Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Gas Chromatography–Mass Spectrometry (GC–MS)
2.2.2. Preparing the Model Inserts
2.2.3. Solid Phase Microextraction (SPME)
- Temperature: 40 °C;
- Conditioning time: taq = 5 and 10 min;
- Extraction time: tex = 20 min;
- No mixing;
- Fiber: ternary DVB/CAR/PDMS (Sigma-Aldrich, USA).
2.2.4. Software Tools
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frydrysiak, E.; Kunicka-Styczyńska, A.; Śmigielski, K.; Frydrysiak, M. The Impact of Selected Essential Oils Applied to Non-Woven Viscose on Bacteria That Cause Lower Urinary Tract Infections—Preliminary Studies. Molecules 2021, 26, 6854. [Google Scholar] [CrossRef]
- Czajkowski, K.; Broś-Konopielko, M.; Teliga-Czajkowska, J. Urinary Tract Infection in Women. Przeglad Menopauzalny 2021, 20, 40–47. [Google Scholar] [CrossRef]
- Abelson, B.; Sun, D.; Que, L.; Nebel, R.A.; Baker, D.; Popiel, P.; Amundsen, C.L.; Chai, T.; Close, C.; Disanto, M.; et al. Sex differences in lower urinary tract biology and physiology. Biol. Sex Differ. 2018, 9, 45. [Google Scholar] [CrossRef]
- Zakażenia Układu Moczowego (ZUM) (Eng. Urinary Tract Inflammations (UTI)). Materiały dla Studentów (Eng. Materials for Students). Available online: https://www.umed.wroc.pl/sites/default/files/mikrobiologia/files/stomatologia/ZUM.pdf (accessed on 15 September 2023).
- Adamkiewicz, K.; Borkowski, A.; Krzeski, T.; Leńko, J.; Marczyńska, A.; Mazurek, L.; Stolarczyk, J.; Zieliński, J. Choroby pęcherza moczowego (Eng. Bladder diseases). In Urologia Podręcznik dla Studentów Medycyny (Eng. Urology Textbook for Medical Students); Leńko, J., Ed.; Państwowy Zakład Wydawnictw Lekarskich (Eng. National Medical Publishing Institute): Warsaw, Poland, 1982; pp. 186–187. [Google Scholar]
- Holecki, M.; Hryniewicz, W.; Pawlik, K.; Wanke-Rytt, M.; Duława, J.; Imiela, J.; Klinger, M. Rekomendacje Diagnostyki, Terapii i Profilaktyki Zakażeń Układu Moczowego u Dorosłych (Eng. Recommendations for the Diagnosis, Treatment and Prevention of Urinary Tract Infections in Adults); Narodowy Instytut Leków (Eng. National Institute of Medicines): Warsaw, Poland, 2015; pp. 7–44. [Google Scholar]
- Kawecki, D. Infekcje w układzie moczowym. In Uroginekologia, Schorzenia Dna Miednicy (Eng. Urogynecology, Pelvic Floor Disorders); Gajkowska, J., Ed.; Via Medica: Gdańsk, Poland, 2017; pp. 399–406. [Google Scholar]
- Adamkiewicz, K.; Borkowski, A.; Krzeski, T.; Leńko, J.; Marczyńska, A.; Mazurek, L.; Stolarczyk, J.; Zieliński, J. Zapalenie pęcherza moczowego (Eng. Bladder inflammation). In Urologia Podręcznik dla Studentów Medycyny (Eng. Urology Textbook for Medical Students); Leńko, J., Ed.; Państwowy Zakład Wydawnictw Lekarskich (Eng. National Medical Publishing Institute): Warsaw, Poland, 1987; pp. 130–133. [Google Scholar]
- Walsh, P.C.; Retik, A.B.; Campbell, M.F. Campbell’s Urology, 8th ed.; W.B. Saunders: Philadelphia, PA, USA, 2002. [Google Scholar]
- Head, K.A. Natural approaches to prevention and treatment of infections of the lower urinary tract. Altern. Med. Rev. 2008, 13, 227–244. [Google Scholar] [PubMed]
- Pulipati, S.; Babu, P.S.; Narasu, M.L. An overview on urinary tract infections and effective natural remedies. J. Med. Plants Stud. 2017, 5, 50–56. [Google Scholar]
- Loose, M.; Pilger, E.; Wagenlehner, F. Anti-bacterial effects of essential oils against uropathogenic bacteria. Antibiotics 2020, 9, 358. [Google Scholar] [CrossRef]
