Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Previously Developed Equations
2.2. Gradient Boosting Regression Tree (GBRT)
2.3. K-Nearest Neighbors
2.4. Least Absolute Shrinkage and Selection Operator (LASSO)
2.5. Cross-Validation
2.6. Hyperparameter Tuning
2.7. Performance Measure
3. Database Used
4. Model Results
4.1. Cross-Validation Results
4.2. Performance Comparison with Other ML Models
4.3. Performance Comparison with Previously Developed Models
4.4. Reliability Analysis
4.5. Shap Analysis
4.6. Model Uncertainty Analysis
4.7. Graphical User Interface
5. Recommendation for Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koch, G.H.; Brongers, M.P.; Thompson, N.G.; Virmani, Y.P.; Payer, J.H. Corrosion Cost and Preventive Strategies in the United States; Federal Highway Administration: Washington, DC, USA, 2002. [Google Scholar]
- Basaran, B. Effect of steel–FRP ratio and FRP wrapping layers on tensile properties of glass FRP-wrapped ribbed steel reinforcing bars. Mater. Struct. 2021, 54, 188. [Google Scholar] [CrossRef]
- Abushanab, A.; Alnahhal, W.; Farraj, M. Experimental and finite element studies on the structural behavior of BFRC continuous beams reinforced with BFRP bars. Compos. Struct. 2022, 281, 114982. [Google Scholar] [CrossRef]
- Abushanab, A.; Alnahhal, W. Numerical parametric investigation on the moment redistribution of basalt FRC continuous beams with basalt FRP bars. Compos. Struct. 2021, 277, 114618. [Google Scholar] [CrossRef]
- Abushanab, A.; Alnahhal, W.; Farraj, M. Structural performance and moment redistribution of basalt FRC continuous beams reinforced with basalt FRP bars. Eng. Struct. 2021, 240, 112390. [Google Scholar] [CrossRef]
- Adam, M.A.; Said, M.; Mahmoud, A.A.; Shanour, A.S. Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars. Constr. Build. Mater. 2015, 84, 354–366. [Google Scholar] [CrossRef]
- Cheon, J.; Lee, M.; Kim, M. Study on the stab resistance mechanism and performance of the carbon, glass and aramid fiber reinforced polymer and hybrid composites. Compos. Struct. 2020, 234, 111690. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Kosmidou, P.-M.K.; Chalioris, C.E. Reinforced concrete beams with carbon-fiber-reinforced polymer bars—Experimental study. Fibers 2018, 6, 99. [Google Scholar] [CrossRef]
- Younis, A.; El-Sherif, H.; Ebead, U. Shear strength of recycled-aggregate concrete beams with glass-FRP stirrups. Compos. Part C Open Access 2022, 8, 100257. [Google Scholar] [CrossRef]
- Zapris, A.G.; Kytinou, V.K.; Gribniak, V.; Chalioris, C.E. Novel approach for strengthening T-beams deficient in shear with near-surface mounted CFRP ropes in form of closed stirrups. Dev. Built Environ. 2024, 18, 100394. [Google Scholar] [CrossRef]
- Ospina, C.E.; Alexander, S.D.; Cheng, J.R. Punching of two-way concrete slabs with fiber-reinforced polymer reinforcing bars or grids. Struct. J. 2003, 100, 589–598. [Google Scholar]
- Hassan, M.; Ahmed, E.; Benmokrane, B. Punching-shear strength of normal and high-strength two-way concrete slabs reinforced with GFRP bars. J. Compos. Constr. 2013, 17, 04013003. [Google Scholar] [CrossRef]
- Dulude, C.; Hassan, M.; Ahmed, E.A.; Benmokrane, B. Punching shear behavior of flat slabs reinforced with glass fiber-reinforced polymer bars. ACI Struct. J. 2013, 110, 723. [Google Scholar]
- Lee, J.-H.; Yoon, Y.-S.; Cook, W.D.; Mitchell, D. Improving punching shear behavior of glass fiber-reinforced polymer reinforced slabs. ACI Struct. J. 2009, 106, 427. [Google Scholar]
- Matthys, S.; Taerwe, L. Concrete slabs reinforced with FRP grids. II: Punching resistance. J. Compos. Constr. 2000, 4, 154–161. [Google Scholar] [CrossRef]
- Bouguerra, K.; Ahmed, E.; El-Gamal, S.; Benmokrane, B. Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars. Constr. Build. Mater. 2011, 25, 3956–3965. [Google Scholar] [CrossRef]
