Evaluation of Bonding Behavior between Engineered Geopolymer Composites with Hybrid PE/PVA Fibers and Concrete Substrate
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials and Mix Proportion
2.1.1. EGC with Hybrid PE/PVA Fibers
2.1.2. Concrete Substrate
2.2. Specimens and Preparation
3. Experimental Setup and Procedure
3.1. Axial Compressive Test
3.2. Axial Tensile Test
3.3. Test for Assessing Bonding Behavior
4. Results
4.1. Compressive Properties of EGC
4.2. Tensile Properties of EGC
4.3. Bonding Behavior
4.3.1. Failure Mode of Specimens in Direct Tension Tests
4.3.2. Direct Tensile Bond Strength
4.3.3. Failure Mode of Specimens in Compressive Slant Shear Test
4.3.4. Shear Bond Strength
4.4. Cost Analysis
5. Discussion
5.1. Effects of Hybrid Fiber Ratios and FA/GGBS Ratios on Compressive Properties of EGCs
5.2. Effects of Hybrid Fiber Ratios and FA/GGBS Ratios on Tensile Properties of EGCs
5.3. Effects of Hybrid Fiber Ratios and FA/GGBS Ratios on Bond Behavior
5.4. Cost Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Tang, S.; Huang, Z.; Yang, X.; Shi, T.; Xing, F. Shear behavior of concrete beam reinforced in shear with carbon fiber-reinforced polymer mesh fabric (CFRP-MF) configuration. Eng. Struct. 2020, 218, 110828. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Chen, K.; Zhang, J. Feasible region of post-tensioning force for precast segmental post-tensioned UHPC bridge columns. Eng. Struct. 2019, 200, 109685. [Google Scholar] [CrossRef]
- Lin, J.-X.; Su, J.-Y.; Pan, H.-S.; Peng, Y.-Q.; Guo, Y.-C.; Chen, W.-S.; Sun, X.-L.; Yuan, B.-X.; Liu, G.-T.; Lan, X.-W. Dynamic compression behavior of ultra-high performance concrete with hybrid polyoxymethylene fiber and steel fiber. J. Mater. Res. Technol. 2022, 20, 4473–4486. [Google Scholar] [CrossRef]
- Decky, M.; Papanova, Z.; Juhas, M.; Kudelcikova, M. Evaluation of the Effect of Average Annual Temperatures in Slovakia between 1971 and 2020 on Stresses in Rigid Pavements. Land 2022, 11, 764. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B. Bar size effect on long-term durability of sand-coated basalt-FRP composite bars. Compos. Part B Eng. 2020, 195, 108059. [Google Scholar] [CrossRef]
- Sadrinejad, I.; Madandoust, R.; Ranjbar, M.M. The mechanical and durability properties of concrete containing hybrid synthetic fibers. Constr. Build. Mater. 2018, 178, 72–82. [Google Scholar] [CrossRef]
- Wang, P.; Jiao, M.; Hu, C.; Tian, L.; Zhao, T.; Lei, D.; Fu, H. Research on Bonding and Shrinkage Properties of SHCC-Repaired Concrete Beams. Materials 2020, 13, 1757. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, L.; Huang, P.; Xie, J. Axial-Impact Resistance of CFRP-Confined Ultrahigh-Performance Concrete. J. Compos. Constr. 2022, 26, 04022059. [Google Scholar] [CrossRef]
- Lin, J.-X.; Huang, P.-Y.; Guo, Y.-C.; Guo, X.-Y.; Zeng, J.-J.; Zhao, C.; Chen, Z.-B. Fatigue behavior of RC beams strengthened with CFRP laminate under hot-wet environments and vehicle random loads coupling. Int. J. Fatigue 2020, 131, 105329. [Google Scholar] [CrossRef]
- Lin, J.-X.; Luo, R.-H.; Su, J.-Y.; Guo, Y.-C.; Chen, W.-S. Coarse synthetic fibers (PP and POM) as a replacement to steel fibers in UHPC: Tensile behavior, environmental and economic assessment. Constr. Build. Mater. 2024, 412, 134654. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B.; ElSafty, A.; Chaallal, O. Durability performance and long-term prediction models of sand-coated basalt FRP bars. Compos. Part B Eng. 2019, 157, 248–258. [Google Scholar] [CrossRef]