- Stan, M.S.; Chirila, L.; Popescu, A.; Radulescu, D.M.; Radulescu, D.E.; Dinischiotu, A. Essential oil microcapsules immobilized on textiles and certain induced effects. Materials 2019, 12, 2029. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, C.; You, J.; Li, R.; Zhang, J.; Cheng, Y.; Wang, Y.; Zhang, J. Cellulose-based ultralong room-temperature phosphorescence nanomaterials with tunable color and high quantum yield via nano-surface confining effect. Research 2023, 6, 0029. [Google Scholar] [CrossRef]
- Ioleovich, M. Cellulose: Nanostructured Natural Polymer; Lambert Academic Publishing: Saarbrücken, Germany, 2014; pp. 4–77. [Google Scholar]
- Shokri, J.; Adibkia, K. Application of cellulose and cellulose derivatives in pharmaceutical industries. In Cellulose-Medical, Pharmaceutical and Electronic Applications; InTechOpen: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Góra, J.; Lis, A. Olejek rumiankowy. In Najcenniejsze Olejki Eteryczne, 4th ed.; Wakarecy, I., Ed.; Wydawnictwo Politechniki Łódzkiej (Eng. Lodz University of Technology Publishing House): Lodz, Poland, 2019; pp. 237–249. [Google Scholar]
- Khattab, A.; Abou-shoer, M.; Harraz, F.M.; El-Ghazouly, M.G. Hiearchiral clustering of commercial chamomile oil, a quality assessment approach. Egypt. J. Biomed. Sci. 2010, 34, 1–13. [Google Scholar]
- Sharafzadeh, S.; Alizadeh, O. German and Roman chamomile. J. Appl. Pharm. Sci. 2011, 1, 1–5. [Google Scholar]
- Amiri, S.; Sharafzadeh, S. Essential oil components of German chamomile cultivated in Firoozabad, Iran. Orient. J. Chem. 2014, 30, 365–367. [Google Scholar] [CrossRef]
- Gardiner, P. Chamomile (Matricaria recutita, Anthemis nobilis). The Longwood Herbal Task Force. 1999, pp. 1–21. Available online: https://dpointernational.com/wp-content/uploads/2020/03/Chamomile-Matricaria-recutita-Anthemis-nobilis.pdf (accessed on 17 April 2020).
- Das, M. Chamomile Medicinal, Biochemical and Agricultural Aspects, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ghasemi, M.; Jelodar, N.B.; Modarresi, M.; Bagheri, N.; Jamali, A. Increase of chamazulene and α-bisabolol contents of the essential oil of German chamomile (Matricaria chamomilla L.) using salicylic acid treatments under normal and heat stress conditions. Foods 2016, 5, 56. [Google Scholar] [CrossRef]
- Djilani, A.; Dicko, A. The therapeutic benefits of essential oils. In Nutrition, Well-Being and Health; InTech: Vienna, Austria, 2012; pp. 157–178. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Xia, K.; Liu, X.; Zhang, X. Preparation and application of edible agar-based composite films modified by cellulose nanocrystals. Food Packag. Shelf Life 2022, 34, 100936. [Google Scholar] [CrossRef]
- Zeug, A.; Zimmermann, J.; Röder, B.; Lagoriob, M.G.; San Románb, E. Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water. Photochem. Photobiol. Sci. 2002, 3, 198–203. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Kudzin, M.H.; Ponczek, M.B.; Kaczmarek, A.; Król, P.; Lisiak-Kucińska, A.; Żyłła, R.; Walawska, A. Biochemical approach to poly(lactide)–copper composite—Impact on blood coagulation processes. Materials 2024, 17, 608. [Google Scholar] [CrossRef]
- European Pharmacopoeia 7; European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM): Strasbourg, France, 2011.