- El-Gamal, S.; El-Salakawy, E.; Benmokrane, B. A new punching shear equation for two-way concrete slabs reinforced with FRP bars. ACI Spec. Publ. 2005, 230, 877–894. [Google Scholar]
- Jacobson, D.; Bank, L.; Oliva, M.; Russell, J. Punching shear capacity of double layer FRP grid reinforced slabs. In Proceedings of the 7th International Conference on Fiber Reinforced Plastics for Reinforced Concrete Structures, Kansas, MO, USA, 6–9 November 2005; pp. 857–871. [Google Scholar]
- El-Ghandour, A.; Pilakoutas, K.; Waldron, P. New approach for punching shear capacity prediction of fiber reinforced polymer reinforced concrete flat slabs. Spec. Publ. 1999, 188, 135–144. [Google Scholar]
- El-Ghandour, A.W.; Pilakoutas, K.; Waldron, P. Punching shear behavior of fiber reinforced polymers reinforced concrete flat slabs: Experimental study. J. Compos. Constr. 2003, 7, 258–265. [Google Scholar] [CrossRef]
- Shaaban, I.G.; Hosni, A.H.; Montaser, W.M.; El-Sayed, M.M. Effect of premature loading on punching resistance of reinforced concrete flat slabs. Case Stud. Constr. Mater. 2020, 12, e00320. [Google Scholar] [CrossRef]
- ACI Committee 318; Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). American Concrete Institute: Detroit, MI, USA, 2014.
- Theodorakopoulos, D.; Swamy, R. A design model for punching shear of FRP-reinforced slab-column connections. Cem. Concr. Compos. 2008, 30, 544–555. [Google Scholar] [CrossRef]
- Nguyen-Minh, L.; Rovňák, M. Punching shear resistance of interior GFRP reinforced slab-column connections. J. Compos. Constr. 2013, 17, 2–13. [Google Scholar] [CrossRef]
- Ju, M.; Ju, J.-w.W.; Sim, J. A new formula of punching shear strength for fiber reinforced polymer (FRP) or steel reinforced two-way concrete slabs. Compos. Struct. 2021, 259, 113471. [Google Scholar] [CrossRef]
- Badra, N.; Haggag, S.A.; Deifalla, A.; Salem, N.M. Development of machine learning models for reliable prediction of the punching shear strength of FRP-reinforced concrete slabs without shear reinforcements. Measurement 2022, 201, 111723. [Google Scholar] [CrossRef]
- Liang, S.; Shen, Y.; Gao, X.; Cai, Y.; Fei, Z. Symbolic machine learning improved MCFT model for punching shear resistance of FRP-reinforced concrete slabs. J. Build. Eng. 2023, 69, 106257. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, J.; Liang, S. Interpretable machine learning models for punching shear strength estimation of FRP reinforced concrete slabs. Crystals 2022, 12, 259. [Google Scholar] [CrossRef]
- Truong, G.T.; Hwang, H.-J.; Kim, C.-S. Assessment of punching shear strength of FRP-RC slab-column connections using machine learning algorithms. Eng. Struct. 2022, 255, 113898. [Google Scholar] [CrossRef]
- Vu, D.-T.; Hoang, N.-D. Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach. Struct. Infrastruct. Eng. 2016, 12, 1153–1161. [Google Scholar] [CrossRef]
- Alkhatib, S.; Deifalla, A. Punching shear strength of FRP-reinforced concrete slabs without shear reinforcements: A reliability assessment. Polymers 2022, 14, 1743. [Google Scholar] [CrossRef]
- Nasab, M.N.; Jahangir, H.; Hasani, H.; Majidi, M.-H.; Khorashadizadeh, S. Estimating the punching shear capacities of concrete slabs reinforced by steel and FRP rebars with ANN-Based GUI toolbox. Structures 2023, 50, 1204–1221. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ebid, A.; Onyelowe, K.; Deifalla, A. Data utilization and partitioning for machine learning applications in civil engineering. In Proceedings of the International Conference on Advanced Technologies for Humanity, Rabat, Morocco, 25–26 December 2023. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19); American Concrete Institute: Detroit, MI, USA, 2019. [Google Scholar]
- BS 8110; Structural Use of Concrete—Part 1: Code of Practice for Design and Construction. British Standards Institution: London, UK, 1997.