- Su, J.-Y.; Chen, G.; Pan, H.-S.; Lin, J.-X.; Zhang, J.; Zhuo, K.-X.; Chen, Z.-B.; Guo, Y.-C. Rubber modified high strength-high ductility concrete: Effect of rubber replacement ratio and fiber length. Constr. Build. Mater. 2023, 404, 133243. [Google Scholar] [CrossRef]
- Deng, M.; Yang, S. Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites. Eng. Struct. 2020, 207, 110249. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, J.-t.; Yu, K.-Q.; Xu, S.-l. Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa. Compos. Struct. 2018, 185, 634–645. [Google Scholar] [CrossRef]
- Lin, J.-X.; Song, Y.; Xie, Z.-H.; Guo, Y.-C.; Yuan, B.; Zeng, J.-J.; Wei, X. Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers. J. Build. Eng. 2020, 29, 101097. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, M.; Pan, J. Experimental study on seismic behaviours of hybrid FRP–steel-reinforced ECC–concrete composite columns. Compos. Part B Eng. 2019, 176, 107272. [Google Scholar] [CrossRef]
- Tian, J.; Wu, X.; Zheng, Y.; Hu, S.; Du, Y.; Wang, W.; Sun, C.; Zhang, L. Investigation of interface shear properties and mechanical model between ECC and concrete. Constr. Build. Mater. 2019, 223, 12–27. [Google Scholar] [CrossRef]
- Tian, J.; Wu, X.; Zheng, Y.; Hu, S.; Ren, W.; Du, Y.; Wang, W.; Sun, C.; Ma, J.; Ye, Y. Investigation of damage behaviors of ECC-to-concrete interface and damage prediction model under salt freeze-thaw cycles. Constr. Build. Mater. 2019, 226, 238–249. [Google Scholar] [CrossRef]
- Wu, X.; Tian, J.; Ma, H.; Zheng, Y.; Hu, S.; Wang, W.; Du, Y.; Huang, W.; Sun, C.; Zhu, Z. Investigation on interface fracture properties and nonlinear fracture model between ECC and concrete subjected to salt freeze-thaw cycles. Constr. Build. Mater. 2020, 259, 119785. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.-Y.; Dai, J.-G.; Lu, Z.-D. Shear strengthening of RC beams with FRP grid-reinforced ECC matrix. Compos. Struct. 2020, 241, 112120. [Google Scholar] [CrossRef]
- Jindal, B.B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Constr. Build. Mater. 2019, 227, 116644. [Google Scholar] [CrossRef]
- Lao, J.-C.; Huang, B.-T.; Fang, Y.; Xu, L.-Y.; Dai, J.-G.; Shah, S.P. Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cem. Concr. Res. 2023, 165, 107075. [Google Scholar] [CrossRef]
- Lin, J.-X.; Chen, G.; Pan, H.-S.; Wang, Y.-C.; Guo, Y.-C.; Jiang, Z.-X. Analysis of Stress-Strain Behavior in Engineered Geopolymer Composites Reinforced with Hybrid PE-PP Fibers: A Focus on Cracking Characteristics. Compos. Struct. 2023, 323, 117437. [Google Scholar] [CrossRef]
- Pan, H.; Xie, Z.; Chen, G.; Su, J.; Zhuo, K.; Chen, Z.; Lin, J.; Feng, C.; Guo, Y. Dynamic compressive behavior of high-strength engineered geopolymer composites. J. Build. Eng. 2023, 80, 108036. [Google Scholar] [CrossRef]
- Peng, Y.-Q.; Zheng, D.-P.; Pan, H.-S.; Yang, J.-L.; Lin, J.-X.; Lai, H.-M.; Wu, P.-Z.; Zhu, H.-Y. Strain hardening geopolymer composites with hybrid POM and UHMWPE fibers: Analysis of static mechanical properties, economic benefits, and environmental impact. J. Build. Eng. 2023, 76, 107315. [Google Scholar] [CrossRef]
