Sustainable Biocatalytic System for the Enzymatic Epoxidation of Waste Cooking Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. NMR Analysis
2.2. HPLC Analysis
2.3. FTIR-ATR Characterization
2.4. Physico-Chemical Characterization of Oil Samples
2.5. Synthesis of NZ-GA Biocatalyst
2.6. Synthesis of NZ-TEOS Biocatalyst
2.7. Determination of the Biocatalyst Activity
2.8. Determination of the Enzyme Leaching
2.9. The Procedure for the Enzymatic Epoxidation of Oils Sample
2.10. Data Representation
3. Results and Discussion
3.1. WCO Characterization
3.2. Setup Optimum Conditions of the Enzymatic Epoxidation Process
3.3. Enzymatic Epoxidation of WCO
3.4. Recyclability of the Enzymatic Epoxidation System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Used Cooking Oil Market Size, Share & Industry Analysis, By Source (Food Services and Households), Applications (Industrial Usage, Animal Feed, and Others), and Regional Forecast, 2024–2032. Available online: https://www.fortunebusinessinsights.com/used-cooking-oil-market-103665 (accessed on 23 August 2023).
- Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels—Valorization Technologies: A Review. Energies 2022, 15, 116. [Google Scholar] [CrossRef]
- Orjuela, A.; Clark, J. Green chemicals from used cooking oils: Trends, challenges, and opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. [Google Scholar] [CrossRef] [PubMed]
- Azahar, W.N.A.W. The Potential of Waste Cooking Oil As Bio-Asphalt For Alternative Binder—An Overview. J. Teknol. 2016, 78, 111–116. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Nogueira, R.; Nunes, L.M. Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Manag. 2018, 78, 611–620. [Google Scholar] [CrossRef]
- De Feo, G.; Di Domenico, A.; Ferrara, C.; Abate, S.; Sesti Osseo, L. Evolution of Waste Cooking Oil Collection in an Area with Long-Standing Waste Management Problems. Sustainability 2020, 12, 8578. [Google Scholar] [CrossRef]
- Mannu, A.; Garroni, S.; Ibanez Porras, J.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. [Google Scholar] [CrossRef]
- Tres, A.; Bou, R.; Guardiola, F.; Nuchi, C.D.; Magrinyà, N.; Codony, R. Use of recovered frying oils in chicken and rabbit feeds: Effect on the fatty acid and tocol composition and on the oxidation levels of meat, liver and plasma. Animal 2013, 7, 505–517. [Google Scholar] [CrossRef]
- Ahmed, R.B.; Hossain, K. Waste cooking oil as an asphalt rejuvenator: A state-of-the-art review. Constr. Build. Mater. 2020, 230, 116985. [Google Scholar] [CrossRef]
- Karmakar, G.; Ghosh, P.; Sharma, B.K. Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, A.; Singla, A. Non-edible vegetable oil–based feedstocks capable of bio-lubricant production for automotive sector applications—A review. Environ. Sci. Pollut. Res. 2019, 26, 14867–14882. [Google Scholar] [CrossRef]
- Mannu, A.; Ferro, M.; Pietro, M.E.D.; Mele, A. Innovative applications of waste cooking oil as raw material. Sci. Prog. 2019, 102, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Alhanish, A.; Abu Ghalia, M. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review. Biotechnol. Prog. 2021, 37, e3210. [Google Scholar] [CrossRef] [PubMed]
- Cogliano, T.; Turco, R.; Di Serio, M.; Salmi, T.; Tesser, R.; Russo, V. Epoxidation of Vegetable Oils via the Prilezhaev Reaction Method: A Review of the Transition from Batch to Continuous Processes. Ind. Eng. Chem. Res. 2024, 63, 11231–11262. [Google Scholar] [CrossRef]
- Köckritz, A.; Martin, A. Oxidation of unsaturated fatty acid derivatives and vegetable oils. Eur. J. Lipid Sci. Technol. 2008, 110, 812–824. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, Y.; Zhang, L.; Jiang, J. Process hazard evaluation for the epoxidation of soybean oil with calorimetry techniques. Process Saf. Prog. 2022, 41, 783–792. [Google Scholar] [CrossRef]
- Wai, P.T.; Jiang, P.; Shen, Y.; Zhang, P.; Gu, Q.; Leng, Y. Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Adv. 2019, 9, 38119–38136. [Google Scholar] [CrossRef]