- El-Gamal, S.; El-Salakawy, E.; Benmokrane, B. Behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer bars under concentrated loads. ACI Struct. J. 2005, 102, 727. [Google Scholar]
- Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Ding, C.; Wu, X.; Yu, G.; Wang, Y. A gradient boosting logit model to investigate driver’s stop-or-run behavior at signalized intersections using high-resolution traffic data. Transp. Res. Part C Emerg. Technol. 2016, 72, 225–238. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Wu, J. Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Syst. Appl. 2010, 37, 5895–5904. [Google Scholar] [CrossRef]
- He, Q.; Kamarianakis, Y.; Jintanakul, K.; Wynter, L. Incident duration prediction with hybrid tree-based quantile regression. In Advances in Dynamic Network Modeling in Complex Transportation Systems; Springer: New York, NY, USA, 2013; pp. 287–305. [Google Scholar]
- Bevilacqua, M.; Braglia, M.; Montanari, R. The classification and regression tree approach to pump failure rate analysis. Reliab. Eng. Syst. Saf. 2003, 79, 59–67. [Google Scholar] [CrossRef]
- Osborne, M.R.; Presnell, B.; Turlach, B.A. A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 2000, 20, 389–403. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO regression. J. Br. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. Collaborative hyperparameter tuning. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 199–207. [Google Scholar]
- Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 115–123. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Varoquaux, G.; Buitinck, L.; Louppe, G.; Grisel, O.; Pedregosa, F.; Mueller, A. Scikit-learn: Machine learning without learning the machinery. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef]
- Ahmad, S.; Zia, P.; Yu, T.; Xie, Y. Punching shear tests of slabs reinforced with 3-dimensional carbon fiber fabric. Concr. Int. 1994, 16, 36–41. [Google Scholar]
- Bank, L.; Xi, Z. 43 Punching shear behavior of pultruded FRP grating reinforced concrete slabs. In Proceedings of the Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium; CRC Press: Boca Raton, FL, USA, 1995; p. 360. [Google Scholar]
- Banthia, N.; Al-Asaly, M.; Ma, S. Behavior of concrete slabs reinforced with fiber-reinforced plastic grid. J. Mater. Civ. Eng. 1995, 7, 252–257. [Google Scholar] [CrossRef]
- Louka, H.J. Punching Behaviour of a Hybrid Reinforced Concrete Bridge Deck. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 1999. [Google Scholar]
- Hassan, T.; Abdelrahman, A.; Tadros, G.; Rizkalla, S. Fibre reinforced polymer reinforcing bars for bridge decks. Can. J. Civ. Eng. 2000, 27, 839–849. [Google Scholar] [CrossRef]
- Khanna, O.S.; Mufti, A.A.; Bakht, B. Experimental investigation of the role of reinforcement in the strength of concrete deck slabs. Can. J. Civ. Eng. 2000, 27, 475–480. [Google Scholar] [CrossRef]
- Rahman, A.; Kingsley, C.; Kobayashi, K. Service and ultimate load behavior of bridge deck reinforced with carbon FRP grid. J. Compos. Constr. 2000, 4, 16–23. [Google Scholar] [CrossRef]
- Zaghloul, A.; Razaqpur, A. Punching shear behavior of CFRP reinforced concrete flat plates. In Proceedings of the International Conference on Composites in Construction, Cosenza, Italy, 16–19 September 2003; pp. 1–726. [Google Scholar]
- Hussein, A.; Rashid, I.; Benmokrane, B. Two-way concrete slabs reinforced with GFRP bars. In Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, AB, Canada, 20–23 July 2004; pp. 20–23. [Google Scholar]
- Zhang, Q.; Marzouk, H.; Hussein, A. A preliminary study of high-strength concrete two-way slabs reinforced with GFRP bars. In Proceedings of the 33rd CSCE Annual Conference: General Conference and International History Symposium, Toronto, ON, Canada, 2–4 June 2005; pp. 1–10. [Google Scholar]
