Surface Modification of Feldspathic Ceramic Used for Minimally Invasive Restorations: Effect of Airborne Particle Type on the Surface Properties and Biaxial Flexural Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Free Energy
2.3. Surface Roughness
2.4. Biaxial Flexural Strength (σ)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peumans, M.; Valjakova, E.B.; De Munck, J.; Mishevska, C.B.; Van Meerbeek, B. Bonding effectiveness of luting composites to different CAD/CAM materials. J. Adhes. Dent. 2016, 18, 289–302. [Google Scholar] [CrossRef]
- Ural, Ç.; Duran, İ.; Evmek, B.; Kavut, İ.; Cengiz, S.; Yuzbasioglu, E. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments. BMC Oral Health 2017, 17, 16. [Google Scholar] [CrossRef]
- Shi, H.Y.; Pang, R.; Yang, J.; Fan, D.; Cai, H.; Jiang, H.B.; Han, J.; Lee, E.-S.; Sun, Y. Overview of several typical ceramic materials for restorative dentistry. BioMed Res. Int. 2022, 2022, 8451445. [Google Scholar] [CrossRef]
- Moravej-Salehi, E.; Moravej-Salehi, E.; Valian, A. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures. J. Investig. Clin. Dent. 2016, 7, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, V.L.B.; de Castro, E.F.; Bonvent, J.J.; de Andrade, O.S.; Nascimento, F.D.; Giannini, M.; Cavalli, V. Surface treatments on CAD/CAM glass-ceramics: Influence on roughness, topography, and bond strength. J. Esthet. Restor. Dent. 2021, 33, 739–749. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Beuer, F.; Ender, A.; Roos, M.; Edelhoff, D.; Wimmer, T. Influence of cementation and cement type on the fracture load testing methodology of anterior crowns made of different materials. Dent. Mater. J. 2013, 32, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Sağlam, G.; Cengiz, S.; Köroğlu, A.; Şahin, O.; Velioğlu, N. Comparison of the micro-shear bond strength of resin cements to CAD/CAM glass ceramics with various surface treatments. Materials 2023, 16, 2635. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Lima, G.; Strazzi-Sahyon, H.B.; Maluly-Proni, A.T.; Fagundes, T.C.; Briso, A.L.F.; Assunção, W.G.; Delben, J.A.; Santos, P.H.D. Surface characterization of indirect restorative materials submitted to different etching protocols. J. Dent. 2022, 127, 104348. [Google Scholar] [CrossRef]
- Dönmez, M.B.; Yucel, M.T.; Kilic, I.; Okutan, Y. Novel ceramic primer vs. conventional treatment methods: Effects on roughness and bond strength of all-ceramic restorations. Am. J. Dent. 2018, 31, 249–252. [Google Scholar]
- Bagheri, H.; Hooshmand, T.; Aghajani, F. Effect of ceramic surface treatments after machine grinding on the biaxial flexural strength of different CAD/CAM dental ceramics. J. Dent. 2015, 12, 621–629. [Google Scholar]
- Addison, O.; Marquis, P.M.; Fleming, G.J.P. The impact of modifying alumina air abrasion parameters on the fracture strength of a porcelain laminate restorative material. Dent. Mater. 2007, 23, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Donmez, M.B.; Okutan, Y.; Yucel, M.T. Effect of prolonged application of single-step self-etching primer and hydrofluoric acid on the surface roughness and shear bond strength of CAD/CAM materials. Eur. J. Oral Sci. 2020, 128, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Hristova, E.; Sener, B.; Roos, M.; Edelhoff, D.; Keul, C. Effect of hydrofluoric acid etching duration on fracture load and surface properties of three CAD/CAM glass-ceramics. Oral Health Dent. Manag. 2014, 13, 1131–1139. [Google Scholar] [CrossRef]