- Danov, S.M.; Kazantsev, O.A.; Esipovich, A.L.; Belousov, A.S.; Rogozhin, A.E.; Kanakov, E.A. Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective. Catal. Sci. Technol. 2017, 7, 3659–3675. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Z.; Luo, C.; Xia, X.; Liu, Z.; Zhao, Y.; Du, F.; Jin, X. Opportunities and Emerging Challenges of the Heterogeneous Metal-Based Catalysts for Vegetable Oil Epoxidation. ACS Sustain. Chem. Eng. 2022, 10, 7426–7446. [Google Scholar] [CrossRef]
- Martínez, R.D.C.; Trujillo, C.A.; Carriazo, J.G.; Castellanos, N.J. Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers. Catal. Lett. 2023, 153, 1756–1772. [Google Scholar] [CrossRef]
- Orellana-Coca, C.; Törnvall, U.; Adlercreutz, D.; Mattiasson, B.; Hatti-Kaul, R. Chemo-enzymatic epoxidation of oleic acid and methyl oleate in solvent-free medium. Biocatal. Biotransformation 2005, 23, 431–437. [Google Scholar] [CrossRef]
- Zhang, X.; Burchell, J.; Mosier, N.S. Enzymatic Epoxidation of High Oleic Soybean Oil. ACS Sustain. Chem. Eng. 2018, 6, 8578–8583. [Google Scholar] [CrossRef]
- Wikström, W.; Freites Aguilera, A.; Tolvanen, P.; Lassfolk, R.; Medina, A.; Eränen, K.; Salmi, T. Fatty Acid Epoxidation on Enzymes: Experimental Study and Modeling of Batch and Semibatch Operation. Ind. Eng. Chem. Res. 2023, 62, 9169–9187. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Liu, R.; Bi, Y. Revisiting the Enzymatic Epoxidation of Vegetable Oils by Perfatty Acid: Perbutyric Acid Effect on the Oil with Low Acid Value. J. Am. Oil Chem. Soc. 2016, 93, 1479–1486. [Google Scholar] [CrossRef]
- Cabrera, Z.; Fernandez-Lorente, G.; Fernandez-Lafuente, R.; Palomo, J.M.; Guisan, J.M. Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem. 2009, 44, 226–231. [Google Scholar] [CrossRef]
- Mahendran, A.R.; Aust, N.; Wuzella, G.; Kandelbauer, A. Synthesis and Characterization of a Bio-Based Resin from Linseed Oil. Macromol. Symp. 2012, 311, 18–27. [Google Scholar] [CrossRef]
- Sun, S.; Yang, G.; Bi, Y.; Liang, H. Enzymatic Epoxidation of Corn Oil by Perstearic Acid. J. Am. Oil Chem. Soc. 2011, 88, 1567–1571. [Google Scholar] [CrossRef]
- Aguilera, A.F.; Lindroos, P.; Rahkila, J.; Klimov, M.M.; Tolvanen, P.; Salmi, T. Lipase catalyzed green epoxidation of oleic acid using ultrasound as a process intensification method. Chem. Eng. Process. Process Intensif. 2022, 174, 108882. [Google Scholar] [CrossRef]
- Hagström, A.E.; Törnvall, U.; Nordblad, M.; Hatti-Kaul, R.; Woodley, J.M. Chemo-enzymatic epoxidation-process options for improving biocatalytic productivity. Biotechnol. Prog. 2011, 27, 67–76. [Google Scholar] [CrossRef]
- Vlček, T.; Petrović, Z.S. Optimization of the chemoenzymatic epoxidation of soybean oil. J. Am. Oil Chem. Soc. 2006, 83, 247–252. [Google Scholar] [CrossRef]
- Sustaita-Rodríguez, A.; Ramos-Sánchez, V.H.; Camacho-Dávila, A.A.; Zaragoza-Galán, G.; Espinoza-Hicks, J.C.; Chávez-Flores, D. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid. Chem. Cent. J. 2018, 12, 39. [Google Scholar] [CrossRef]
- Mabood, F.; Boqué, R.; Folcarelli, R.; Busto, O.; Al-Harrasi, A.; Hussain, J. Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 143, 298–303. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Chira, N.A.; Todasca, M.C.; Nicolescu, A.; Rosu, A.; Nicolae, M.; Rosca, S.I. Evaluation of the Computational Methods for Determining Vegetable Oils Composition using 1H-NMR Spectroscopy. Rev. Chim. 2011, 62, 42–47. [Google Scholar]
- Socaciu, C.; Fetea, F.; Ranga, F.; Bunea, A.; Dulf, F.; Socaci, S.; Pintea, A. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania. Appl. Sci. 2020, 10, 8695. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society; Association of Official Analytical Chemists. Official Method 920.160-Saponfication Number of Oils and Fats/IUPAC 2.202 I.S.I Hand Book of Food Analysis (Part XIII 1984), 17th ed.; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- Chapter 9-Analytical Methods. In Fats and Oils Handbook; Bockisch, M. (Ed.) AOCS Press: Urbana, IL, USA, 1998; pp. 803–808. [Google Scholar]
- ASTM D5554-95; Standard Test Method for Determination of the Iodine Value of Fats and Oils. ASTM International: West Conshohocken, PA, USA, 1995. [CrossRef]
- ASTM D1652-11; Standard Test Method for Epoxy Content of Epoxy Resins. ASTM International: West Conshohocken, PA, USA, 2019.
