The Influence of Thickness on Light Transmission for Pre- and Fully Crystallized Chairside CAD/CAM Lithium Disilicate Ceramics
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The light transmission of the novel chairside CAD/CAM lithium disilicate ceramic LiSi GC Block decreases as the thickness increases.
- The light transmission of the novel chairside CAD/CAM lithium disilicate ceramic e.max CAD decreases as the thickness increases.
- Light transmission for pre- and fully crystallized chairside CAD/CAM lithium disilicate ceramics showed a statistically significant difference at the thickness of 1.50 mm (p = 0.002).
- E.max CAD showed acceptable light transmission at up to 1.5 mm of thickness.
- Both pre- and fully crystallized chairside CAD/CAM lithium disilicate ceramics with 2 mm of thickness should be cemented with dual-cure resin luting cements due to the reduction in light transmission.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blatz, M.B.; Conejo, J. The current state of chairside digital dentistry and materials. Dent. Clin. N. Am. 2019, 63, 175–197. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; Mourad, F.; Felton, D.; Tinoco, J.V. Clinical workflow of two different CAD/CAM systems for veneers manufacture. Eur. J. Gen. Dent. 2020, 9, 174–180. [Google Scholar] [CrossRef]
- Jurado, C.A.; Tsujimoto, A.; Watanabe, H.; Villalobos-Tinoco, J.; Garaicoa, J.L.; Markham, M.D.; Barkmeier, W.W.; Latta, M.A. Chair-side CAD/CAM fabrication of a single-retainer resin bonded fixed dental prosthesis: A case report. Restor. Dent. Endod. 2020, 45, e15. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; Tsujimoto, A.; Punj, A.; Aida, N.; Miyazaki, M.; Watanabe, H. Successful development and implementation of a digital dentistry curriculum at a US dental school. J. Oral. Sci. 2021, 63, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Moussally, C.; Fron-Chabouis, H.; Charrière, A.; Maladry, L.; Dursun, E. Full-mouth rehabilitation of hypocalcified-type amelogenesis imperfecta with chairside computer-aided design and computer-aided manufacturing: A case report. Oper. Dent. 2019, 44, E145–E158. [Google Scholar] [CrossRef] [PubMed]
- Saeidi Pour, R.; Edelhoff, D.; Prandtner, O.; Liebermann, A. Rehabilitation of a patient with amelogenesis imperfecta using porcelain veneers and CAD/CAM polymer restorations: A clinical report. Quintessence Int. 2015, 46, 843–852. [Google Scholar] [PubMed]
- Sulaiman, T.A. Materials in digital dentistry—A review. J. Esthet. Restor. Dent. 2020, 32, 171–181. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM ceramic restorative materials for natural teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Alberto Jurado, C.; Kaleinikova, Z.; Tsujimoto, A.; Alberto Cortés Treviño, D.; Seghi, R.R.; Lee, D.J. Comparison of fracture resistance for chairside CAD/CAM lithium disilicate crowns and overlays with different designs. J. Prosthodont. 2021, 31, 341–347. [Google Scholar] [CrossRef]
- Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; El-Gendy, T.; Hyer, J.; Tsujimoto, A. Color stability of fully- and pre-crystalized chair-side CAD-CAM lithium disilicate restorations after required and additional sintering processes. J. Adv. Prosthodont. 2022, 14, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Preis, V.; Hahnel, S.; Behr, M.; Rosentritt, M. In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth. J. Adv. Prosthodont. 2018, 10, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Kanat-Ertürk, B. Color Stability of CAD/CAM Ceramics Prepared with Different Surface Finishing Procedures. J. Prosthodont. 2020, 29, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Lien, W.; Roberts, H.W.; Platt, J.A.; Vandewalle, K.S.; Hill, T.J.; Chu, T.M. Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic. Dent. Mater. 2015, 31, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef]
- Jung, S.K.; Kim, D.W.; Lee, J.; Ramasamy, S.; Kim, H.S.; Ryu, J.J.; Shim, J.S. Modulation of lithium disilicate translucency through heat treatment. Materials 2021, 14, 2094. [Google Scholar] [CrossRef] [PubMed]
