Carbon and Silicon Impurity Defects in GaN: Simulating Single-Photon Emitters by First Principles
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
3.1. Defect Pair Made Up of Impurity and Nitrogen Vacancy
3.2. Ternary Defect Made Up of Impurity and NGaVN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dietrich, A.; Doherty, M.W.; Aharonovich, I. Solid-state single photon source with Fourier transform limited lines at room temperature. Phys. Rev. B 2020, 101, 081401. [Google Scholar] [CrossRef]
- Ortigoza, M.A.; Stolbov, S. Thermodynamic stability and optical properties of C-doping-induced defects in hexagonal boron nitride as potential single-photon emitters. Phys. Rev. B 2022, 105, 165306. [Google Scholar] [CrossRef]
- Esmann, M.; Wein, S.C.; Antón-Solanas, C. Solid-State Single-Photon Sources: Recent Advances for Novel Quantum Materials. Adv. Funct. Mater. 2024, 34, 2315936. [Google Scholar] [CrossRef]
- Ye, Y.; Lin, X.; Fang, W. Room-Temperature Single-Photon Sources Based on Colloidal Quantum Dots: A Review. Materials 2023, 16, 7684. [Google Scholar] [CrossRef]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631. [Google Scholar] [CrossRef]
- Murtaza, G.; Colautti, M.; Hilke, M.; Lombardi, P.; Cataliotti, F.S.; Zavatta, A.; Toninelli, C. Efficientroom-temperature molecular single-photon sources for quantum key distribution. Opt. Express 2023, 31, 9437–9447. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.R.; Koehl, W.F.; Varley, J.B. Quantum computing with defects. Proc. Natl. Acad. Sci. USA 2010, 107, 8513. [Google Scholar] [CrossRef] [PubMed]
- Berhane, A.M.; Jeong, K.Y.; Bodrog, Z.; Fiedler, S. Bright Room-Temperature Single Photon Emission from Defects in Gallium Nitride. Adv. Mater. 2017, 29, 1605092. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Z.; Rasmita, A.; Kim, S. Room temperature solid-state quantum emitters in the telecom range. Sci. Adv. 2018, 4, eaar3580. [Google Scholar] [CrossRef]
- Nguyen, M.; Zhu, T.; Kianinia, M. Effects of microstructure and growth conditions on quantum emitters in gallium nitride. APL Mater. 2019, 7, 081106. [Google Scholar] [CrossRef]
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Li, K.H. Advances in III-nitride semiconductor microdisk lasers. Phys. Status Solidi A 2015, 212, 960. [Google Scholar] [CrossRef]
- Sfuncia, G.; Nicotra, G.; Giannazzo, F.; Pécz, B.; Gueorguiev, G.K.; Kakanakova, G.A. 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface. Cryst. Eng. Comm. 2023, 25, 5810–5817. [Google Scholar] [CrossRef]
- Alves, M.F.M.; Hsiao, C.; Dos, S.R.B.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self Induced Core Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2022, 3, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Hou, Y.; Yang, Z. GaN as a Material Platform for Single-Photon Emitters: Insights from Ab Initio Study. Adv. Opt. Mater. 2023, 11, 2202158. [Google Scholar] [CrossRef]
- Meunier, M.; Eng, J.J.H.; Mu, Z. Telecom single-photon emitters in GaN operating at room temperature: Embedment into bullseye antennas. Nanophotonics 2023, 12, 1405–1419. [Google Scholar] [CrossRef]
- Geng, Y.; Jena, D.; Fuchs, G.D. Optical dipole structure and orientation of GaN defect single-photon emitters. ACS Photonics 2023, 10, 3723–3729. [Google Scholar] [CrossRef]
- Qi, H.R.; Yi, L.K.; Huang, J.L. Compensation of magnesium by residual carbon impurities in p-type GaN grown by MOCVD. J. Alloys Compd. 2018, 765, 245–248. [Google Scholar]