- Goud, V.V.; Patwardhan, A.V.; Dinda, S.; Pradhan, N.C. Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chem. Eng. Sci. 2007, 62, 4065–4076. [Google Scholar] [CrossRef]
- Kirpluks, M.; Pomilovskis, R.; Vanags, E.; Abolins, A.; Mierina, I.; Fridrihsone, A. Influence of different synthesis conditions on the chemo-enzymatic epoxidation of tall oil fatty acids. Process Biochem. 2022, 122, 38–49. [Google Scholar] [CrossRef]
- Zaak, H.; Fernandez-Lopez, L.; Otero, C.; Sassi, M.; Fernandez-Lafuente, R. Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzym. Microb. Technol. 2017, 106, 67–74. [Google Scholar] [CrossRef]
- Souza, P.M.P.; Carballares, D.; Gonçalves, L.R.B.; Fernandez-Lafuente, R.; Rodrigues, S. Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. Int. J. Mol. Sci. 2022, 23, 14268. [Google Scholar] [CrossRef]
- Mazeaud, I.; Poulsen, P.B.R.; Christensen, M.W.; Brask, J. Immobilization of Enzymes. US9303256B2, 5 April 2016. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Di Serio, M.G.; Di Giacinto, L.; Di Loreto, G.; Giansante, L.; Pellegrino, M.; Vito, R.; Perri, E. Chemical and sensory characteristics of Italian virgin olive oils from Grossa di Gerace cv. Eur. J. Lipid Sci. Technol. 2016, 118, 288–298. [Google Scholar] [CrossRef]
- Meddeb, W.; Rezig, L.; Abderrabba, M.; Lizard, G.; Mejri, M. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils. Int. J. Mol. Sci. 2017, 18, 2582. [Google Scholar] [CrossRef]
- Akkaya, M.R. Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. J. Food Sci. Technol. 2018, 55, 2318–2325. [Google Scholar] [CrossRef]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The Composition of Hemp Seed Oil and Its Potential as an Important Source of Nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef]
- Bayrak, A.; Kiralan, M.; Ipek, A.; Arslan, N.; Cosge, B.; Khawar, K.M. Fatty Acid Compositions of Linseed (Linum usitatissimum L.) Genotypes of Different Origin Cultivated in Turkey. Biotechnol. Biotechnol. Equip. 2010, 24, 1836–1842. [Google Scholar] [CrossRef]
- Barison, A.; Pereira da Silva, C.W.; Campos, F.R.; Simonelli, F.; Lenz, C.A.; Ferreira, A.G. A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn. Reson. Chem. 2010, 48, 642–650. [Google Scholar] [CrossRef]
- Miyake, Y.; Yokomizo, K.; Matsuzaki, N. Determination of unsaturated fatty acid composition by high-resolution nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 1998, 75, 1091–1094. [Google Scholar] [CrossRef]
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Diehl, B.; Holzgrabe, U. Determination of free fatty acids in pharmaceutical lipids by ¹H NMR and comparison with the classical acid value. J. Pharm. Biomed. Anal. 2014, 93, 43–50. [Google Scholar] [CrossRef]
- Xia, W.; Budge, S.M.; Lumsden, M.D. 1H-NMR Characterization of Epoxides Derived from Polyunsaturated Fatty Acids. J. Am. Oil Chem. Soc. 2016, 93, 467–478. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Recommended Internal Standards Edible Fats and Oils, 1st ed.; FAO: Rome, Italy; WHO: Geneva, Switzerland, 1982; Volume XI. [Google Scholar]
