Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions
2.2. Thermal Cycling Process
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Jeevitha, M.; Prabhahar, C.S.; Reddy, M.N.; Vijay, V.K.; Navarasu, M.; Umayal, M. Clinical Evaluation of Lateral Pedicle Flap Stabilized with Cyanoacrylate Tissue Adhesive: A Randomized Controlled Clinical Trial. Contemp. Clin. Dent. 2022, 13, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Ojastha, B.L.; Jeevitha, M. An Evaluation of the Tensile Strength of Polyglactin Sutures After Immersion in Different Herbal Mouthwashes: An In Vitro Study. Cureus 2023, 15, e43407. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Gulati, K.; Arora, H.; Han, P.; Fournier, B.; Ivanovski, S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent. Mater. 2021, 37, 816–831. [Google Scholar] [CrossRef] [PubMed]
- Abullais, S.S.; Alqahtani, N.A.; Alkhulban, R.M.; Alamer, S.H.; Khan, A.A.; Pimple, S. In-vitro evaluation of commonly used beverages on tensile strength of different suture materials used in dental surgeries. Medicine 2020, 99, e19831. [Google Scholar] [CrossRef] [PubMed]
- Polykandriotis, E.; Daenicke, J.; Bolat, A.; Grüner, J.; Schubert, D.W.; Horch, R.E. Individualized Wound Closure-Mechanical Properties of Suture Materials. J. Pers. Med. 2022, 12, 1041. [Google Scholar] [CrossRef] [PubMed]
- Freudenberg, S.; Rewerk, S.; Kaess, M.; Weiss, C.; Dorn-Beinecke, A.; Post, S. Biodegradation of absorbable sutures in body fluids and pH buffers. Eur. Surg. Res. 2004, 36, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Vasanthan, A.; Satheesh, K.; Hoopes, W.; Lucaci, P.; Williams, K.; Rapley, J. Comparing suture strengths for clinical applications: A novel in vitro study. J. Periodontol. 2009, 80, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.S.; Thomas, H.; Jayakumar, N.D.; Sankari, M.; Lakshmanan, R. Estimation of salivary tumor necrosis factor-alpha in chronic and aggressive periodontitis patients. Contemp. Clin. Dent. 2015, 6, S152–S156. [Google Scholar] [CrossRef]
- Parirokh, M.; Asgary, S.; Eghbal, M.J.; Stowe, S.; Kakoei, S. A scanning electron microscope study of plaque accumulation on silk and PVDF suture materials in oral mucosa. Int. Endod. J. 2004, 37, 776–781. [Google Scholar] [CrossRef]
- Cavalcanti, A.N.; Mitsui, F.H.O.; Ambrosano, G.M.B.; Marchi, G.M. Influence of adhesive systems and flowable composite lining on bond strength of class II restorations submitted to thermal and mechanical stresses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 80, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Abullais, S.S.; AlOsman, S.S.; AlQahtani, S.M.; Khan, A.A.; Nahid, R.; Basheer, S.A.; Jameel, A.S. Effect of Common Mouthwashes on Mechanical Properties of Suture Materials Used in Dental Surgeries: A Laboratory Experiment. Polymers 2022, 14, 2439. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.M.; George, J.; Shepherd, J.T.; Klika, A.K.; Higuera, C.A.; Krebs, V.E. Effects of Topical Antiseptic Solutions Used During Total Knee Arthroplasty on Suture Tensile Strength. Surg. Technol. Int. 2017, 30, 399–404. [Google Scholar] [PubMed]
- Alsarhan, M.; Alnofaie, H.; Ateeq, R.; Almahdy, A. The Effect of Chlorhexidine and Listerine® Mouthwashes on the Tensile Strength of Selected Absorbable Sutures: An Study. Biomed Res. Int. 2018, 2018, 8531706. [Google Scholar] [CrossRef] [PubMed]
- Briddell, J.W.; Riexinger, L.E.; Graham, J.; Ebenstein, D.M. Comparison of Artificial Saliva vs Saline Solution on Rate of Suture Degradation in Oropharyngeal Surgery. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Pytko-Polonczyk, J.; Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artificial saliva and its use in biological experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Wu, Q.; He, C.; Wang, X.; Zhang, S.; Zhang, L.; Xie, R.; Li, Y.; Wang, X.; Han, Z.; Zheng, Z.; et al. Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk-Fibroin-Based Berberine Loading System. ACS Biomater. Sci. Eng. 2021, 7, 2845–2857. [Google Scholar] [CrossRef] [PubMed]
- Dragovic, M.; Pejovic, M.; Stepic, J.; Colic, S.; Dozic, B.; Dragovic, S.; Lazarevic, M.; Nikolic, N.; Milasin, J.; Milicic, B. Comparison of four different suture materials in respect to oral wound healing, microbial colonization, tissue reaction and clinical features-randomized clinical study. Clin. Oral Investig. 2020, 24, 1527–1541. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, A.; Kilic, A.; Gumral, R.; Yildizoglu, U.; Polat, B. The effects of different suture materials in the nasal cavity. J. Laryngol. Otol. 2016, 130, 352–356. [Google Scholar] [CrossRef]
- Öksüz, K.E.; Kurt, B.; Şahin İnan, Z.D.; Hepokur, C. Novel Bioactive Glass/Graphene Oxide-Coated Surgical Sutures for Soft Tissue Regeneration. ACS Omega 2023, 8, 21628–21641. [Google Scholar] [CrossRef]
- ISO/TS 11405:2015; Dentistry—Testing of Adhe-Sion to Tooth Structure. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/62898.html (accessed on 1 November 2021).