- Zhang, Q. Behaviour of Two-Way Slabs Reinforced with CFRP Bars. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2006. [Google Scholar]
- El-Gamal, S.; El-Salakawy, E.; Benmokrane, B. Influence of reinforcement on the behavior of concrete bridge deck slabs reinforced with FRP bars. J. Compos. Constr. 2007, 11, 449–458. [Google Scholar] [CrossRef]
- El-Tom, E. Behavior of Two-Way Slabs Reinforced with GFRP Bars. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2007. [Google Scholar]
- Zaghloul, A. Punching Shear Strength of Interior and Edge Column-Slab Connections in CFRP Reinforced Flat Plate Structures Transferring Shear and Moment. Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 2007. [Google Scholar]
- Xiao, Z. Expremental Study on Two-Way Concrete Slab Subjected to Punching Shear. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2010. [Google Scholar]
- Min, K.-H.; Yang, J.-M.; Yoo, D.-Y.; Yoon, Y.-S. Flexural and punching performances of FRP and fiber reinforced concrete on impact loading. In Proceedings of the Advances in FRP Composites in Civil Engineering: Proceedings of the 5th International Conference on FRP Composites in Civil Engineering (CICE 2010), Beijing, China, 27–29 September 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 410–414. [Google Scholar]
- Zhu, H.; Zhang, Y.; Gao, D.; Xiao, Z. Deformation behavior of concrete two-way slabs reinforced with BFRP bars subjected to eccentric loading. In Proceedings of the Advances in FRP Composites in Civil Engineering: Proceedings of the 5th International Conference on FRP Composites in Civil Engineering (CICE 2010), Beijing, China, 27–29 September 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 296–300. [Google Scholar]
- Zhu, H.-T.; Wang, Y.-Z.; Li, J.-Z. Plastic analysis on punching shear capacity of two-way BFRP rebar reinforced concrete slabs under central concentrated load. J. Zhengzhou Univ. (Eng. Sci.) 2012, 33, 1–6. (In Chinese) [Google Scholar]
- El-Gendy, M.; El-Salakawy, E. Punching shear behaviour of GFRP-RC edge slab-column connections. In Proceedings of the 7th International Conference on FRP Composites in Civil Engineering, Paris, France, 17–19 July 2015; pp. 1–6. [Google Scholar]
- Tharmarajah, G.; Taylor, S.E.; Cleland, D.J.; Robinson, D. Corrosion-resistant FRP reinforcement for bridge deck slabs. In Proceedings of the Institution of Civil Engineers-Bridge Engineering; Thomas Telford Ltd.: London, UK, 2015; pp. 208–217. [Google Scholar]
- Fareed, E.; Ahmed, E.; Benmokrane, B. Experimental Testing WMCAUS IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- Gouda, A.; El-Salakawy, E. Behavior of GFRP-RC interior slab-column connections with shear studs and high-moment transfer. J. Compos. Constr. 2016, 20, 04016005. [Google Scholar] [CrossRef]
- Gouda, A.; El-Salakawy, E. Punching shear strength of GFRP-RC interior slab–column connections subjected to moment transfer. J. Compos. Constr. 2016, 20, 04015037. [Google Scholar] [CrossRef]
- Abduljaleel, M.T.; Mahmoud, A.S.; Yousif, A. Experiential investigation of two-way concrete slabs with openings reinforced with glass fiber reinforced polymer bars. J. Eng. Sci. Technol. 2017, 12, 898–912. [Google Scholar]
- Hassan, M.; Fam, A.; Benmokrane, B. A new punching shear design formula for FRP-reinforced interior slab-column connections. In Proceedings of the 7th International Conference on Advanced Composite Materials in Bridges and Structures, Vancouver, BC, Canada, 22–24 August 2016. [Google Scholar]
- Oskouei, A.V.; Kivi, M.P.; Araghi, H.; Bazli, M. Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing. Mater. Struct. 2017, 50, 256. [Google Scholar] [CrossRef]