- Simba, B.G.; Ribeiro, M.V.; Alves, M.F.R.; Amarante, J.E.V.; Strecker, K.; dos Santos, C. Effect of the temperature on the mechanical properties and translucency of lithium silicate dental glass-ceramic. Ceram. Int. 2021, 47, 9933–9940. [Google Scholar] [CrossRef]
- Vichi, A.; Zhao, Z.; Paolone, G.; Scotti, N.; Mutahar, M.; Goracci, C.; Louca, C. Factory Crystallized Silicates for Monolithic Metal-Free Restorations: A Flexural Strength and Translucency Comparison Test. Materials 2022, 15, 7834. [Google Scholar] [CrossRef] [PubMed]
- Dikicier, S.; Ayyildiz, S.; Ozen, J.; Sipahi, C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dent. Mater. J. 2017, 36, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.Y.; Anusavice, K.J.; Naman, A.; Morris, H.F. Fracture surface characterization of clinically failed all-ceramic crowns. J. Dent. Res. 1994, 73, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Tsoi, J.K.H.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Jang, Y.S.; Lee, M.H.; Bae, T.S. Comparative evaluation of mechanical properties and wear ability of five CAD/CAM dental blocks. Materials 2019, 12, 2252. [Google Scholar] [CrossRef] [PubMed]
- Clausson, C.; Schroeder, C.C.; Goloni, P.V.; Farias, F.A.R.; Passos, L.; Zanetti, R.V. Fracture resistance of CAD/CAM lithium disilicate of endodontically treated mandibular damaged molars based on different preparation designs. Int. J. Biomater. 2019, 2019, 2475297. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Neto, V.G.; Soto-Montero, J.; de Castro, E.F.; Feitosa, V.P.; Rueggeberg, F.A.; Giannini, M. Effects of shades of a multilayered zirconia on light transmission, monomer conversion, and bond strength of resin cement. J. Esthet. Restor. Dent. 2022, 34, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Ural, Ç.; Duran, İ.; Evmek, B.; Kavut, İ.; Cengiz, S.; Yuzbasioglu, E. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments. BMC Oral Health 2016, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Jeong, K.S.; Shin, J.S.; Shim, J.S.; Ryu, J.J. Translucency and Strength of Lithium Disilicate for Computer-Aided Design and Manufacturing at Different Thermal Temperatures and Thicknesses: An In Vitro Study. Materials 2024, 17, 396. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; Amarillas-Gastelum, C.; Tsujimoto, A.; Alresayes, S.; French, K.; Nurrohman, H. Light Transmission for a Novel Chairside CAD/CAM Lithium Disilicate Ceramic. J. Contemp. Dent. Pract. 2021, 22, 1365–1369. [Google Scholar] [CrossRef]
- Antonson, S.A.; Anusavice, K.J. Contrast ratio of veneering and core ceramics as a function of thickness. Int. J. Prosthodont. 2001, 14, 316–320. [Google Scholar] [PubMed]
- Zimmermann, M.; Egli, G.; Zaruba, M.; Mehl, A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent. Mater. J. 2017, 36, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Nogueira, A.D.; Pecho, O.E. Optical properties of CAD-CAM ceramic systems. J. Dent. 2014, 42, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Tuncel, İ.; Turp, I.; Üşümez, A. Evaluation of translucency of monolithic zirconia and framework zirconia materials. J. Adv. Prosthodont. 2016, 8, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, E.; Antonson, S.A.; Hardigan, P.C.; Kesercioglu, A. The effect of ceramic restoration shade and thickness on the polymerization of light and dual-cure resin cements. Oper. Dent. 2011, 36, 661–669. [Google Scholar] [CrossRef]
- Queiroz, M.E.; Maluly-Proni, A.T.; Tsutsumi, M.S.C.; Dallazen, E.; de Castro-Hoshino, L.V.; de Souza, M.; Baesso, M.L.; Dos Santos, P.H. Influence of thickness and degree of opacity of lithium disilicate on the degree of conversion and bond strength of resin cements. J. Mech. Behav. Biomed. Mater. 2023, 143, 105934. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Bourgi, R.; Hernández-Escamilla, T.; Piva, E.; Devoto, W.; Lukomska-Szymanska, M.; Cuevas-Suárez, C.E. Color stability of dual-cured and light-cured resin cements: A systematic review and meta-analysis of in vitro studies. J. Prosthodont. 2024, 33, 212–220. [Google Scholar] [CrossRef]
