norfloxacin under visible light by new lamellar structure magnetic ZnO/g-C3N4. Ecotoxicol. Environ. Saf. 2021, 225, 112742. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, H.; Wang, P.; Chi, Z.; Zhang, Z.; Dong, B.; Dong, H.; Yu, K.; Yu, H. Promoted photocatalytic degradation and detoxication performance for norfloxacin on Z-scheme phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4. Sep. Purif. Technol. 2021, 274, 118692. [Google Scholar] [CrossRef]
- Ou, M.; Wan, S.; Zhong, Q.; Zhang, S.; Song, Y.; Guo, L.; Cai, W.; Xu, Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl. Catal. B Environ. 2018, 221, 97–107. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Xie, X.; Liang, G.; Cai, X.; Zhang, X.; Wang, Z. Fabrication of vessel–like biochar–based heterojunction photocatalyst Bi2S3/BiOBr/BC for diclofenac removal under visible LED light irradiation: Mechanistic investigation and intermediates analysis. J. Hazard. Mater. 2020, 391, 121407. [Google Scholar] [CrossRef]
- Cao, Y.; Mao, S.; Li, M.; Chen, Y.; Wang, Y. Metal/Porous Carbon Composites for Heterogeneous Catalysis: Old Catalysts with Improved Performance Promoted by N-Doping. ACS Catal. 2017, 7, 8090–8112. [Google Scholar] [CrossRef]
- Tan, H.; Tang, J.; Kim, J.; Kaneti, Y.V.; Kang, Y.-M.; Sugahara, Y.; Yamauchi, Y. Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1380–1393. [Google Scholar] [CrossRef]
- Ghosh, U.; Pal, A. Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination. Chem. Eng. J. 2022, 431, 133914. [Google Scholar] [CrossRef]
Samples | BET Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
PCN | 138.9 | 1.14 | 3.819 |
BiVO4 | 4.528 | 0.0110 | 3.822 |
NCB | 38.85 | 0.0210 | 3.827 |
NCBN | 42.88 | 0.0200 | 3.820 |
Photo-Catalysts | 0-Order | 1-Order | 2-Order | |||
---|---|---|---|---|---|---|
R2 | k | R2 | k/min−1 | R2 | k/(L·(mg·min)−1) | |
PCN | 0.9769 | 0.015 | 0.9816 | 0.0020 | 0.9784 | 0.00020 |
BiVO4 | 0.9693 | 0.031 | 0.9938 | 0.0050 | 0.9956 | 0.00080 |
NCB | 0.9861 | 0.034 | 0.9873 | 0.010 | 0.9035 | 0.0036 |
NCBN-3% | 0.9742 | 0.034 | 0.9918 | 0.011 | 0.9383 | 0.0039 |
NCBN-5% | 0.9547 | 0.033 | 0.9921 | 0.013 | 0.9453 | 0.0058 |
NCBN-10% | 0.9903 | 0.0030 | 0.9846 | 0.0080 | 0.9333 | 0.0023 |
Catalyst | Catalyst Dose | NOR | Time | Degradation | Reference |
---|---|---|---|---|---|
LaOCl/LDH | 0.4 g/L | 10 mg/L | 150 min | 82.5% | [44] |
BiOCl | 1 g/L | 10 mg/L | 180 min | 84% | [45] |
M-BiVO4/T-BiVO4 | 1 g/L | 20 mg/L | 150 min | 91% | [46] |
ZnO/g-C3N4 | 1.43 g/L | 8.61 mg/L | 120 min | 90% | [47] |
BiVO4/GQDs/PCN | 1 g/L | 20 mg/L | 120 min | 86.3% | [48] |
PCN/N-Biochar/BiVO4 | 0.5 g/L | 10 mg/L | 180 min | 92.5% | This study |
Catalyst | Catalyst Dose (g/L) | NOR Concentration (mg/L) | Light Source | % Degradation/Time (min) | TON (mol·g−1) × 10−6 | TOF (mol·g−1·min−1) ×10−8 | TOF/W (mol·g−1·min−1·W−1) × 10−11 | Reference |
---|---|---|---|---|---|---|---|---|
LaOCl/LDH | 0.4 | 10 | Xenon (300 W) | 82.5/150 | 3.2 | 2.1 | 7 | [44] |
BiOCl | 1 | 10 | Xenon (300 W) | 84/180 | 1.3 | 0.72 | 2.4 | [45] |
BiVO4/GQDs/PCN | 1 | 20 | Xenon (300 W) | 86.3/120 | 2.7 | 2.25 | 7.5 | [48] |
NCBN | 0.5 | 10 | Xenon (300 W) | 92.5/180 | 2.89 | 1.6 | 5.3 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, W.; Chen, L.; Ma, H.; Lu, X.; Ma, H.; Liu, Z. Visible-Light-Driven Z-Type Pg-C3N4/Nitrogen Doped Biochar/BiVO4 Photo-Catalysts for the Degradation of Norfloxacin. Materials 2024, 17, 1634. https://doi.org/10.3390/ma17071634
Li Y, Wang W, Chen L, Ma H, Lu X, Ma H, Liu Z. Visible-Light-Driven Z-Type Pg-C3N4/Nitrogen Doped Biochar/BiVO4 Photo-Catalysts for the Degradation of Norfloxacin. Materials. 2024; 17(7):1634. https://doi.org/10.3390/ma17071634
Chicago/Turabian StyleLi, Yi, Wenyu Wang, Lei Chen, Huifang Ma, Xi Lu, Hongfang Ma, and Zhibao Liu. 2024. "Visible-Light-Driven Z-Type Pg-C3N4/Nitrogen Doped Biochar/BiVO4 Photo-Catalysts for the Degradation of Norfloxacin" Materials 17, no. 7: 1634. https://doi.org/10.3390/ma17071634
APA StyleLi, Y., Wang, W., Chen, L., Ma, H., Lu, X., Ma, H., & Liu, Z. (2024). Visible-Light-Driven Z-Type Pg-C3N4/Nitrogen Doped Biochar/BiVO4 Photo-Catalysts for the Degradation of Norfloxacin. Materials, 17(7), 1634. https://doi.org/10.3390/ma17071634