- Nascimento, T.A.d.; Lopes, T.I.B.; Nazario, C.E.D.; Oliveira, S.L.; Alcantara, G.B. Vegetable oils: Are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR. Food Res. Int. 2021, 144, 110362. [Google Scholar] [CrossRef]
- Kachel, M.; Matwijczuk, A.; Przywara, A.; Kraszkiewicz, A.; Koszel, M. Profile of Fatty Acids and Spectroscopic Characteristics of Selected Vegetable Oils Extracted by Cold Maceration. Agric. Eng. 2018, 22, 61–71. [Google Scholar] [CrossRef]
- Poiana, M.-A.; Alexa, E.; Munteanu, M.-F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem. 2015, 13, 000010151520150110. [Google Scholar] [CrossRef]
- Noor Lida, H.M.D.; Sundram, K.; Siew, W.L.; Aminah, A.; Mamot, S. TAG composition and solid fat content of palm oil, sunflower oil, and palm kernel olein belends before and after chemical interesterification. J. Am. Oil Chem. Soc. 2002, 79, 1137–1144. [Google Scholar] [CrossRef]
- Rezanka, T.; Sigler, K. The Use of Atmospheric Pressure Chemical Ionization Mass Spectrometry with High Performance Liquid Chromatography and Other Separation Techniques for Identification of Triacylglycerols. Curr. Anal. Chem. 2007, 3, 252–271. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Drews, A.; Lyagin, E.; Kraume, M.; Ansorge-Schumacher, M.B. Efficient Chemo-Enzymatic Epoxidation Using -Novozym®435: Characterizing the Multiphase System. Chem. Eng. Technol. 2012, 35, 1448–1455. [Google Scholar] [CrossRef]
- Hájek, M.; Hájek, T.; Kocián, D.; Frolich, K.; Peller, A. Epoxidation of Methyl Esters as Valuable Biomolecules: Monitoring of Reaction. Molecules 2023, 28, 2819. [Google Scholar] [CrossRef]
- Orellana-Coca, C.; Adlercreutz, D.; Andersson, M.M.; Mattiasson, B.; Hatti-Kaul, R. Analysis of fatty acid epoxidation by high performance liquid chromatography coupled with evaporative light scattering detection and mass spectrometry. Chem. Phys. Lipids 2005, 135, 189–199. [Google Scholar] [CrossRef]
- Cai, X.; Ait Aissa, K.; Estel, L.; Leveneur, S. Investigation of the Physicochemical Properties for Vegetable Oils and Their Epoxidized and Carbonated Derivatives. J. Chem. Eng. Data 2018, 63, 1524–1533. [Google Scholar] [CrossRef]
- Kurańska, M.; Niemiec, M. Cleaner Production of Epoxidized Cooking Oil Using A Heterogeneous Catalyst. Catalysts 2020, 10, 1261. [Google Scholar] [CrossRef]
- Ramírez, L.M.; Cadavid, J.G.; Orjuela, A.; Gutiérrez, M.F.; Bohórquez, W.F. Epoxidation of used cooking oils: Kinetic modeling and reaction optimization. Chem. Eng. Process. Process Intensif. 2022, 176, 108963. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry of Deep-Fat Frying Oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Aouf, C.; Durand, E.; Lecomte, J.; Figueroa-Espinoza, M.-C.; Dubreucq, E.; Fulcrand, H.; Villeneuve, P. The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem. 2014, 16, 1740–1754. [Google Scholar] [CrossRef]
- Pirozzi, D. Improvement of lipase stability in the presence of commercial triglycerides. Eur. J. Lipid Sci. Technol. 2003, 105, 608–613. [Google Scholar] [CrossRef]