- Korniejenko, K.; Lin, W.-T.; Šimonová, H. Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites. J. Compos. Sci. 2020, 4, 128. [Google Scholar] [CrossRef]
- Zhitong, C. Experimental Study on Fracture Properties of Steel-PE Fiber High Ductile Geopolymer Composites. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2023. [Google Scholar]
- Zhang, Z.; Zhang, Q. Matrix tailoring of Engineered Cementitious Composites (ECC) with non-oil-coated, low tensile strength PVA fiber. Constr. Build. Mater. 2018, 161, 420–431. [Google Scholar] [CrossRef]
- Yang, Z.-M.; Pan, H.-S.; Jiang, Z.-X.; Lv, J.-H.; Ruan, G.-W.; Lai, H.-M.; Lin, J.-X. Pseudo strain-hardening alkali-activated composites with up to 100% rubber aggregate: Static mechanical properties analysis and constitutive model development. Constr. Build. Mater. 2024, 439, 137338. [Google Scholar] [CrossRef]
- Li, V.C.; Wang, S.X.; Wu, C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater. J. 2001, 98, 483–492. [Google Scholar]
- Zhu, M.; Chen, B.; Wu, M.; Han, J. Effects of different mixing ratio parameters on mechanical properties of cost-effective green engineered cementitious composites (ECC). Constr. Build. Mater. 2022, 328, 127093. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; Ding, Y.; Yu, J.; Yu, K. Engineered geopolymer composite (EGC) with ultra-low fiber content of 0.2%. Constr. Build. Mater. 2024, 411, 134626. [Google Scholar] [CrossRef]
- Wang, B.; Xu, S.; Liu, F. Evaluation of tensile bonding strength between UHTCC repair materials and concrete substrate. Constr. Build. Mater. 2016, 112, 595–606. [Google Scholar] [CrossRef]
- Santos, P.M.D.; Júlio, E.N.B.S.; Silva, V.t.D. Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Constr. Build. Mater. 2007, 21, 1688–1695. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Luo, Y.; Wang, L.; Peng, J.; Zhang, J. Interface Shear Strength between Self-Compacting Concrete and Carbonated Concrete. J. Mater. Civ. Eng. 2020, 32, 04020113. [Google Scholar] [CrossRef]
- Kumar, S.; Sekhar Das, C.; Lao, J.; Alrefaei, Y.; Dai, J.-G. Effect of sand content on bond performance of engineered geopolymer composites (EGC) repair material. Constr. Build. Mater. 2022, 328, 127080. [Google Scholar] [CrossRef]
- GB/T 51003-2014; Technical Code for Application of Mineral Admixture. Standardization Administration of China: Beijing, China, 2014.
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Standardization Administration of China: Beijing, China, 2019.
- ASTM C469/C469M-22; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2022.
- Yokota, H.; Rokugo, K.; Sakata, N. JSCE Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composite with Multiple Fine Cracks; Japan Society of Civil Engineers: Tokyo, Japan, 2007. [Google Scholar]
- T/CBMF37-2018; Fundamental Characteristics and Test Methods of Ultra-High Performance Concrete. China Building Materials Federation: Beijing, China, 2018.
- ASTM C882/C882M-20; Standard Test Method for Bond Strength of Epoxy-Resin Systems Used with Concrete by Slant Shear. ASTM International: West Conshohocken, PA, USA, 2020.
- Daneshvar, D.; Deix, K.; Robisson, A. Effect of casting and curing temperature on the interfacial bond strength of epoxy bonded concretes. Constr. Build. Mater. 2021, 307, 124328. [Google Scholar] [CrossRef]
- ACI 546.3R-14 ; Guide to Materials Selection for Concrete Repair. ACI: Farmington Hills, MI, USA, 2014.