- El Mihyaoui, A.; Esteves Da Silva, J.C.G.; Charfi, S.; Castillo, M.E.C.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life 2022, 12, 479. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- An, Z.; Feng, X.; Sun, M.; Wang, Y.; Wang, H.; Gong, Y. Chamomile essential oil: Chemical constituents and antitumor activity in MDA-MB-231 cells through PI3K/Akt/mTOR signaling pathway. Chem. Biodivers. 2023, 20, e202200523. [Google Scholar] [CrossRef] [PubMed]
- Bolenwar, P. Fragrance Finishing of Textiles. Available online: https://www.fibre2fashion.com/ (accessed on 13 May 2024).
- Singh, M.K.; Varun, V.K.; Behera, B.K. Cosmetotextiles: State of art. Fibres Text. East. Eur. 2011, 19, 27–33. [Google Scholar]
- Adamowicz, E.; Śmigielski, K.; Frydrysiak, M. Microencapsulation of active substances and fragrances in textile material applications. Tekstil 2015, 64, 128–132. [Google Scholar]
- Cheng, S.Y.; Yuen, C.W.M.; Kan, C.W.; Cheuk, K.K.L. Development of cosmetic textiles using microencapsulation technology. Res. J. Text. Appar. 2008, 12, 41–51. [Google Scholar] [CrossRef]
- Li, S.; Boyter, H.; Qian, L. UV curing for encapsulated aroma finish on cotton. J. Text. Inst. 2005, 96, 407–411. [Google Scholar] [CrossRef]
- Teixeira, C.S.N.R. Microencapsulation of perfumes for application in textile industry. Ph.D. Thesis, University of Porto, Porto, Portugal, 2010; pp. 3–165. [Google Scholar]
- Nelson, G. Application of microencapsulation in textiles. Int. J. Pharm. 2002, 242, 55–62. [Google Scholar] [CrossRef]
- Venkataraman, D.; Shabani, E.; Park, J.H. Advancement of Nonwoven Fabrics in Personal Protective Equipment. Materials 2023, 16, 3964. [Google Scholar] [CrossRef]
- Stachowiak-Wencek, A.; Prądzyński, W. The effect of temperature on the emission of volatile organic compounds from furniture coatings. Ann. Wars. Univ. Life Sci. SGGW. For. Wood Technol. 2013, 84, 310–314. [Google Scholar]
- Shuvo, I.I.; Shah, A.; Dagdeviren, C. Electronic textile sensors for decoding vital body signals: State-of-the-art review on characterizations and recommendations. Adv. Intell. Syst. 2022, 4, 2100223. [Google Scholar] [CrossRef]
- Boncel, S.; Jędrysiak, R.G.; Czerw, M.; Kolanowska, A.; Blacha, A.W.; Imielski, M.; Jóźwiak, B.; Dzida, M.H.; Greer, H.F.; Sobotnicki, A. Paintable carbon nanotube coating-based textronics for sustained holter-type electrocardiography. ACS Appl. Nano Mater. 2022, 5, 15762–15774. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, N.A.; Arnold, L.; Rasheed, A.; Khan, I.A.; Wang, L. Textronics—A review of textile-based wearable electronics. Adv. Eng. Mater. 2021, 23, 2100469. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Szczęsny, A.; Lipiński, P.; Dróżdż, T.; Kiełbasa, P.; Miernik, A. Prototype of a Textronic Sensor Created with a Physical Vacuum Deposition Process for Staphylococcus aureus Detection. Sensors 2021, 21, 183. [Google Scholar] [CrossRef] [PubMed]