- Suttipongkiat, P.O.; Ratanajanchai, M.; Suputtamongkol, K. Investigation of Microscopic Structure, Translucency Parameters, and Fracture Toughness of Two Pressable Lithium Disilicate Glass-Ceramic Materials. Int. J. Prosthodont. 2023; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.A.; Matis, J.I.; Lien, W.; Raimondi, C.J.; Arnason, S.C.; DuVall, N.B.; Vandewalle, K.S. Optical and Mechanical Properties of New Ceramic CAD/CAM Materials. Oper. Dent. 2023, 48, 425–434. [Google Scholar] [CrossRef] [PubMed]
Thickness | N | Mean | SD | Median | P25 | P75 | Minimum | Maximum |
---|---|---|---|---|---|---|---|---|
e.max CAD | ||||||||
0.50 mm | 10 | 357.5 | 40.9 | 350.0 | 343.8 | 362.5 | 300.0 | 450.0 |
0.75 mm | 10 | 272.5 | 69.2 | 275.0 | 200.0 | 331.3 | 150.0 | 350.0 |
1.00 mm | 10 | 225.0 | 57.7 | 212.5 | 187.5 | 300.0 | 150.0 | 300.0 |
1.50 mm | 10 | 160.0 | 17.5 | 150.0 | 150.0 | 175.0 | 150.0 | 200.0 |
2.00 mm | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
LiSi GC Block | ||||||||
0.50 mm | 10 | 372.5 | 32.2 | 375.0 | 350.0 | 400.0 | 300.0 | 400.0 |
0.75 mm | 10 | 300.0 | 33.3 | 300.0 | 287.5 | 312.5 | 250.0 | 350.0 |
1.00 mm | 10 | 197.5 | 29.9 | 200.0 | 187.5 | 206.3 | 150.0 | 250.0 |
1.50 mm | 10 | 57.5 | 74.6 | 0.0 | 0.0 | 150.0 | 0.0 | 150.0 |
2.00 mm | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
e.Max CAD vs. LiSi GC Block | Mann–Whitney Test | p Value |
---|---|---|
0.50 mm | 68.50 | 0.165 |
0.75 mm | 60.00 | 0.481 |
1.00 mm | 36.00 | 0.315 |
1.50 mm | 10.50 | 0.002 |
2.00 mm | 50.00 | 1.000 |
e.Max CAD | Test Statistic | Standard Error | p Value a |
---|---|---|---|
2.00 mm–1.50 mm | 12.200 | 6.445 | 0.584 |
2.00 mm–1.00 mm | 21.800 | 6.445 | 0.007 |
2.00 mm–0.75 mm | 27.450 | 6.445 | <0.001 |
2.00 mm–0.50 mm | 38.550 | 6.445 | <0.001 |
1.50 mm–1.00 mm | 9.600 | 6.445 | 1.000 |
1.50 mm–0.75 mm | 15.250 | 6.445 | 0.180 |
1.50 mm–0.50 mm | 26.350 | 6.445 | <0.001 |
1.00 mm–0.75 mm | 5.650 | 6.445 | 1.000 |
1.00 mm–0.50 mm | 16.750 | 6.445 | 0.094 |
0.75 mm–0.50 mm | 11.100 | 6.445 | 0.850 |
LiSi GC Block | Test Statistic | Standard Error | p Value a |
---|---|---|---|
2.00 mm–1.50 mm | 4.300 | 6.390 | 1.000 |
2.00 mm–1.00 mm | 16.800 | 6.390 | 0.086 |
2.00 mm–0.75 mm | 27.600 | 6.390 | <0.001 |
2.00 mm–0.50 mm | 36.300 | 6.390 | <0.001 |
1.50 mm–1.00 mm | 12.500 | 6.390 | 0.504 |
1.50 mm–0.75 mm | 23.300 | 6.390 | 0.003 |
1.50 mm–0.50 mm | 32.000 | 6.390 | <0.001 |
1.00 mm–0.75 mm | 10.800 | 6.390 | 0.910 |
1.00 mm–0.50 mm | 19.500 | 6.390 | 0.023 |
0.75 mm–0.50 mm | 8.700 | 6.390 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floriani, F.; Abuhammoud, S.; Rojas-Rueda, S.; Unnadkat, A.; Fischer, N.G.; Fu, C.-C.; Jurado, C.A. The Influence of Thickness on Light Transmission for Pre- and Fully Crystallized Chairside CAD/CAM Lithium Disilicate Ceramics. Materials 2024, 17, 2045. https://doi.org/10.3390/ma17092045
Floriani F, Abuhammoud S, Rojas-Rueda S, Unnadkat A, Fischer NG, Fu C-C, Jurado CA. The Influence of Thickness on Light Transmission for Pre- and Fully Crystallized Chairside CAD/CAM Lithium Disilicate Ceramics. Materials. 2024; 17(9):2045. https://doi.org/10.3390/ma17092045
Chicago/Turabian StyleFloriani, Franciele, Salahaldeen Abuhammoud, Silvia Rojas-Rueda, Amit Unnadkat, Nicholas G. Fischer, Chin-Chuan Fu, and Carlos A. Jurado. 2024. "The Influence of Thickness on Light Transmission for Pre- and Fully Crystallized Chairside CAD/CAM Lithium Disilicate Ceramics" Materials 17, no. 9: 2045. https://doi.org/10.3390/ma17092045
APA StyleFloriani, F., Abuhammoud, S., Rojas-Rueda, S., Unnadkat, A., Fischer, N. G., Fu, C. -C., & Jurado, C. A. (2024). The Influence of Thickness on Light Transmission for Pre- and Fully Crystallized Chairside CAD/CAM Lithium Disilicate Ceramics. Materials, 17(9), 2045. https://doi.org/10.3390/ma17092045