Mechanical Properties of High- and Low-Fusing Zirconia Veneering Ceramics Fired on Different Trays and Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Density and Shrinkage
2.3. Flexural Strength
2.4. Martens’ Hardness and Indentation Modulus
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017, 48, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Cinar, S.; Altan, B. Effect of veneering and hydrothermal aging on the translucency of newly introduced extra translucent and high translucent zirconia with different thicknesses. BioMed Res. Int. 2021, 2021, 7011021. [Google Scholar] [CrossRef]
- Benetti, P.; Kelly, J.R.; Della Bona, A. Analysis of thermal distributions in veneered zirconia and metal restorations during firing. Dent. Mater. 2013, 29, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.D.S.; Aurélio, I.L.; Kaizer, M.D.R.; Zhang, Y.; May, L.G. Do thermal treatments affect the mechanical behavior of porcelain-veneered zirconia? A systematic review and meta-analysis. Dent. Mater. 2019, 35, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Sedda, M.; Bonadeo, G.; Bosco, M.; Barbiera, A.; Tsintsadze, N.; Carrabba, M.; Ferrari, M. Effect of repeated firings on flexural strength of veneered zirconia. Dent. Mater. 2015, 31, e151–e156. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, C.B.; Ahmad, N.H.B.; Ellakwa, A.; Kruzic, J.J. Effect of cooling protocol on mechanical properties and microstructure of dental veneering ceramics. Dent. Mater. 2019, 35, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Sinthuprasirt, P.; van Noort, R.; Moorehead, R.; Pollington, S. Evaluation of a novel multiple phase veneering ceramic. Dent. Mater. 2015, 31, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Preis, V.; Letsch, C.; Handel, G.; Behr, M.; Schneider-Feyrer, S.; Rosentritt, M. Influence of substructure design, veneer application technique, and firing regime on the in vitro performance of molar zirconia crowns. Dent. Mater. 2013, 29, e113–e121. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.M.; Souza, A.C.O.; Anami, L.C.; Bottino, M.A.; Melo, R.M.; Souza, R.O. Effects of thickness, processing technique, and cooling rate protocol on the flexural strength of a bilayer ceramic system. Dent. Mater. 2013, 29, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Stawarczyk, B.; Hämmerle, C.H. Flexural strength of veneering ceramics for zirconia. J. Dent. 2008, 36, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Grohmann, P.; Stawarczyk, B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent. Mater. J. 2008, 27, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Stawarzcyk, B.; Trottmann, A.; Hämmerle, C.H. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent. Mater. 2009, 25, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Lunt, A.; Salvati, E.; Baimpas, N.; Dolbnya, I.; Neo, T.K.; Korsunsky, A.M. Investigations into the interface failure of yttria partially stabilised zirconia-porcelain dental prostheses through microscale residual stress and phase quantification. Dent. Mater. 2019, 35, 1576–1593. [Google Scholar] [CrossRef] [PubMed]
- Swain, M. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009, 5, 1668–1677. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.L.; Kim, J.H.; Shim, J.S.; Kim, S. The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading. J. Adv. Prosthodont. 2017, 9, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.P.; Sederstrom, D.; Polansky, J.R.; McLaren, E.A.; White, S.N. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. J. Prosthet. Dent. 2012, 107, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Guachetá, L.; Stevens, C.D.; Tamayo Cardona, J.A.; Murgueitio, R. Comparison of marginal and internal fit of pressed lithium disilicate veneers fabricated via a manual waxing technique versus a 3D printed technique. J. Esthet. Restor. Dent. 2022, 34, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Assaf, A.; Azer, S.S.; Sfeir, A.; Al-Haj Husain, N.; Özcan, M. Risk factors with porcelain laminate veneers experienced during cementation: A review. Materials 2023, 16, 4932. [Google Scholar] [CrossRef] [PubMed]
- Wendler, M.; Belli, R.; Lohbauer, U. Factors influencing development of residual stresses during crystallization firing in a novel lithium silicate glass-ceramic. Dent. Mater. 2019, 35, 871–882. [Google Scholar] [CrossRef] [PubMed]
- DIN EN ISO 6872:2019; Dentistry—Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- Coldea, A.; Fischer, J.; Swain, M.V.; Thiel, N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent. Mater. 2015, 31, 684–694. [Google Scholar] [CrossRef] [PubMed]
- DIN EN ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2015.