- Wang, H.; Xu, J.; Song, Y.; Hou, M.; Xu, Y. Development of low-cost engineered cementitious composites using Yellow River silt and unoiled PVA fiber. Constr. Build. Mater. 2024, 425, 136063. [Google Scholar] [CrossRef]
- Alrefaei, Y.; Dai, J.-G. Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr. Build. Mater. 2018, 184, 419–431. [Google Scholar] [CrossRef]
- Humur, G.; Çevik, A. Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating–cooling cycles. Constr. Build. Mater. 2022, 326, 126846. [Google Scholar] [CrossRef]
- Yun, H.-D. Effect of accelerated freeze–thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based composites (SHCCs). Compos. Part B Eng. 2013, 52, 11–20. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Thomas, R.J.; Gebregziabiher, B.S.; Giffin, A.; Peethamparan, S. Micromechanical properties of alkali-activated slag cement binders. Cem. Concr. Compos. 2018, 90, 241–256. [Google Scholar] [CrossRef]
- Němeček, J.; Šmilauer, V.; Kopecký, L. Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cem. Concr. Compos. 2011, 33, 163–170. [Google Scholar] [CrossRef]
- Chen, G.; Zheng, D.-P.; Chen, Y.-W.; Lin, J.-X.; Lao, W.-J.; Guo, Y.-C.; Chen, Z.-B.; Lan, X.-W. Development of high performance geopolymer concrete with waste rubber and recycle steel fiber: A study on compressive behavior, carbon emissions and economical performance. Constr. Build. Mater. 2023, 393, 131988. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, M. Engineered geopolymer composites: A state-of-the-art review. Cem. Concr. Compos. 2023, 135, 104850. [Google Scholar] [CrossRef]
- Meng, F.; Luo, S.; Sun, J.; Zhang, C.; Xu, L.; Du, Y.; Zeng, J.; Guo, Y. Compressive and Tensile Behavior of High-Ductility Alkali-Activated Composites with Polyethylene Terephthalate Powder. Buildings 2024, 14, 1399. [Google Scholar] [CrossRef]
- Diab, A.M.; Abd Elmoaty, A.E.M.; Tag Eldin, M.R. Slant shear bond strength between self compacting concrete and old concrete. Constr. Build. Mater. 2017, 130, 73–82. [Google Scholar] [CrossRef]
- Zanotti, C.; Rostagno, G.; Tingley, B. Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs. Constr. Build. Mater. 2018, 160, 775–785. [Google Scholar] [CrossRef]
- Gao, D.; Chen, X.; Chen, G.; Zhang, L.; Zhan, Z. Shear-bond behaviour between concrete and hybrid fibre-reinforced cementitious composites for repairing: Experimental and modelling. J. Build. Eng. 2023, 64, 105636. [Google Scholar] [CrossRef]
- Cristina Zanotti, N.B. Towards sustainable repairs: Substrate-repair interface mode-I fracture analysis. Int. J. Sustain. Mater. Struct. Syst. 2014, 1, 265–281. [Google Scholar] [CrossRef]
- Lim, Y.M.; Li, V.C. Durable repair of aged infrastructures using trapping mechanism of engineered cementitious composites. Cem. Concr. Compos. 1997, 19, 373–385. [Google Scholar] [CrossRef]
