Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CB/HDPE Composites
2.3. Measurement Techniques
3. Results and Discussion
3.1. Surface Morphology Study of CB/HDPE Composites
3.2. Structural Analysis of CB/HDPE Composites
3.3. Electrical and Heating Properties of CB/HDPE Composites
3.4. Sensory Properties of CB/HDPE Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raj, B.; Subramanian, C.V.; Jayakumar, T. Nondestructive Testing of Welds, 1st ed.; Woodhead Publishing: Cambridge, UK, 2000. [Google Scholar]
- Amancio-Filho, S.T.; dos Santos, J.F. Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Kalas, V.J. Welding of Thermoplastic Composites; Faculty of Engineering Technologies (CTW), University of Twente: Enschede, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Porwal, H.; Busfield, J.J.; Peijs, T.; Bilotti, E. Pyroresistivity in conductive polymer composites: A perspective on recent advances and new applications. Polym. Int. 2019, 68, 299–305. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.; Han, X.; Jing, Y.; Du, M.; Lu, C.; Zhang, K. Low-dimensional thermoelectric materials. In Flexible Thermoelectric Polymers and Systems; Ouyang, J., Ed.; Wiley: New York, NY, USA, 2022; pp. 209–238. [Google Scholar]
- Liu, Y.; Zhang, H.; Bilotti, E. Polymer nanocomposites for temperature sensing and self-regulating heating devices. In Polymer Nanocomposite Materials; Zhou, Y., Ding, G., Eds.; Wiley: New York, NY, USA, 2021; pp. 247–266. [Google Scholar]
- Hu, Y.; Shenderova, O.A.; Hu, Z.; Padgett, C.W.; Brenner, D.W. Carbon nanostructures for advanced composites. Rep. Prog. Phys. 2006, 69, 1847–1895. [Google Scholar] [CrossRef]
- Kahraman, F.; Kahraman, A.D. Welding Methods of Polymer Composites. Int. J. Adv. Nat. Sci. Eng. Res. 2023, 7, 119–127. [Google Scholar]
- Shi, H.; Villegas, I.F.; Octeau, M.-A.; Bersee, H.E.N.; Yousefpour, A. Continuous resistance welding of thermoplastic composites: Modelling of heat generation and heat transfer. Compos. Part A Appl. Sci. Manuf. 2015, 70, 16–26. [Google Scholar] [CrossRef]
- Ryan, M.; Homer, M.L. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull. 2004, 29, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Miura, Y.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory, Revised, 2nd ed.; Taylor and Francis: London, UK, 1994. [Google Scholar]
- Maruzhenko, O.; Mamunya Ye Boiteux, G.; Pusz, S.; Szeluga, U.; Pruvost, S. Improving of the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. Int. J. Heat Mass Transf. 2019, 138, 75–84. [Google Scholar] [CrossRef]
- Kusy, R.P.; Turner, D.T. Electrical conductivity of a polyurethane elastomer containing segregated particles of nickel. J. Appl. Polym. Sci. 1973, 17, 1631–1633. [Google Scholar] [CrossRef]
- Wang, B.J.; Li, H.Y.; Li, L.Z.; Chen, P.; Wang, Z.B.; Gu, Q. Electrostatic adsorption method for preparing electrically conducting ultrahigh molecular weight polyethylene/graphene nanosheets composites with a segregated network. Compos. Sci. Technol. 2013, 89, 180–185. [Google Scholar] [CrossRef]
- Lisunova, M.O.; Mamunya, Y.P.; Lebovka, N.I.; Melezhyk, A.V. Percolation behavior of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 2007, 43, 949–958. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yu, J.; Shim, S.E.; Yang, C.M. Synergistic effects of hybrid carbonaceous fillers of carbon fibers and reduced graphene oxides on enhanced heat-dissipation capability of polymer composites. Polymers 2020, 12, 909. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Jeong, Y.G. Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos. Sci. Technol. 2015, 106, 134–140. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Porwal, H.; Tu, W.; Evans, J.; Newton, M.; Busfield, J.; Peijs, T.; Bilotti, E. Universal control on pyroresistive behavior of flexible self-regulating heating devices. Adv. Funct. Mater. 2017, 27, 1702253. [Google Scholar] [CrossRef]