- Hussein, A.H.; El-Salakawy, E.F. Punching Shear Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Slab-Column Interior Connections. ACI Struct. J. 2018, 115, 1075. [Google Scholar] [CrossRef]
- Ju, M.; Park, K.; Park, C. Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars. Polymers 2018, 10, 893. [Google Scholar] [CrossRef]
- Mostafa, A.M.; El-Salakawy, E.F. Behavior of GFRP-RC slab–column edge connections with high-strength concrete and shear reinforcement. J. Compos. Constr. 2018, 22, 04018001. [Google Scholar] [CrossRef]
- Eladawy, M.; Hassan, M.; Benmokrane, B. Experimental Study of Interior Glass Fiber-Reinforced Polymer-Reinforced Concrete Slab-Column Connections under Lateral Cyclic Load. ACI Struct. J. 2019, 116, 165. [Google Scholar] [CrossRef]
- Hemzah, S.A.; Al-Obaidi, S.; Salim, T. Punching Shear Model for Normal and High-Strength Concrete Slabs Reinforced with CFRP or Steel Bars. Jordan J. Civ. Eng. 2019, 13, 250–268. [Google Scholar]
- Salama, A.E.; Hassan, M.; Benmokrane, B. Effectiveness of Glass Fiber-Reinforced Polymer Stirrups as Shear Reinforcement in Glass Fiber-Reinforced Polymer-Reinforced Concrete Edge Slab-Column Connections. ACI Struct. J. 2019, 116, 97–112. [Google Scholar] [CrossRef]
- Eladawy, M.; Hassan, M.; Benmokrane, B.; Ferrier, E. Lateral cyclic behavior of interior two-way concrete slab–column connections reinforced with GFRP bars. Eng. Struct. 2020, 209, 109978. [Google Scholar] [CrossRef]
- Gu, S. Study on the Punching Shear Behavior of FRP Reinforced Concrete Slabs Subjected to Concentric Loading. Ph.D. Thesis, Zhejiang University of Technology, Hangzhou, China, 2020. [Google Scholar]
- Huang, Z.; Zhao, Y.; Zhang, J.; Wu, Y. Punching shear behaviour of concrete slabs reinforced with CFRP grids. Structures 2020, 26, 617–625. [Google Scholar] [CrossRef]
- Zhou, X. Expremental Study on the Punching Shear Behavior of Square GFRP Reinforced Concrete Slabs. Ph.D. Thesis, Zhejiang University of Technology, Hangzhou, China, 2020. [Google Scholar]
- AlHamaydeh, M.; Anwar Orabi, M. Punching shear behavior of synthetic fiber–reinforced self-consolidating concrete flat slabs with GFRP bars. J. Compos. Constr. 2021, 25, 04021029. [Google Scholar] [CrossRef]
- Salama, A.E.; Hassan, M.; Benmokrane, B. Punching-Shear Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Edge Column-Slab Connections: Experimental and Analytical Investigations. ACI Struct. J. 2021, 118, 147–160. [Google Scholar]
- Mohmmad, S.H.; Gülşan, M.E.; Çevik, A. Punching shear behaviour of geopolymer concrete two-way slabs reinforced by FRP bars under monotonic and cyclic loadings. Adv. Struct. Eng. 2022, 25, 453–472. [Google Scholar] [CrossRef]
- Aslam, F.; AbdelMongy, M.; Alzara, M.; Ibrahim, T.; Deifalla, A.F.; Yosri, A.M. Two-way shear resistance of FRP reinforced-concrete slabs: Data and a comparative study. Polymers 2022, 14, 3799. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.R.; Collins, M.P. Evaluation of shear design procedures for reinforced concrete members under axial compression. Struct. J. 2001, 98, 537–547. [Google Scholar]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kinnunen, S. Punching of Structural Concrete Slabs: Technical Report; FIB Fédération Internationale du Béton: Lausanne, Switzerland, 2001; Volume 12. [Google Scholar]
- Deifalla, A. Punching shear strength and deformation for FRP-reinforced concrete slabs without shear reinforcements. Case Stud. Constr. Mater. 2022, 16, e00925. [Google Scholar] [CrossRef]
- Ang, A.H.; Tang, W.H. Probability Concepts in Engineering Planning: Emphasis on Applications to Civil and Environmental Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Franzblau, A.N. A Primer of Statistics for Non-Statisticians; Harcourt Brace: Washington, DC, USA, 1958. [Google Scholar]