- Su, J.-Y.; Luo, R.-H.; Chen, Z.-B.; Lin, J.-X.; Huang, P.-Y.; Guo, Y.-C. Experimental study on the fracture performance of rubberized high strength-high ductility concrete with J-integral method. Constr. Build. Mater. 2024, 421, 135668. [Google Scholar] [CrossRef]
- Lin, J.-X.; Liu, R.-A.; Liu, L.-Y.; Zhuo, K.-Y.; Chen, Z.-B.; Guo, Y.-C. High-strength and high-toughness alkali-activated composite materials: Optimizing mechanical properties through synergistic utilization of steel slag, ground granulated blast furnace slag, and fly ash. Constr. Build. Mater. 2024, 422, 135811. [Google Scholar] [CrossRef]
- Xu, S.; Lyu, Y.; Xu, S.; Li, Q. Enhancing the initial cracking fracture toughness of steel-polyvinyl alcohol hybrid fibers ultra high toughness cementitious composites by incorporating multi-walled carbon nanotubes. Constr. Build. Mater. 2019, 195, 269–282. [Google Scholar] [CrossRef]
- Gao, S.; Qi, L.; Zhu, Y.; Wang, W. Effect of notch depth ratio on mode I and mixed mode I-II fracture properties of engineered cementitious composites (ECC). Int. J. Solids Struct. 2022, 236–237, 111363. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | TiO2 | SO3 | Others | LOI 1 | |
---|---|---|---|---|---|---|---|---|---|
GGBS | 34.00 | 34.50 | 17.70 | 1.03 | 6.01 | / | 1.64 | 5.12 | 0.84 |
FA | 4.01 | 53.97 | 31.15 | 4.16 | 1.01 | 1.13 | 2.20 | 2.37 | 4.60 |
Fiber Type | Length (mm) | Diameter (mm) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Density (g/cm3) | Elongation (%) |
---|---|---|---|---|---|---|
PVA | 12 | 20 | 2500 | 120 | 0.97 | 3.7 |
PE | 12 | 15 | 1830 | 40 | 1.29 | 6.9 |
Mix IDs | Mix Proportion | Volume Fraction/% | |||||||
---|---|---|---|---|---|---|---|---|---|
FA 1 | GGBS 2 | QP 3 | AAS 4 | Water | BC 5 | Deformer | PE 6 | PVA 7 | |
M1-U1.0P0.0 | 0.70 | 0.30 | 0.20 | 0.40 | 0.06 | 0.01 | 0.001 | 1.0 | 0.0 |
M1-U1.5P0.0 | 1.5 | 0.0 | |||||||
M1-U2.0P0.0 | 2.0 | 0.0 | |||||||
M1-U1.5P0.5 | 1.5 | 0.5 | |||||||
M1-U1.0P1.0 | 1.0 | 1.0 | |||||||
M1-U0.5P1.5 | 0.5 | 1.5 | |||||||
M1-U0.0P2.0 | 0.0 | 2.0. | |||||||
M2-U2.0P0.0 | 0.60 | 0.40 | 0.20 | 0.40 | 0.06 | 0.01 | 0.001 | 2.0 | 0.0 |
M3-U2.0P0.0 | 0.50 | 0.50 | 0.20 | 0.40 | 0.06 | 0.01 | 0.001 | 2.0 | 0.0 |
Mix IDs | Cement | Aggregate | Sand | Water | Water Reducer |
---|---|---|---|---|---|
C30 | 1.00 | 3.56 | 2.37 | 0.66 | 0.000 |
C50 | 1.00 | 3.41 | 1.92 | 0.63 | 0.000 |
C70 | 1.00 | 1.75 | 0.98 | 0.28 | 0.005 |
Specimen IDs | Testing Method | Substrate Concrete Strength Grade | Repairing Material | FA/GGBS Ratio of EGC | Volume Fraction of EGC/% | |
---|---|---|---|---|---|---|
PE | PVA | |||||
T7 1-M1-U2.0P0.0 | direct tension | C70 | M1-U2.0P0.0 | 7:3 | 2.0 | 0.0 |
T7-M1-U1.5P0.5 | direct tension | C70 | M1-U1.5P0.5 | 7:3 | 1.5 | 0.5 |
T7-M1-U1.0P1.0 | direct tension | C70 | M1-U1.0P1.0 | 7:3 | 1.0 | 1.0 |
T7-M1-U0.5P1.5 | direct tension | C70 | M1-U0.5P1.5 | 7:3 | 0.5 | 1.5 |