- Özcan, M.; Allahbeickaraghi, A.; Dündar, M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: A review. Clin. Oral Investig. 2012, 16, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Loomans, B.; Mine, A.; Roeters, F.; Opdam, N.; De Munck, J.; Huysmans, M.; Van Meerbeek, B. Hydrofluoric acid on dentin should be avoided. Dent. Mater. 2010, 26, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Saracoglu, A.; Özcan, M.; Kumbuloglu, O.; Turkun, M. Adhesion of resin composite to hydrofluoric acid-exposed enamel and dentin in repair protocols. Oper. Dent. 2011, 36, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, M.A.; Hasan, R.H. Shear bond strength of two repair systems to zirconia ceramic by different surface treatments. J. Lasers Med. Sci. 2022, 13, e31. [Google Scholar] [CrossRef]
- Carrabba, M.; Vichi, A.; Louca, C.; Ferrari, M. Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics. J. Adv. Prosthodont. 2017, 9, 257–264. [Google Scholar] [CrossRef]
- Kamath, V.; Kamath, M.; Bhargava, A.; Shetty, T.; Rodrigues, S.J.; Pai, U.Y.; Saldanha, S.; Mahesh, M.; Hegde, P.; Bajantri, P. An in vitro study on the shear bond strength of feldspathic porcelain to nickel chromium alloy and cobalt chromium alloy after various surface treatments. Int. J. Dent. 2022, 2022, 2557127. [Google Scholar] [CrossRef]
- Turunç Oğuzman, R.; Yüzbaşıoğlu, E. Air-polishing powders’ effect on the color of CAD/CAM restorative materials. Appl. Sci. 2023, 13, 11573. [Google Scholar] [CrossRef]
- Aswal, G.; Nair, C. Effects of various parameters of alumina air abrasion on the mechanical properties of low-fusing feldspathic porcelain laminate material. S. Afr. Dent. J. 2015, 70, 150–155. [Google Scholar]
- Hoffmann, M.; Stawarczyk, B.; Günster, J.; Zocca, A. Influence of additives and binder on the physical properties of dental silicate glass-ceramic feedstock for additive manufacturing. J. Mech. Behav. Biomed. Mater. 2024, 155, 106563. [Google Scholar] [CrossRef] [PubMed]
- Lankes, V.; Reymus, M.; Liebermann, A.; Stawarczyk, B. Bond strength between temporary 3D printable resin and conventional resin composite: Influence of cleaning methods and air-abrasion parameters. Clin. Oral Investig. 2023, 27, 31–43. [Google Scholar] [CrossRef] [PubMed]
- ISO 3274:1998; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Nominal Characteristics of Contact (Stylus) Instruments. International Organization for Standardization: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/29873.html (accessed on 9 July 2024).
- Wendler, M.; Belli, R.; Petschelt, A.; Mevec, D.; Harrer, W.; Lube, T.; Danzer, R.; Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent. Mater. 2017, 33, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Fischer, J.; Swain, M.V.; Thiel, N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent. Mater. 2015, 31, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Coldea, A.; Dönmez, M.B.; Meinen, J.; Stawarczyk, B. Mechanical properties of high- and low-fusing zirconia veneering ceramics fired on different trays and substrates. Materials 2024, 17, 2261. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Mayinger, F.; Stawarczyk, B. Influence of different surface finishing procedures of strength-gradient multilayered zirconia crowns on two-body wear and fracture load: Lithium silicate or leucite glazing versus polishing? J. Mech. Behav. Biomed. Mater. 2024, 150, 106307. [Google Scholar] [CrossRef]
- ISO 6872:2015; Dentistry-Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/59936.html (accessed on 9 July 2024).