Microorganisms | Type and Frequency of Infections |
---|---|
Escherichia coli | 80–85% non-hospital infections and 50% hospital infections |
Staphylococcus epidermidis | 5–10% infections |
Staphylococcus saprophyticus | 5–10% infections |
Pseudomonas aeruginosa | mainly hospital infections |
Enterococcus faecalis | mainly hospital infections |
Staphylococcus aureus | mainly hospital infections |
Enterobacter sp. | mainly hospital infections |
Klebsiella pneumoniae | hospital infections, recurrent |
Proteus sp. | recurrent infections |
Serratia sp. | mainly hospital infections |
Mycobacterium sp. | mainly hospital infections; blood-borne infections may occur |
Neisseria gonorrhoeae | sexually transmitted bacteria |
Chalmydia trachomatis | sexually transmitted bacteria |
Candida albicans, Cryptococcus neoformans, Aspergillus sp. | blood-borne infection may occur |
Compound | Producer | Target of Using |
---|---|---|
Non-woven viscose | Lentex S.A. (Lodz, Poland) | Outer insert layer for EO immobilization |
Chamomile essential oil | Avicenna Oil® (Wroclaw, Poland) | Antibacterial activity |
Cellulose/Microcrystalline cellulose | RETTENMAIER Polska Sp. z o.o. (Warsaw, Poland) | Carrier for EO |
Agar-agar | Sigma-Aldrich® (Saint Louis, MO, USA) | Film for EO immobilization |
Organoleptic Description | Analytical Data | Chromatographic Profile |
---|---|---|
clear, viscous liquid, dark blue, with a characteristic odor | density (at 20 °C): 0.946–0.969 g/cm3 refractive index (at 20 °C): 1.496–1.516 | (-)-α-bisabolol: 10–65% chamazulene: ≥1.0% bisabolol oxide and (-)-α-bisabolol: ≥20% |
No. | Chemical Compounds | Content in EO [%] | Content According to Manufacturer’s Specifications Avicenna Oil [%] | Content According to European Pharmacopoeia 7 [%] |
---|---|---|---|---|
1 | Ethyl 2-methylbutyrate | 0.09 | NA | NA |
2 | α-Pinene | 0.01 | NA | NA |
3 | Propyl 2-methylbutanoate | 0.03 | NA | NA |
4 | β-Fellandren | 0.01 | NA | NA |
5 | Yomogi alcohol | 0.03 | NA | NA |
6 | β-Cymene | 0.05 | NA | NA |
7 | β-Terpineol | 0.02 | NA | NA |
8 | α-Pinene | 0.02 | NA | NA |
9 | β-cis-Ocymene | 0.20 | NA | NA |
10 | Ketone artemisia | 0.29 | NA | NA |
11 | γ-Terpinene | 0.09 | NA | NA |
12 | Alcohol artemisia | 0.05 | NA | NA |
13 | Borneol | 0.01 | NA | NA |
14 | Eliksen | 0.29 | NA | NA |
15 | Decanoic acid | 0.06 | NA | NA |
16 | α-Kopaene | 0.04 | NA | NA |
17 | β-Elemen | 0.20 | NA | NA |
18 | β-Kubeben | 0.06 | NA | NA |
19 | β-Caryophyllene | 0.08 | NA | NA |
20 | Aromadendren | 0.05 | NA | NA |
21 | β-Farnesen | 19.39 | NA | NA |
22 | Junipen | 0.31 | NA | NA |
23 | γ-Muurolen | 0.17 | NA | NA |
24 | β-Kubeben | 1.23 | NA | NA |
25 | α-Farnesen | 0.04 | NA | NA |
26 | β-Selinen | 0.13 | NA | NA |
27 | Aromadendren | 0.11 | NA | NA |
28 | Eliksen | 0.73 | NA | NA |
29 | α-Farnesen | 1.39 | NA | NA |
30 | α-Bisabolen | 0.13 | NA | NA |
31 | γ-Kadinen | 0.22 | NA | NA |
32 | β-Kadinen | 0.31 | NA | NA |