- Marischal, L.; Cayla, A.; Lemort, G.; Campagne, C.; Devaux, É. Selection of immiscible polymer blends filled with carbon nanotubes for heating applications. Polymers 2019, 11, 1827. [Google Scholar] [CrossRef]
- Isaji, S.; Bin, Y.; Matsuo, M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 2009, 50, 1046–1053. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J. Designs of conductive polymer composites with exceptional reproducibility of positive temperature coefficient effect: A review. J. Appl. Polym. Sci. 2020, 138, e49677. [Google Scholar] [CrossRef]
- James, L.; Charles, A.; Harper, C. Handbook of Plastic Joining: A Practical Guide; William Andrew Publishing: Norwich, NY, USA, 2008. [Google Scholar]
- Yuan, Y.; Chen, J. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation. Nanomaterials 2016, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Koloor, S.S.R.; Alshehri, A.H.; Arockiarajan, A. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review. J. Mater. Res. Technol. 2023, 24, 6495–6521. [Google Scholar] [CrossRef]
- Rahmat, M.; Hubert, P. Carbon nanotube–polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 2011, 72, 72–84. [Google Scholar] [CrossRef]
- Zeng, Y.; Ying, Z.; Du, J.; Cheng, H.M. Effects of Carbon Nanotubes on Processing Stability of Polyoxymethylene in Melt−Mixing Process. J. Phys. Chem. C 2007, 111, 13945–13950. [Google Scholar] [CrossRef]
- Yousefpour, A.; Hojjati, M.; Immarigeon, J.P. Fusion bonding/welding of thermoplastic composites. J. Reinf. Plast. Compos. 2024, 23, 1237–1265. [Google Scholar] [CrossRef]
- Kolisnyk, R.; Korab, M.; Iurzhenko, M.; Masiuchok, O.; Mamunya, Y. Development of heating elements based on conductive polymer composites for electrofusion welding of plastics. J. Appl. Polym. Sci. 2020, 2020, e50418. [Google Scholar] [CrossRef]
- Göpel, W.; Hesse, J.; Zemel, J.N. Sensors: Thermal Sensors; Wiley-VCH: Weinheim, Germany, 1989. [Google Scholar]
- Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in hybrid polymer/nanocarbon composites. A review. Compos. Part A Appl. Sci. Manuf. 2015, 73, 204–231. [Google Scholar] [CrossRef]
- Spahr, M.E.; Rothon, R. Carbon black as a polymer filler. In Advances in Carbon Black as a Polymer Filler: Insights and Innovations; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Mamunya, Y.; Maruzhenko, O.; Kolisnyk, R.; Iurzhenko, M.; Pylypenko, A.; Masiuchok, O.; Pruvost, S. Pyroresistive properties of composites based on HDPE and carbon fillers. Polymers 2023, 15, 2105. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Mamunya, Y. Carbon nanotubes as conductive filler in segregated polymer composites—Electrical properties. In Carbon Nanotubes—Polymer Composites; Yellampalli, S., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Mamunya, Y.; Matzui, L.; Vovchenko, L.; Maruzhenko, O.; Oliynyk, V.; Pusz, S.; Kumanek, B.; Szeluga, U. Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos. Sci. Technol. 2019, 170, 51–59. [Google Scholar] [CrossRef]
- Olesik, P.; Godzierz, M.; Kozioł, M.; Jała, J.; Szeluga, U.; Myalski, J. Structure and mechanical properties of high-density polyethylene composites reinforced with glassy carbon. Materials 2021, 14, 4024. [Google Scholar] [CrossRef]
- Godzierz, M.; Toroń, B.; Szperlich, P.; Olesik, P.; Kozioł, M. X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite. Sensors 2022, 22, 3886. [Google Scholar] [CrossRef]
- PN-EN ISO527-2; Test Conditions for Plastics Intended for Various Molding Techniques. ISO: Geneva, Switzerland, 2012.