Veneering Ceramic | Chemical Composition | Manufacturer | LOT Number |
---|---|---|---|
Zirkon HFZ (HFZ) | Silicon dioxide, aluminum oxide, potassium oxide, sodium oxide, calcium oxide, boron trioxide | estetic ceram ag, Triesen, Liechtenstein | 260819 |
Structure (STR) | Silicon dioxide, aluminum oxide, potassium oxide, sodium oxide, lithium oxide, strontium oxide, boron trioxide, cerium(IV) oxide, zinc oxide | 270620 |
HFZ (zirkon HFZ) | Vacuum level of 100% at 960°C, 1 min |
STR (structure) | Vacuum level of 100% at 800°C, 1 min |
Density | Shrinkage | Biaxial Flexural Strength | Martens’ Hardness | Indentation Modulus | |
---|---|---|---|---|---|
Ceramic type | <0.001 | <0.001 | 0.025 | 0.284 | 0.002 |
Firing tray | 0.391 | <0.001 | 0.127 | 0.197 | 0.195 |
Firing substrate | 0.007 | <0.001 | 0.016 | 0.212 | 0.157 |
Ceramic type × Firing tray | <0.001 | 0.012 | 0.227 | 0.060 | 0.060 |
Ceramic type × Firing substrate | 0.054 | 0.115 | 0.073 | 0.896 | 0.362 |
Firing tray × Firing substrate | 0.521 | 0.112 | 0.313 | 0.001 | <0.001 |
Ceramic type × Firing tray × Firing substrate | 0.064 | 0.004 | 0.045 | 0.019 | 0.005 |
Firing Tray | HFZ (Zirkon HFZ) | STR (Structure) |
---|---|---|
RSC | 2.514 ± 0.009 Bb | 2.435 ± 0.013 Aa |
RLA | 2.514 ± 0.010 Bb | 2.434 ± 0.017 Aa |
RCPS | 2.506 ± 0.010 Ab | 2.449 ± 0.023 Ca |
RPS | 2.512 ± 0.010 ABb | 2.444 ± 0.010 BCa |
RCPC | 2.512 ± 0.005 ABb | 2.442 ± 0.014 Ba |
Material | Firing Tray | Firing Cotton | Platinum Foil |
---|---|---|---|
Z (zirkon HFZ) | RSC | 31.75 ± 2.70 Ab# | 26.65 ± 2.71 Aa# |
RLA | 33.65 ± 5.45 Ba# | 32.43 ± 4.19 Ba# | |
RCPS | 32.21 ± 2.26 ABa# | 31.82 ± 1.17 Ba# | |
RPS | 32.61 ± 3.60 ABa# | 32.84 ± 2.39 Ba# | |
RCPC | 33.56 ± 2.47 ABb# | 30.81 ± 1.23 Ba# | |
S (structure) | RSC | 36.98 ± 1.85 Aa* | 37.17 ± 1.35 Aa* |
RLA | 38.03 ± 1.24 ABa* | 37.39 ± 1.73 Aa* | |
RCPS | 38.75 ± 1.20 ABa* | 37.83 ± 1.36 Aa* | |
RPS | 38.79 ± 1.64 ABa* | 37.46 ± 1.47 Aa* | |
RCPC | 39.30 ± 1.93 Ba* | 37.51 ± 1.15 Aa* |
Material | Firing Tray | Firing Cotton | Platinum Foil |
---|---|---|---|
Z (zirkon HFZ) | RSC | 72.02 ± 5.84 ABa# | 90.25 ± 11.29 Bb* |
RLA | 85.67 ± 9.29 ABa* | 93.57 ± 16.89 Ba* | |
RCPS | 90.43 ± 5.36 Ba* | 79.87 ± 20.08 Aa* | |
RPS | 78.94 ± 12.85 ABa* | 84.64 ± 10.55 ABa* | |
RCPC | 67.57 ± 12.45 Aa* | 90.30 ± 11.57 Bb* | |