- Kytinou, V.K.; Gribniak, V.; Golias, E.; Zapris, A.G.; Sapidis, G.; Chalioris, C.E. A Novel Technique for Strengthening Reinforced Concrete Shear-Deficient Members Using Fiber-Reinforced Polymer Rope as Near Surface Mounted Reinforcement. In Olympiad in Engineering Science; Springer: Cham, Switzerland, 2023; pp. 315–326. [Google Scholar]
Statistics | A (cm2) | b0,0.5de (mm) | b0,1.5de (mm) | De (mm) | fc (MPa) | ρr (%) | Er (GPa) | Vu (kN) |
---|---|---|---|---|---|---|---|---|
Mean | 671.10 | 1496.90 | 2509.18 | 127.89 | 44.72 | 0.94 | 74.44 | 380.13 |
Median | 625.00 | 1480.00 | 2456.00 | 130.00 | 40.00 | 0.89 | 56.70 | 269.50 |
Maximum | 1587.50 | 2470.00 | 4608.00 | 284.00 | 179.00 | 3.76 | 230.00 | 1600.00 |
Minimum | 6.25 | 280.00 | 640.00 | 36.00 | 22.16 | 0.13 | 28.40 | 24.00 |
Standard deviation | 457.14 | 578.28 | 930.48 | 48.92 | 19.94 | 0.60 | 41.00 | 306.31 |
Performance Measures | |||
---|---|---|---|
Fold | MAE | RMSE | R2 |
Fold 1 | 85.971 | 127.5212 | 0.8614 |
Fold 2 | 44.5853 | 61.1113 | 0.9303 |
Fold 3 | 60.938 | 84.0522 | 0.9467 |
Fold 4 | 68.8669 | 114.5359 | 0.8809 |
Fold 5 | 74.898 | 120.6918 | 0.8596 |
Average | 67.0519 | 101.5825 | 0.8958 |
Std deviation | 15.4718 | 27.2149 | 0.0369 |
Subset | Model | R2 | RMSE | MAE |
---|---|---|---|---|
Training | GBRT | 0.9634 | 58.8937 | 37.431 |
KNN | 0.9334 | 79.4677 | 46.5368 | |
Lasso | 0.6969 | 169.5705 | 122.8655 | |
Testing | GBRT | 0.9188 | 84.4012 | 64.4838 |
KNN | 0.8446 | 116.7559 | 78.5972 | |
Lasso | 0.6404 | 177.6072 | 135.3977 | |
Total | GBRT | 0.955 | 64.8508 | 42.887 |
KNN | 0.9166 | 88.2654 | 53.0028 | |
Lasso | 0.6862 | 171.2217 | 125.393 |
Model | Mean | STD | COV |
---|---|---|---|
Proposed GBRT | 1.0430 | 0.2177 | 0.2087 |
Ospina et al. [11] | 1.2220 | 0.6841 | 0.5598 |
El-Gamal et al. [37] | 0.9639 | 0.5760 | 0.5976 |
El-Ghandour et al. [19] | 0.9820 | 0.5206 | 0.5302 |
Ju et al. [25] | 0.9708 | 0.5433 | 0.5597 |
Range | Classification | Penalty (PEN) |
---|---|---|
χ > 2 | Extra dangerous | 10 |
1.15 < χ ≤ 2 | Dangerous | 5 |
0.85 < χ ≤ 1.15 | Appropriate safety | 0 |
0.5 < χ ≤ 0.85 | Conservative | 1 |
χ ≤ 0.5 | Extra conservative | 2 |
Category | Ju et al. [25] | El-Ghandour et al. [19] | El-Gamal et al. [37] | Ospina et al. [11] | GBRT |
---|---|---|---|---|---|
Ratio ≥ 2 | 11 (4.62%) | 10 (4.2%) | 11 (4.62%) | 24 (10.08%) | 1 (0.42%) |
1.15 ≤ ratio < 2 | 36 (15.13%) | 43 (18.07%) | 37 (15.55%) | 68 (28.57%) | 54 (22.69%) |
0.85 ≤ ratio < 1.15 | 61 (25.63%) | 62 (26.05%) | 63 (26.47%) | 78 (32.77%) | 155 (65.13%) |
0.5 ≤ ratio < 0.85 | 119 (50.0%) | 109 (45.8%) | 117 (49.16%) | 63 (26.47%) | 26 (10.92%) |
Ratio < 0.5 | 11 (4.62%) | 14 (5.88%) | 10 (4.2%) | 5 (2.1%) | 2 (0.84%) |
Total demerit point score | 4.31 | 4.52 | 4.32 | 6.53 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abood, E.A.; Abdallah, M.H.; Alsaadi, M.; Imran, H.; Bernardo, L.F.A.; De Domenico, D.; Henedy, S.N. Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree. Materials 2024, 17, 3964. https://doi.org/10.3390/ma17163964
Abood EA, Abdallah MH, Alsaadi M, Imran H, Bernardo LFA, De Domenico D, Henedy SN. Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree. Materials. 2024; 17(16):3964. https://doi.org/10.3390/ma17163964
Chicago/Turabian StyleAbood, Emad A., Marwa Hameed Abdallah, Mahmood Alsaadi, Hamza Imran, Luís Filipe Almeida Bernardo, Dario De Domenico, and Sadiq N. Henedy. 2024. "Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree" Materials 17, no. 16: 3964. https://doi.org/10.3390/ma17163964
APA StyleAbood, E. A., Abdallah, M. H., Alsaadi, M., Imran, H., Bernardo, L. F. A., De Domenico, D., & Henedy, S. N. (2024). Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree. Materials, 17(16), 3964. https://doi.org/10.3390/ma17163964