- Liang, I.J.; Yang, Q. Mechanical properties of carbon black filled high density polyethylene antistatic composites. J. Reinf. Plast. Compos. 2008, 28, 295–304. [Google Scholar] [CrossRef]
- Boushet, J.; Carrot, C.; Guillet, J.; Boiteux, G.; Seytre, G.; Pinneri, M. Conductive composites of UHMWPE and ceramics based on the segregated network concept. Polym. Eng. Sci. 2000, 40, 36–46. [Google Scholar]
- Choudhury, M.; Bindra, H.S.; Mittal, J.; Nayak, R. Evaluation of mechanical properties of carbon HDPE composites, Mechanical Property Evaluation of Carbon HDPE Composites: Insights and Applications. Mater. Today Proc. 2021, 47, 6712–6718. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Fedors, R.F. Relationships between viscosity and concentration for Newtonian suspension. J. Colloid Interface Sci. 1974, 46, 545–547. [Google Scholar] [CrossRef]
- Grimaldi, C.; Balberg, I. Tunneling and nonuniversality in continuum percolation systems. Phys. Rev. Lett. 2006, 96, 066602. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; McLachlan, D.S. Percolation exponents and thresholds in two nearly ideal anisotropic continuum systems. Phys. A Stat. Mech. Its Appl. 1997, 241, 360–366. [Google Scholar] [CrossRef]
- Mamunya, Y.; Maruzhenko, O.; Pidlisnyi, A.; Pylypenko, A.; Paraschenko, I.; Korab, M.; Iurzhenko, M. Heating elements based on PVC and carbon fillers. ACS Appl. Electron. Mater. 2024, 6, 3385–3394. [Google Scholar] [CrossRef]
- Shen, L.; Liu, L.; Wang, W.; Zhou, Y. In situ self-sensing of delamination initiation and growth in multi-directional laminates using carbon nanotube interleaves. Compos. Sci. Technol. 2018, 167, 141–147. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Zhang, P.; Zhai, Y.; Luo, Y.; Li, L.; Luo, S. Structure-dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites. Compos. Struct. 2018, 195, 36–44. [Google Scholar] [CrossRef]
- Wang, X.D.; Wang, J.C.; Biswas, S.; Kim, H.; Nam, I.W. Mechanical, electrical, and piezoresistive sensing characteristics of epoxy-based composites incorporating hybridized networks of carbon nanotubes, graphene, carbon nanofibers, or graphite nanoplatelets. Sensors 2020, 20, 2094. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Vertuccio, L.; Guadagno, L. Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos. Part B Eng. 2018, 145, 90–99. [Google Scholar] [CrossRef]
- Jang, D.; Farooq, S.Z.; Yoon, H.N.; Khalid, H.R. Design of highly flexible and sensitive multi-functional polymeric sensor incorporating CNTs and carbonyl iron powder. Compos. Sci. Technol. 2021, 27, 108725. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.S.; Critello, C.D.; Pullano, A.S. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Maynard, C.; Gonzalez, D.; Viz, M.; O’Brien, C.; Garcia, J.; Newell, B.; Tallman, T.N. The development and characterization of carbon nanofiber/polylactic acid filament for additively manufactured piezoresistive sensors. Addit. Manuf. 2022, 58, 102948. [Google Scholar] [CrossRef]
D (cm−1) | G (cm−1) | ID/IG | AD/AG | |
---|---|---|---|---|
Pure CB powder | 1329 | 1573 | 0.84 | 1.95 |
Initial CB/HDPE mixture | 1345 | 1600 | 0.84 | 1.89 |
After initial pressing | 1353 | 1598 | 0.85 | 1.75 |
After hot pressing | 1353 | 1598 | 0.85 | 1.98 |
Formed insertion part | 1345 | 1594 | 0.84 | 1.95 |
CB Amount (vol.%) | Crystallinity of HDPE Matrix (%) | |
---|---|---|
Initial Samples | After Pyroresistive Heating | |
20 | 54 | 51 |
25 | 54 | 48 |
30 | 53 | 46 |
φ (vol.%) | Q (J) | A (J) | A/Q |
---|---|---|---|
20 | 177.2 | 269.2 | 1.519 |
25 | 223.4 | 339.6 | 1.520 |
30 | 248.8 | 378.5 | 1.521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buinova, Y.; Kobyliukh, A.; Mamunya, Y.; Maruzhenko, O.; Korab, M.; Trzebicka, B.; Szeluga, U.; Godzierz, M. Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints. Materials 2024, 17, 3776. https://doi.org/10.3390/ma17153776
Buinova Y, Kobyliukh A, Mamunya Y, Maruzhenko O, Korab M, Trzebicka B, Szeluga U, Godzierz M. Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints. Materials. 2024; 17(15):3776. https://doi.org/10.3390/ma17153776
Chicago/Turabian StyleBuinova, Yevheniia, Anastasiia Kobyliukh, Yevgen Mamunya, Oleksii Maruzhenko, Mykola Korab, Barbara Trzebicka, Urszula Szeluga, and Marcin Godzierz. 2024. "Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints" Materials 17, no. 15: 3776. https://doi.org/10.3390/ma17153776
APA StyleBuinova, Y., Kobyliukh, A., Mamunya, Y., Maruzhenko, O., Korab, M., Trzebicka, B., Szeluga, U., & Godzierz, M. (2024). Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints. Materials, 17(15), 3776. https://doi.org/10.3390/ma17153776