T7-M1-U0.0P2.0 | direct tension | C70 | M1-U0.0P2.0 | 7:3 | 0.0 | 2.0 |
S7 2-M1-U1.0P0.0 | compressive slant shear | C70 | M1-U1.0P0.0 | 7:3 | 1.0 | 0.0 |
S7-M1-U1.5P0.0 | compressive slant shear | C70 | M1-U1.5P0.0 | 7:3 | 1.5 | 0.0 |
S7-M1-U2.0P0.0 | compressive slant shear | C70 | M1-U2.0P0.0 | 7:3 | 2.0 | 0.0 |
S7-M1-U1.5P0.5 | compressive slant shear | C70 | M1-U1.5P0.5 | 7:3 | 1.5 | 0.5 |
S7-M1-U1.0P1.0 | compressive slant shear | C70 | M1-U1.0P1.0 | 7:3 | 1.0 | 1.0 |
S7-M1-U0.5P1.5 | compressive slant shear | C70 | M1-U0.5P1.5 | 7:3 | 0.5 | 1.5 |
S7-M1-U0.0P2.0 | compressive slant shear | C70 | M1-U0.0P2.0 | 7:3 | 0.0 | 2.0 |
S7-M2-U2.0P0.0 | compressive slant shear | C70 | M2-U2.0P0.0 | 6:4 | 2.0 | 0.0 |
S7-M3-U2.0P0.0 | compressive slant shear | C70 | M3-U2.0P0.0 | 5:5 | 2.0 | 0.0 |
S3 2-M1-U2.0P0.0 | compressive slant shear | C30 | M1-U2.0P0.0 | 7:3 | 2.0 | 0.0 |
S5 2-M1-U2.0P0.0 | compressive slant shear | C50 | M1-U2.0P0.0 | 7:3 | 2.0 | 0.0 |
Specimen IDs | Compressive Strength (MPa) | Peak Load (kN) | Bonding Area (mm2) | Average Tensile Bond Strength (MPa) | |
---|---|---|---|---|---|
EGC | Concrete Substrate | ||||
T7-M1-U2.0P0.0 | 77.1 | 70.6 | 1.165 | 2500 | 0.466 |
T7-M1-U1.5P0.5 | 83.2 | 70.6 | 1.171 | 2500 | 0.468 |
T7-M1-U1.0P1.0 | 84.7 | 70.6 | 1.270 | 2500 | 0.508 |
T7-M1-U0.5P1.5 | 87.0 | 70.6 | 1.371 | 2500 | 0.549 |
T7-M1-U0.0P2.0 | 93.4 | 70.6 | 1.390 | 2500 | 0.556 |
Specimen IDs | Compressive Strength (MPa) | Applied Stress (MPa) | (MPa) | |
---|---|---|---|---|
EGC | Concrete Substrate | |||
S7-M1-U1.0P0.0 | 93.9 | 70.6 | 31.4 | 15.5 |
S7-M1-U1.5P0.0 | 87.0 | 70.6 | 32.4 | 16.0 |
S7-M1-U2.0P0.0 | 77.1 | 70.6 | 35.6 | 17.5 |
S7-M1-U1.5P0.5 | 83.2 | 70.6 | 38.5 | 18.9 |
S7-M1-U1.0P1.0 | 84.7 | 70.6 | 41.4 | 20.5 |
S7-M1-U0.5P1.5 | 87.0 | 70.6 | 41.7 | 20.7 |
S7-M1-U0.0P2.0 | 93.4 | 70.6 | 43.9 | 21.0 |
S7-M2-U2.0P0.0 | 97.5 | 70.6 | 50.0 | 24.5 |
S7-M3-U2.0P0.0 | 108.9 | 70.6 | 53.5 | 26.1 |
S3-M1-U2.0P0.0 | 77.1 | 35.3 | 46.6 | 23.1 |
S5-M1-U2.0P0.0 | 77.1 | 51.3 | 50.1 | 24.5 |
Materials | FA 1 | GGBS 2 | QP 3 | NaOH | Na2SiO3 | BC 4 | Deformer | HRWR 5 | PE 6 | PP 7 | SF 8 | PVA 9 | PVA@O 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cost (USD/kg) | 0.27 | 0.34 | 0.06 | 2.80 | 0.42 | 3.36 | 3.08 | 2.66 | 56.00 | 1.89 | 1.68 | 6.30 | 56.00 [45] |
Mix IDs | Mix Proportion | Volume Fraction/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FA | GGBS | QP | NaOH | Na2SiO3 | Water | BC | HRWR | PE | PP | SF | PVA@O | |
A1 [46] | 0.50 | 0.50 | 0.00 | 0.00 | 0.12 | 0.45 | 0.00 | 0.00 | 1.50 | 0.00 | 0.50 | 0.00 |
A2 [46] | 0.50 | 0.50 | 0.00 | 0.00 | 0.12 | 0.45 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 |
A3 [46] | 0.50 | 0.50 | 0.00 | 0.00 | 0.12 | 0.45 | 0.00 | 0.00 | 0.50 | 0.00 | 1.50 | 0.00 |
B1 [47] | 0.50 | 0.50 | 0.20 | 0.13 | 0.32 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.00 |