S (structure) | RSC | 95.40 ± 13.80 Ba* | 91.66 ± 13.19 Aa* |
RLA | 90.41 ± 14.64 ABa* | 90.06 ± 12.45 Aa* | |
RCPS | 81.01 ± 5.79 Aa* | 86.95 ± 13.03 Aa* | |
RPS | 88.74 ± 16.71 ABa* | 90.04 ± 7.22 Aa* | |
RCPC | 81.31 ± 8.72 Aa* | 84.58 ± 8.54 Aa* |
Material | Firing Tray | Firing Cotton | Platinum Foil |
---|---|---|---|
Z (zirkon HFZ) | RSC | 2259 ± 481 Ba* | 2228 ± 379 Aa* |
RLA | 2373 ± 326 Ba# | 2133 ± 342 Aa* | |
RCPS | 2384 ± 415 Ba* | 2197 ± 367 Aa* | |
RPS | 1901 ± 486 Aa# | 2418 ± 328 Ab* | |
RCPC | 2724 ± 272 Cb* | 2322 ± 462 Aa* | |
S (structure) | RSC | 2249 ± 496 Aa* | 2328 ± 442 Aa* |
RLA | 2707 ± 274 Bb* | 2225 ± 406 Aa* | |
RCPS | 2356 ± 415 Aa* | 2304 ± 466 Aa* | |
RPS | 2317 ± 383 Aa* | 2366 ± 416 Aa* | |
RCPC | 2247 ± 420 Aa# | 2374 ± 406 Aa* |
Material | Firing Tray | Firing Cotton | Platinum Foil |
---|---|---|---|
Z (zirkon HFZ) | RSC | 47 ± 7.2 Ba* | 43 ± 5.6 Aa# |
RLA | 48 ± 6.4 Ba# | 44 ± 5.3 ABa* | |
RCPS | 49 ± 5.6 BCb* | 44 ± 6.3 ABa* | |
RPS | 39 ± 6.9 Aa# | 49 ± 7.0 Bb* | |
RCPC | 53 ± 5.8 Cb* | 46 ± 6.9 ABa* | |
S (structure) | RSC | 47 ± 7.8 Aa* | 50 ± 8.0 Aa* |
RLA | 55 ± 4.6 Bb* | 47 ± 6.8 Aa* | |
RCPS | 50 ± 8.2 Aa* | 47 ± 6.7 Aa* | |
RPS | 47 ± 5.2 Aa* | 50 ± 6.2 Aa* | |
RCPC | 46 ± 7.0 Aa# | 49 ± 6.9 Aa* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, M.; Coldea, A.; Dönmez, M.B.; Meinen, J.; Stawarczyk, B. Mechanical Properties of High- and Low-Fusing Zirconia Veneering Ceramics Fired on Different Trays and Substrates. Materials 2024, 17, 2261. https://doi.org/10.3390/ma17102261
Hoffmann M, Coldea A, Dönmez MB, Meinen J, Stawarczyk B. Mechanical Properties of High- and Low-Fusing Zirconia Veneering Ceramics Fired on Different Trays and Substrates. Materials. 2024; 17(10):2261. https://doi.org/10.3390/ma17102261
Chicago/Turabian StyleHoffmann, Moritz, Andrea Coldea, Mustafa Borga Dönmez, John Meinen, and Bogna Stawarczyk. 2024. "Mechanical Properties of High- and Low-Fusing Zirconia Veneering Ceramics Fired on Different Trays and Substrates" Materials 17, no. 10: 2261. https://doi.org/10.3390/ma17102261
APA StyleHoffmann, M., Coldea, A., Dönmez, M. B., Meinen, J., & Stawarczyk, B. (2024). Mechanical Properties of High- and Low-Fusing Zirconia Veneering Ceramics Fired on Different Trays and Substrates. Materials, 17(10), 2261. https://doi.org/10.3390/ma17102261