33 | Sesquisabinene hydrate | 0.04 | NA | NA |
34 | β-Santanol | 0.06 | NA | NA |
35 | β-Caryophyllene oxide | 0.03 | NA | NA |
36 | Sesquisabinene 7-epi-cis-hydrate | 0.08 | NA | NA |
37 | Megastigmatrienon | 0.08 | NA | NA |
38 | Denderalasine | 0.08 | NA | NA |
39 | Spatulenol | 0.50 | NA | NA |
40 | Isoaromedendrene epoxide | 0.03 | NA | NA |
41 | α-Akorenol | 0.10 | NA | NA |
42 | Epiglobulol | 0.05 | NA | NA |
43 | Ledol | 0.18 | NA | NA |
44 | β-Santalol | 0.14 | NA | NA |
45 | Limonene-6-yl pivalonate | 0.13 | NA | NA |
46 | Bisabolol oxide A | 0.37 | ≥20 | ≥20 |
47 | Spatulenol | 0.06 | NA | NA |
48 | τ-Kandinol | 0.68 | NA | NA |
49 | Bisabolol oxide B | 5.92 | NA | NA |
50 | Cyclohexanecarboxylic acid | 0.29 | NA | NA |
51 | α-Himachalane | 0.17 | NA | NA |
52 | Trans-2-Isopropylbicyclo[4.3.0]non-3-en-8-one | 4.26 | NA | NA |
53 | α-Bisabolol | 14.87 | 10–65 | 10–65 |
54 | Chamazulene | 2.23 | ≥1.0 | ≥1.0 |
55 | Bisabolol oxide A | 39.25 | NA | NA |
56 | Hexahydrofarnesyl acetate | 0.21 | NA | NA |
57 | 3-Piperidinopropyl-3-chlorobenzoate | 0.16 | NA | NA |
58 | cis-ene-yne-Dicycloether | 2.83 | NA | NA |
59 | Azulen-2-ol, 1,4-dimethyl-7-(1-methylethyl)- | 0.06 | NA | NA |
60 | Oleic acid | 0.02 | NA | NA |
61 | Linoleic acid | 0.08 | NA | NA |
62 | Ikozan | 0.17 | NA | NA |
63 | Heptakozan | 0.37 | NA | NA |
64 | Hydroquinone | 0.05 | NA | NA |
Time of Storage [Days] | Total Number of Identified Compounds | |||||
---|---|---|---|---|---|---|
EO:C | EO:MC | |||||
1:1 | 1:2 | 1:3 | 1:1 | 1:2 | 1:3 | |
0 | 15 | 19 | 15 | 14 | 19 | 16 |
7 | 7 | 9 | 9 | 5 | 9 | 3 |
14 | 0 | 1 | 6 | 8 | 4 | 3 |
28 | 0 | 2 | 4 | 2 | 2 | 1 |
56 | 0 | 2 | 4 | 2 | 2 | 1 |
No. | Chemical Compounds | EO:C | EO:MC | ||||
---|---|---|---|---|---|---|---|
1:1 | 1:2 | 1:3 | 1:1 | 1:2 | 1:3 | ||
On the day of preparation | |||||||
1 | Ethyl 2-methylbutyrate | ND 1 | ND | ND | ND | ND | 0.62 |
2 | α-Pinene | ND | ND | ND | ND | ND | 0.58 |
3 | β-Ocymene | 0.46 | 0.34 | ND | ND | 0.45 | 0.53 |
4 | β-Ocymene | 0.91 | 1.17 | ND | ND | 0.95 | 2.45 |
5 | Artemisia ketone | 1.05 | 1.04 | 0.46 | 0.80 | 0.97 | 2.54 |
6 | γ-Terpinen | 0.76 | 0.73 | ND | ND | 0.49 | 1.79 |
7 | β-Farnesene | 68.58 | 65.22 | 64.62 | 68.49 | 66.05 | 65.00 |
8 | α-Caryophyllene | 1.14 | 1.61 | ND | 1.00 | 1.23 | ND |
9 | 7-epi-1,2-Dehydrosesquicineol | ND | 0.44 | 0.40 | ND | 0.61 | ND |
10 | Aromadendren | 1.00 | 0.95 | 2.41 | 0.96 | 1.09 | ND |
11 | α-Amorphene | ND | 0.81 | 0.99 | ND | 0.91 | ND |
12 | α-Farnesene | 7.42 | 6.99 | 7.68 | 7.42 | 7.17 | 5.84 |
13 | β-Kubeben | ND | 6.97 | ND | ND | 6.86 | ND |
14 | Germacrene D | 7.36 | NA | 7.68 | 7.42 | ND | 5.80 |
15 | β-Caryophyllene | 2.22 | 2.30 | 2.50 | 2.46 | 2.20 | 1.72 |
16 | Bicyclogermacrene | 3.69 | 3.72 | 4.13 | 3.78 | 3.33 | 3.04 |
17 | δ-Kadinen | 2.15 | 2.01 | 2.49 | 1.92 | 2.26 | 2.43 |
18 | α-Bisabolol oxide B | ND | 0.40 | 0.52 | 0.64 | 0.67 | ND |
19 | α-Bisabolol | 1.31 | 2.13 | 1.68 | 2.03 | 1.90 | 2.30 |