- Wikesjö, U.M.; Nilvéus, R.E.; Selvig, K.A. Significance of early healing events on periodontal repair: A review. J. Periodontol. 1992, 63, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.; Nilvéus, R. Periodontal repair in dogs: Effect of wound stabilization on healing. J. Periodontol. 1990, 61, 719–724. [Google Scholar] [CrossRef]
- Herrmann, J.B. Changes in tensile strength and knot security of surgical sutures in vivo. Arch. Surg. 1973, 106, 707–710. [Google Scholar] [CrossRef]
- Polymeric Medical Sutures: An Exploration of Polymer and Green Chemistry. Student Handout. Available online: https://conservancy.umn.edu/server/api/core/bitstreams/11f3e9e1-0ddf-45f6-83fb-7335d7444065/content (accessed on 25 January 2021).
- Za, A. Fabrication and Characterization of Poly(lactic acid)-Based Biopolymer for Surgical Sutures. ChemEngineering 2023, 7, 98. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, Y.-K.; Lim, B.-S.; Rhee, S.-H.; Yang, H.-C. Comparison of tensile and knot security properties of surgical sutures. J. Mater. Sci. Mater. Med. 2007, 18, 2363–2369. [Google Scholar] [CrossRef]
- Banche, G.; Roana, J.; Mandras, N.; Amasio, M.; Gallesio, C.; Allizond, V.; Angeretti, A.; Tullio, V.; Cuffini, A.M. Microbial adherence on various intraoral suture materials in patients undergoing dental surgery. J. Oral Maxillofac. Surg. 2007, 65, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Taysi, A.E.; Ercal, P.; Sismanoglu, S. Comparison between tensile characteristics of various suture materials with two suture techniques: An in vitro study. Clin. Oral Investig. 2021, 25, 6393–6401. [Google Scholar] [CrossRef]
- Chambrone, L. Evidence-Based Periodontal and Peri-Implant Plastic Surgery: A Clinical Roadmap from Function to Aesthetics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Chu, C.C.; Moncrief, G. An in vitro evaluation of the stability of mechanical properties of surgical suture materials in various pH conditions. Ann. Surg. 1983, 198, 223–228. [Google Scholar] [CrossRef]
- Brandt, M.T.; Jenkins, W.S. Suturing principles for the dentoalveolar surgeon. Dent. Clin. N. Am. 2012, 56, 281–303. [Google Scholar] [CrossRef] [PubMed]
- Moser, J.B.; Lautenschlager, E.P.; Horbal, B.J. Mechanical properties of polyglycolic acid sutures in oral surgery. J. Dent. Res. 1974, 53, 804–808. [Google Scholar] [CrossRef]
- Chu, C.C. A comparison of the effect of pH on the biodegradation of two synthetic absorbable sutures. Ann. Surg. 1982, 195, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Abellán, D.; Nart, J.; Pascual, A.; Cohen, R.E.; Sanz-Moliner, J.D. Physical and Mechanical Evaluation of Five Suture Materials on Three Knot Configurations: An in Vitro Study. Polymers 2016, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Khiste, S.V.; Ranganath, V.; Nichani, A.S. Evaluation of tensile strength of surgical synthetic absorbable suture materials: An in vitro study. J. Periodontal Implant Sci. 2013, 43, 130–135. [Google Scholar] [CrossRef]