- Tompkins, R.P.; Walsh, T.A.; Derenge, M.A. The effect of carbon impurities on lightly doped MOCVD GaN Schottky diodes. J. Mater. Res. 2011, 26, 2895–2900. [Google Scholar] [CrossRef]
- Tanikawa, T.; Kuboya, S.; Matsuoka, T. Control of impurity concentration in N-polar GaN grown by metalorganic vaporphase epitaxy. Phys. Status Solid. (B) 2017, 254, 1600751. [Google Scholar] [CrossRef]
- SaeidNahaei, S.; Ha, J.D.; Kim, J.S. Radiative emission mechanism analysis of green InGaN/GaN light-emitting diodes with the Si-doped graded short-period superlattice. J. Lumin. 2023, 253, 119440. [Google Scholar] [CrossRef]
- Cremades, A.; Görgens, L.; Ambacher, O. Structural and optical properties of Si-doped GaN. Phys. Rev. B 2000, 61, 2812. [Google Scholar] [CrossRef]
- Schubert, E.F.; Goepfert, I.D.; Grieshaber, W. Optical properties of Si-doped GaN. Appl. Phys. Lett. 1997, 71, 921–923. [Google Scholar] [CrossRef]
- Diallo, I.C.; Demchenko, D.O. Native point defects in GaN: A hybrid-functional study. Phys. Rev. Appl. 2016, 6, 064002. [Google Scholar] [CrossRef]
- Ganchenkova, M.G.; Nieminen, R.M. Nitrogen Vacancies as Major Point Defects in Gallium Nitride. Phys. Rev. Lett. 2006, 96, 196402. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207. [Google Scholar] [CrossRef]
- Jia, W.; Fu, J.; Cao, Z.; Wang, L.; Chi, X.; Gao, W.; Wang, L.W. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines. J. Comput. Phys. 2013, 251, 102. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Demchenko, D.O.; Diallo, I.C.; Reshchikov, M.A. Hydrogen-carbon complexes and the blue luminescence band in GaN. J. Appl. Phys. 2016, 119, 035702. [Google Scholar] [CrossRef]
- Colussi, M.L.; Baierle, R.J.; Miwa, R.H. Doping effects of C, Si and Ge in wurtzite [0001] GaN, AlN, and InN nanowires. J. Appl. Phys. 2011, 110, 033709. [Google Scholar] [CrossRef]
- Goodman, S.A.; Auret, F.D.; Legodi, M.J.; Beaumont, B.; Gibart, P. Characterization of electron-irradiated n-GaN. Appl. Phys. Lett. 2001, 78, 3815–3817. [Google Scholar] [CrossRef]
- Li, D.; Yang, M.; Cai, Y.; Zhao, S. First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber. Opt. Express 2012, 20, 6258–6266. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.; Luo, J.; Li, S.; Wang, L. Image charge interaction correction in charged-defect calculation. Phys. Rev. B. 2020, 102, 174110. [Google Scholar] [CrossRef]
- Cheng, H.T.; Yang, Y.C.; Liu, T.H.; Wu, C.H. Recent advances in 850 nm VCSELs for high-speed interconnects. Photonics 2020, 9, 107. [Google Scholar] [CrossRef]
Defect | ZPL | Lifetime | Emission Rate (per Second) |
---|---|---|---|
NGaVN | 1.98 eV (626 nm) | 3.56 ns | 2.8 × 108 |
NGaVNCN | 1.43 eV (864 nm) | 0.301 ns | 3.3 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Du, J.; Hou, Y.; Chen, F.; Li, Q. Carbon and Silicon Impurity Defects in GaN: Simulating Single-Photon Emitters by First Principles. Materials 2024, 17, 3788. https://doi.org/10.3390/ma17153788
Yuan J, Du J, Hou Y, Chen F, Li Q. Carbon and Silicon Impurity Defects in GaN: Simulating Single-Photon Emitters by First Principles. Materials. 2024; 17(15):3788. https://doi.org/10.3390/ma17153788
Chicago/Turabian StyleYuan, Junxiao, Jinglei Du, Yidong Hou, Feiliang Chen, and Qian Li. 2024. "Carbon and Silicon Impurity Defects in GaN: Simulating Single-Photon Emitters by First Principles" Materials 17, no. 15: 3788. https://doi.org/10.3390/ma17153788
APA StyleYuan, J., Du, J., Hou, Y., Chen, F., & Li, Q. (2024). Carbon and Silicon Impurity Defects in GaN: Simulating Single-Photon Emitters by First Principles. Materials, 17(15), 3788. https://doi.org/10.3390/ma17153788