20 | α-Bisabolone oxide A | 1.06 | 1.52 | 1.34 | 1.41 | 1.51 | 1.41 |
21 | Chamazulene | 0.88 | 0.69 | 1.55 | 0.50 | 0.31 | 1.97 |
22 | α-Bisabolol | ND | 0.95 | 1.55 | ND | ND | 1.97 |
23 | α-Bisabolol oxide A | ND | ND | ND | 1.16 | 1.03 | ND |
After 7 days | |||||||
1 | Artemisia ketone | 1.13 | 0.90 | 0.31 | 1.48 | 0.53 | 2.71 |
2 | β-Farnesene | 84.70 | 72.03 | 80.13 | 87.26 | 78.70 | 90.85 |
3 | Myrcene | ND | ND | 5.03 | ND | 0.53 | ND |
4 | α-Farnesene | ND | 6.89 | ND | ND | ND | ND |
5 | Aromadendren | ND | 3.30 | 2.36 | ND | 2.31 | ND |
6 | Germacrene D | 4.58 | 6.89 | 5.03 | 4.63 | 5.33 | ND |
7 | Selinen | 2.86 | ND | ND | ND | ND | ND |
8 | β-Caryophyllene | ND | ND | 2.00 | ND | ND | ND |
9 | Bicyclogermacrene | 2.26 | 3.06 | NA | ND | 2.20 | ND |
10 | δ-Kadinen | 3.15 | 2.52 | 1.93 | ND | 2.53 | ND |
11 | α-Bisabolol | ND | 2.48 | 1.76 | 2.46 | 1.51 | ND |
12 | α-Bisabolone oxide A | 1.32 | 1.91 | 1.44 | 4.18 | 1.57 | 6.44 |
After 14 days | |||||||
1 | Artemisia ketone | ND | ND | 3.06 | ND | 2.01 | ND |
2 | β-Farnesene | ND | 100 | 82.05 | 83.10 | 92.42 | 68.68 |
3 | α-Farnesene | ND | ND | 5.04 | 3.84 | ND | ND |
4 | β-Kubeben | ND | ND | 5.04 | ND | ND | ND |
5 | Germacrene D | ND | ND | ND | 3.84 | ND | ND |
6 | β-Caryophyllene | ND | ND | ND | 1.94 | ND | ND |
7 | Bicyclogermacrene | ND | ND | ND | 1.60 | ND | ND |
8 | δ-Kadinen | ND | ND | ND | 1.82 | ND | ND |
9 | α-Bisabolol | ND | ND | 2.14 | 1.51 | 2.10 | 19.12 |
10 | α-Bisabolone oxide A | ND | ND | 2.67 | 2.35 | 3.46 | 12.19 |
After 28 days | |||||||
1 | β-Farnesene | ND | 69.83 | 88.57 | 70.15 | 65.46 | ND |
2 | Germacrene D | ND | ND | 4.65 | ND | ND | ND |
3 | α-Bisabolol | ND | ND | 2.46 | ND | ND | ND |
4 | α-Bisabolone oxide A | ND | 30.17 | 4.31 | 29.85 | 34.54 | 100 |
After 56 days | |||||||
1 | β-Farnesene | ND | 53.06 | 38.54 | 45.80 | ND | ND |
2 | α-Bisabolol oxide B | ND | ND | 11.62 | ND | ND | ND |
3 | α-Bisabolol | ND | ND | 16.04 | ND | 47.41 | ND |
4 | α-Bisabolone oxide A | ND | 46.94 | 33.80 | 54.20 | 52.59 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frydrysiak, E.; Śmigielski, K.; Kunicka-Styczyńska, A.; Frydrysiak, M. Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment. Materials 2024, 17, 4119. https://doi.org/10.3390/ma17164119
Frydrysiak E, Śmigielski K, Kunicka-Styczyńska A, Frydrysiak M. Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment. Materials. 2024; 17(16):4119. https://doi.org/10.3390/ma17164119
Chicago/Turabian StyleFrydrysiak, Emilia, Krzysztof Śmigielski, Alina Kunicka-Styczyńska, and Michał Frydrysiak. 2024. "Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment" Materials 17, no. 16: 4119. https://doi.org/10.3390/ma17164119
APA StyleFrydrysiak, E., Śmigielski, K., Kunicka-Styczyńska, A., & Frydrysiak, M. (2024). Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment. Materials, 17(16), 4119. https://doi.org/10.3390/ma17164119