- Valandro, L.F.; Cadore-Rodrigues, A.C.; Dapieve, K.S.; Machry, R.V.; Pereira, G.K.R. A brief review on fatigue test of ceramic and some related matters in Dentistry. J. Mech. Behav. Biomed. Mater. 2023, 138, 105607. [Google Scholar] [CrossRef]
Particle Size | Particle Shape | Abbreviation | Manufacturer | LOT-No. | |
---|---|---|---|---|---|
Alumina particles | |||||
Nabalox 205-71 | 3 µm | Angular-Edged | AO3a | Nabaltec, Schwanndorf, Germany | 11089 |
Nabalox 230 | 3 µm | Angular-Edged | AO3b | 09764 | |
Cobra | 25 µm | Angular-Edged | AO25 | Renfert, Hilzingen, Germany | 2414914 |
Strahlkorund | 50 µm | Angular-Edged | AO50a | Orbis, Münster, Germany | 21.545337 |
Cobra | 50 µm | Angular-Edged | AO50b | Renfert, Hilzingen, Germany | 2430355 |
Cobra | 90 µm | Angular-Edged | AO90 | 2430353 | |
Cobra | 110 µm | Angular-Edged | AO110a | 2433408 | |
Korox | 110 µm | Angular-Edged | AO110b | Bego, Bremen, Germany | 2484713 |
Korund rosa | 120 µm | Angular-Edged | AO120a | Renfert, Hilzingen, Germany | Experimental |
Korund strong rosa | 120 µm | Angular-Edged | AO120b | Experimental | |
Cobra | 125 µm | Angular-Edged | AO125 | 2414912 | |
Silica particles | |||||
Perlablast | 50 µm | Spherical | SO50a | Bego, Bremen, Germany | L08879 |
Rolloblast | 50 µm | Spherical | SO50b | Renfert, Hilzingen, Germany | L09376 |
Rolloblast | 100 µm | Spherical | SO100 | L08098 | |
Glass granule | 100–200 µm | Angular-Edged | SO100/200 | Experimental | |
Nutshell granule | |||||
Nutshell granule | 100–200 µm | Angular-Edged | NS100/200 | Renfert, Hilzingen, Germany | Experimental |
Test Groups | Surface Free Energy (mN/m) | Surface Roughness (µm) | Biaxial Flexural Strength (MPa) | Weibull Modulus | Three-Piece Fragments (n/%) [95% Confidence Intervals] | Two-Piece Fragments (n/%) [95% Confidence Intervals] |
---|---|---|---|---|---|---|
AO3a | 47.5 ± 4.0 abc (42.6–52.5) | 0.28 ± 0.06 b (0.21–0.36) | 120 ± 5 bcd (113–127) | 16.3 | 6/50% [20–80%] | 6/50% [20–80%] |
AO3b | 45.7 ± 3.6 ab (41.3–50.2) | 0.16 ± 0.03 ab (0.12–0.20) | 121 ± 5 bcd (113–128) | 33.6 | 6/50% [20–80%] | 6/50% [20–80%] |
AO25 | 52.3 ± 4.0 bcd (47.8–56.7) | 0.58 ± 0.14 c (0.41–0.75) | 121 ± 6 bcd (113–129) | 19.0 | 4/33% [8–67%] | 8/67% [33–92%] |
AO50a | 49.0 ± 7.0 abcd (40.2–57.7) | 1.00 ± 0.07 def (0.91–1.08) | 123 ± 4 cd (116–128) | 15.1 | 4/33% [8–67%] | 8/67% [33–92%] |
AO50b | 53.0 ± 1.4 bcd (51.2–54.8) | 0.85 ± 0.06 d (0.77–0.93) | 119 ± 6 bcd (113–126) | 22.7 | 1/8% [0–40%] | 11/92% [60–100%] |
AO90 | 53.5 ± 4.3 bcd (48.1–58.8) | 0.92 ± 0.05 de (0.85–0.98) | 121 ± 7 bcd (112–130) | 20.7 | 4/33% [8–67%] | 8/67% [33–92%] |
AO110a | 51.2 ± 3.8 bcd (46.4–56.0) | 1.11 ± 0.07 fg (1.02–1.20) | 122 ± 9 cd (108–133) | 20.5 | 3/25% [4–59%] | 9/75% [41–96%] |