- Abdullah, B.M.; Salih, N.; Salimon, J. Optimization of the chemoenzymatic mono-epoxidation of linoleic acid using D-optimal design. J. Saudi Chem. Soc. 2014, 18, 276–287. [Google Scholar] [CrossRef]
- Xu, L.; Qin, Y.; Song, Y.; Tang, A.; Liu, Y. Glutaraldehyde-crosslinked Rhizopus oryzae whole cells show improved catalytic performance in alkene epoxidation. Microb. Cell Factories 2023, 22, 33. [Google Scholar] [CrossRef]
- Wiemann, L.O.; Nieguth, R.; Eckstein, M.; Naumann, M.; Thum, O.; Ansorge-Schumacher, M.B. Composite Particles of Novozyme 435 and Silicone: Advancing Technical Applicability of Macroporous Enzyme Carriers. ChemCatChem 2009, 1, 455–462. [Google Scholar] [CrossRef]
Oil Source | Abbreviation | Fatty Acids (%) | ||||
---|---|---|---|---|---|---|
Palmitic Acid, C16:0 | Stearic Acid, C18:0 | Oleic Acid, C18:1 | Linoleic Acid, C18:2 | Linolenic Acid, C18:3 | ||
Olive (Olea europaea) extravirgin oil | OL [46] | 12–15 | 2.1–2.7 | 64.4–72.7 | 10.3–15.0 | 0.6–0.9 |
Milk thistle (Silybum marianum (L.) Gaertn.) oil | MT [47] | 5–7 | 4–5 | 15–22 | 57–60 | 0–1 |
Sunflower (Helianthus annuus) oil | SF [48] | 5–7.6 | 2.7–6.5 | 14–49 | 48.3–74.0 | 0–0.3 |
Hemp (Cannabis sativa) oil | HM [49] | 6–9 | 2–3 | 10–16 | 50–70 | 15–25 |
Linseed (Linum usitatissimum) oil | LS [50] | 4.5–5.5 | 4–6.5 | 19.5–28 | 12.5–15.5 | 49–56 |
Fatty Acids (%) | Oil | ||||
---|---|---|---|---|---|
OL | MT | SF | HM | LS | |
Linolenic ac. | 2.0 | 1.6 | 0 | 26.7 | 48.4 |
Linoleic ac. | 2.6 | 45.8 | 42.4 | 41.2 | 2.5 |
Monounsaturated ac. | 79.6 | 33.4 | 45.1 | 13.1 | 30.2 |
Saturated ac. | 15.8 | 19.2 | 12.5 | 19 | 18.9 |
Oil | Indices * | |||
---|---|---|---|---|
SV | AV | IV | PV | |
OL | 196.6 ± 3.5 | 3.4 ± 0.06 | 88 ± 1.8 | 10 ± 0.2 |
Olw ** | 201.9 ± 2.6 | 3.6 ± 0.06 | 84.3 ± 1.0 | 11.2 ± 0.1 |
MT | 196.7 ± 4.4 | 9.0 ± 0.15 | 113.9 ± 2.3 | 9.9 |
MTw ** | 203.3 ± 1.7 | 9.7 ± 0.06 | 111.3 ± 2.2 | 11.2 ± 0.1 |
SF | 198 ± 3.6 | 2.1 ± 0.1 | 122 ± 3.0 | 16 ± 0.2 |
SFw ** | 204 ± 3.3 | 2.1 | 115.7 ± 0.9 | 19.5 ± 0.2 |
SFr | 204.1 ± 2.6 | 2.8 | 120.7 ± 1.0 | 34.9 ± 0.9 |
HM | 196.8 ± 5.2 | 3.7 | 162.5 ± 4.0 | 10 |
HMw ** | 207 ± 3.5 | 4.2 ± 0.1 | 160.9 ± 2.2 | 19.9 ± 0.5 |
LS | 195 ± 2.1 | 3.6 | 177 ± 1.9 | 5 |
LSw ** | 198.7 ± 3.1 | 4.1 ± 0.1 | 176.8 ± 4.5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podolean, I.; Tudorache, M. Sustainable Biocatalytic System for the Enzymatic Epoxidation of Waste Cooking Oil. Materials 2024, 17, 4518. https://doi.org/10.3390/ma17184518
Podolean I, Tudorache M. Sustainable Biocatalytic System for the Enzymatic Epoxidation of Waste Cooking Oil. Materials. 2024; 17(18):4518. https://doi.org/10.3390/ma17184518
Chicago/Turabian StylePodolean, Iunia, and Madalina Tudorache. 2024. "Sustainable Biocatalytic System for the Enzymatic Epoxidation of Waste Cooking Oil" Materials 17, no. 18: 4518. https://doi.org/10.3390/ma17184518
APA StylePodolean, I., & Tudorache, M. (2024). Sustainable Biocatalytic System for the Enzymatic Epoxidation of Waste Cooking Oil. Materials, 17(18), 4518. https://doi.org/10.3390/ma17184518