B2 [47] | 0.50 | 0.50 | 0.20 | 0.13 | 0.32 | 0.02 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
B3 [47] | 0.50 | 0.50 | 0.20 | 0.13 | 0.32 | 0.02 | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 |
C1 [27] | 0.60 | 0.40 | 0.23 | 0.04 | 0.27 | 0.08 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 |
C2 [27] | 0.60 | 0.40 | 0.23 | 0.04 | 0.27 | 0.08 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 |
C3 [27] | 0.60 | 0.40 | 0.23 | 0.04 | 0.27 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 |
Mix IDs | Cost | (MPa) | (%) | (MPa) | |||
---|---|---|---|---|---|---|---|
M1-U1.0P0.0 | 0.503 | 93.9 | 4.74 | 4.92 | 186.87 | 9.43 | 9.79 |
M1-U1.5P0.0 | 0.751 | 87.0 | 6.16 | 5.74 | 115.81 | 8.20 | 7.64 |
M1-U2.0P0.0 | 1.000 | 77.1 | 6.07 | 6.26 | 77.10 | 6.07 | 6.26 |
M1-U1.5P0.5 | 0.779 | 83.2 | 4.70 | 7.04 | 106.77 | 6.03 | 9.03 |
M1-U1.0P1.0 | 0.558 | 84.7 | 3.80 | 5.64 | 151.67 | 6.80 | 10.10 |
M1-U0.5P1.5 | 0.338 | 87.0 | 0.80 | 4.19 | 257.65 | 2.37 | 12.41 |
M1-U0.0P2.0 | 0.117 | 93.4 | 0.52 | 3.10 | 799.02 | 4.45 | 26.52 |
M2-U2.0P0.0 | 1.000 | 97.5 | 6.62 | 7.83 | 97.49 | 6.62 | 7.83 |
M3-U2.0P0.0 | 1.000 | 108.90 | 6.31 | 9.29 | 108.89 | 6.31 | 9.29 |
A1 [46] | 0.757 | 62.00 | 3.18 | 2.27 | 81.92 | 4.20 | 3.00 |
A2 [46] | 0.516 | 62.00 | 1.24 | 2.61 | 120.25 | 2.41 | 5.06 |
A3 [46] | 0.274 | 62.00 | 0.38 | 2.97 | 226.05 | 1.39 | 10.83 |
B1 [47] | 1.003 | 37.24 | 2.41 | 3.12 | 37.13 | 2.40 | 3.11 |
B2 [47] | 0.522 | 36.43 | 2.44 | 3.07 | 69.77 | 4.67 | 5.88 |
B3 [47] | 0.041 | 33.27 | 3.70 | 1.96 | 804.10 | 89.43 | 47.37 |
C1 [27] | 1.000 | 96.63 | 5.54 | 6.19 | 96.65 | 5.54 | 6.19 |
C2 [27] | 0.517 | 110.34 | 2.12 | 6.00 | 213.35 | 4.10 | 11.60 |
C3 [27] | 0.035 | 111.82 | 0.54 | 6.26 | 3233.62 | 15.62 | 181.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Y.; Zhang, X.; Wu, Y.; Zou, W.; Wang, C.; Li, C.; Li, W. Evaluation of Bonding Behavior between Engineered Geopolymer Composites with Hybrid PE/PVA Fibers and Concrete Substrate. Materials 2024, 17, 3778. https://doi.org/10.3390/ma17153778
Ling Y, Zhang X, Wu Y, Zou W, Wang C, Li C, Li W. Evaluation of Bonding Behavior between Engineered Geopolymer Composites with Hybrid PE/PVA Fibers and Concrete Substrate. Materials. 2024; 17(15):3778. https://doi.org/10.3390/ma17153778
Chicago/Turabian StyleLing, Yu, Xiafei Zhang, Yanwei Wu, Weiyu Zou, Chuang Wang, Chaosen Li, and Wen Li. 2024. "Evaluation of Bonding Behavior between Engineered Geopolymer Composites with Hybrid PE/PVA Fibers and Concrete Substrate" Materials 17, no. 15: 3778. https://doi.org/10.3390/ma17153778
APA StyleLing, Y., Zhang, X., Wu, Y., Zou, W., Wang, C., Li, C., & Li, W. (2024). Evaluation of Bonding Behavior between Engineered Geopolymer Composites with Hybrid PE/PVA Fibers and Concrete Substrate. Materials, 17(15), 3778. https://doi.org/10.3390/ma17153778