AO110b | 53.1 ± 2.2 bcd (50.4–55.9) | 1.16 ± 0.03 g (1.12–1.19) | 121 ± 11 bcd (106–136) | 17.1 | 3/25% [4–59%] | 9/75% [41–96%] |
AO120a | 44.7 ± 6.0 ab (37.3–52.1) | 1.02 ± 0.77 efg (0.92–1.11) | 114 ± 7 abc (102–123) | 22.6 | 4/33% [8–67%] | 8/67% [33–92%] |
AO120b | 52.1 ± 3.1 bcd (48.3–55.9) | 0.95 ± 0.02 de (0.93–0.97) | 111 ± 5 ab (104–120) | 11.8 | 3/25% [4–59%] | 9/75% [41–96%] |
AO125 | 52.4 ± 2.3 bcd (49.6–55.3) | 1.40 ± 0.14 h (1.23–1.57) | 120 ± 3 bcd (112–126) | 32.1 | 6/50% [20–80%] | 6/50% [20–80%] |
SO50a | 48.8 ± 3.9 abcd (43.9–53.7) | 0.15 ± 0.05 ab (0.09–0.20) | 117 ± 12 bcd (106–128) | 13.1 | 4/33% [8–67%] | 8/67% [33–92%] |
SO50b | 56.2 ± 3.8 cd (51.4–61.1) | 0.12 ± 0.01 a (0.11–0.14) | 116 ± 5 abc (107–124) | 25.5 | 5/42% [14–74%] | 7/58% [26–86%] |
SO100 | 52.3 ± 6.0 bcd (37.3–52.1) | 0.11 ± 0.13 a (0.09–0.12) | 121 ± 8 bcd (110–132) | 21.9 | 5/42% [14–74%] | 7/58% [26–86%] |
SO100/200 | 40.3 ± 5.0 a (34.2–46.5) | 0.46 ± 0.06 c (0.39–0.53) | 106 ± 11 a (89–124) | 14.5 | 4/33% [8–67%] | 8/67% [33–92%] |
NS100/200 | 56.7 ± 6.2 cd (49.1–64.4) | 0.14 ± 0.01 ab (0.13–0.15) | 121 ± 7.0 bcd (110–130) | 22.6 | 4/33% [8–67%] | 8/67% [33–92%] |
Hydrofluoric acid-etched | 57.6 ± 4.1 d (52.5–62.8) | 0.52 ± 0.09 c (0.41–0.63) | 123 ± 6.8 d (113–131) | 19.7 | 6/50% [20–80%] | 6/50% [20–80%] |
Polished | 57.5 ± 2.8 d (54.1–61.0) | 0.04 ± 0.01 a (0.03–0.04) | 118 ± 6.9 bcd (111–126) | 21.9 | 3/25% [4–59%] | 9/75% [41–96%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, M.; Schmeiser, F.; Donmez, M.B.; Meinen, J.; Stawarczyk, B. Surface Modification of Feldspathic Ceramic Used for Minimally Invasive Restorations: Effect of Airborne Particle Type on the Surface Properties and Biaxial Flexural Strength. Materials 2024, 17, 3777. https://doi.org/10.3390/ma17153777
Hoffmann M, Schmeiser F, Donmez MB, Meinen J, Stawarczyk B. Surface Modification of Feldspathic Ceramic Used for Minimally Invasive Restorations: Effect of Airborne Particle Type on the Surface Properties and Biaxial Flexural Strength. Materials. 2024; 17(15):3777. https://doi.org/10.3390/ma17153777
Chicago/Turabian StyleHoffmann, Moritz, Felix Schmeiser, Mustafa Borga Donmez, John Meinen, and Bogna Stawarczyk. 2024. "Surface Modification of Feldspathic Ceramic Used for Minimally Invasive Restorations: Effect of Airborne Particle Type on the Surface Properties and Biaxial Flexural Strength" Materials 17, no. 15: 3777. https://doi.org/10.3390/ma17153777
APA StyleHoffmann, M., Schmeiser, F., Donmez, M. B., Meinen, J., & Stawarczyk, B. (2024). Surface Modification of Feldspathic Ceramic Used for Minimally Invasive Restorations: Effect of Airborne Particle Type on the Surface Properties and Biaxial Flexural Strength. Materials, 17(15), 3777. https://doi.org/10.3390/ma17153777