- Faris, A.; Khalid, L.; Hashim, M.; Yaghi, S.; Magde, T.; Bouresly, W.; Hamdoon, Z.; Uthman, A.T.; Marei, H.; Al-Rawi, N. Characteristics of Suture Materials Used in Oral Surgery: Systematic Review. Int. Dent. J. 2022, 72, 278–287. [Google Scholar] [CrossRef]
- Ferguson, R.E.H., Jr.; Schuler, K.; Thornton, B.P.; Vasconez, H.C.; Rinker, B. The effect of saliva and oral intake on the tensile properties of sutures: An experimental study. Ann. Plast. Surg. 2007, 58, 268–272. [Google Scholar] [CrossRef]
Groups | |
---|---|
Silk Group 1 (n = 44) | Silk suture soaked in artificial saliva |
Silk Group 2 (n = 44) | Silk suture soaked in artificial saliva using thermal aging technique |
Silk Group 3 (n = 44) | Silk suture exposed to chlorhexidine-containing mouthwash |
Silk Group 4 (n = 44) | Silk suture exposed to chlorhexidine-containing mouthwash after thermal aging technique |
Vicryl Group 1 (n = 44) | Vicryl suture soaked in artificial saliva |
Vicryl Group 2 (n = 44) | Vicryl suture aged in artificial saliva using thermal aging technique |
Vicryl Group 3 (n = 44) | Vicryl suture exposed to chlorhexidine-containing mouthwash |
Vicryl Group 4 (n = 44) | Vicryl suture exposed to chlorhexidine-containing mouthwash after thermal aging technique |
Tensile Strength (N) | ||||
---|---|---|---|---|
T0 (Day 0) | T1 (Day 3) | T2 (Day 7) | T3 (Day 14) | |
Silk Group 1 (n = 44) | 85.21 ± 11.05 a,A | 83.51 ± 6.45 a,A | 64.20 ± 11.78 b,A | 52.74 ± 8.73 b,A |
Silk Group 2 (n = 44) | 89.79 ± 10.37 a,A | 73.32 ± 7.23 ab,B | 58.10 ± 9.26 c,A | 47.65 ± 10.47 c,A |
Silk Group 3 (n = 44) | 88.87 ± 11.07 a,A | 67.07 ± 10.19 b,B | 61.24 ± 10.57 b,A | 43.34 ± 9.55 c,A |
Silk Group 4 (n = 44) | 88.50 ± 11.73 a,A | 65.59 ± 7.07 b,B | 54.46 ± 7.18 b,A | 40.54 ± 7.18 c,A |
PGLA Group 1 (n = 44) | 119.79 ± 12.21 a,A | 114.96 ± 9.55 a,A | 102.21 ± 7.61 b,A | 72 ± 16.93 c,A |
PGLA Group 2 (n = 44) | 121.70 ± 14.20 a,A | 102.74 ± 10.59 b,AB | 95.45 ± 7.99 b,A | 68.94 ± 16.34 c,A |
PGLA Group 3 (n = 44) | 120.21 ± 11.94 a,A | 104.22 ± 10.96 b,AB | 95.80 ± 7.89 b,A | 69.72 ± 18.51 c,A |
PGLA Group 4 (n = 44) | 118.14 ± 10.79 a,A | 95.73 ± 9.86 b,B | 93 ± 9.06 b,A | 53.68 ± 10.97 c,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktı, A.; Cengiz, Z.O.; Gürses, G.; Serin, H. Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study. Materials 2024, 17, 3862. https://doi.org/10.3390/ma17153862
Aktı A, Cengiz ZO, Gürses G, Serin H. Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study. Materials. 2024; 17(15):3862. https://doi.org/10.3390/ma17153862
Chicago/Turabian StyleAktı, Ahmet, Ziya Ozan Cengiz, Gökhan Gürses, and Hakan Serin. 2024. "Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study" Materials 17, no. 15: 3862. https://doi.org/10.3390/ma17153862
APA StyleAktı, A., Cengiz, Z. O., Gürses, G., & Serin, H. (2024). Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study. Materials, 17(15), 3862. https://doi.org/10.3390/ma17153862