Impact of Toolpath Pitch Distance on Cutting Tool Nose Radius Deviation and Surface Quality of AISI D3 Steel Using Precision Measurement Techniques
Abstract
:1. Introduction
2. Materials and Methods
Measurement of Output Responses
3. Experimental RSM Design Matrix
3.1. Developing Mathematical Relationships and Regression Analysis
3.2. Assessing the Accuracy of the Empirical Relationship
4. Results and Discussion
4.1. Influence of Trochoidal Parameters on Surface Roughness
4.2. Influence of Trochoidal Parameters on Tool Nose Radius Deviation
4.3. Chip Morphology of Trochoidal Toolpath
4.4. Multi-Objective Optimization
4.5. The Outlook
5. Conclusions
- The presented mathematical models for Ra and nose radius deviation are in good correlation with the experimental data obtained, with the difference between the experimental and calculated values ranging from 4.25% and 5.31%, respectively. High coefficients of determination (R2) are an indication of the model’s reliability.
- From the F-ratio values, it is seen that feed rate and trochoidal pitch distance have a significant effect on the surface roughness, while all three input parameters affect nose radius deviation.
- The intensity of the lace marks, microdamage on the tool, side flow of the workpiece, cracks, and chip adhesion on the machined surface reduce the surface finish of the workpiece.
- Chip morphology studies revealed that an uneven lamella structure was obtained in the form of rough and jagged appearances when trochoidal pitch distance was increased.
- The results from the vision measurement system regarding the tool nose radius deviation indicate that chipping, abrasion, and coating peel-off cause a decrease in the tool nose radius deviation. Larger deviations in tool nose radius, up to 33.83%, are noted when cutting speeds are low, the trochoidal steps are low, and the feed rates are high.
- The desirability-based multi-objective optimization technique determined that the optimal process parameter setting is 78 m/min for A, 0.05 mm/tooth for B, and 1.8 mm for C. The data suggest that increasing the cutting speed, drop-in feed rate and trochoidal pitch value improves the quality attributes of the output.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Notation | |
AISI | American Iron & Steel Institute |
ANOVA | Analysis of variance |
HRC | Hardness measured with the Rockwell test for hard materials |
CAM | Computer-aided manufacturing |
RSM | Response surface methodology |
CCD | Central composite design |
MRR | Material removal rate |
SS | Sum of squares |
MS | Mean square |
VMS | Vision measuring system |
d.f. | Degree of freedom |
Symbol | |
C | The trochoidal step refers to the distance between the centers of adjacent paths or revolutions (mm) |
A | Cutting speed (m/min) |
B | Feed rate (mm/tooth) |
Ra | Surface roughness (μm) |
Xi | Estimated output response |
xi | Input parameter |
d0 | Free term of the regression equation |
di | Coefficients of linear terms |
dij | Coefficients of square terms |
∈ | Experimental error |
d1, d2,…dn | Coefficients of linear terms |
X1 | Before machining the tool |
X2 | After machining the tool |
References
- Rao, K.V.; Murthy, B.; Rao, N.M. Experimental Study on Surface Roughness and Vibration of Workpiece in Boring of AISI 1040 Steels. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 229, 703–712. [Google Scholar] [CrossRef]
- Reddy, N.S.K.; Rao, P.V. Selection of an Optimal Parametric Combination for Achieving a Better Surface Finish in Dry Milling Using Genetic Algorithms. Int. J. Adv. Manuf. Technol. 2005, 28, 463–473. [Google Scholar] [CrossRef]
- Reddy, N.S.K.; Rao, P.V. Selection of Optimum Tool Geometry and Cutting Conditions Using a Surface Roughness Prediction Model for End Milling. Int. J. Adv. Manuf. Technol. 2005, 26, 1202–1210. [Google Scholar] [CrossRef]
- Reddy, S.K.; Rao, V.P. Experimental Investigation to Study the Effect of Solid Lubricants on Cutting Forces and Surface Quality in End Milling. Int. J. Mach. Tools Manuf. 2006, 46, 189–198. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, R.; Singh, P.K. Effect of Machining Parameters on Surface Roughness in End Milling of AISI 1019 Steel. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 228, 704–714. [Google Scholar] [CrossRef]
- Subramanian, M.; Sakthivel, M.; Sooryaprakash, K.; Sudhakaran, R. Optimization of End Mill Tool Geometry Parameters for Al7075-T6 Machining Operations Based on Vibration Amplitude by Response Surface Methodology. Measurement 2013, 46, 4005–4022. [Google Scholar] [CrossRef]
- Olvera, O.; Barrow, G. Influence of Exit Angle and Tool Nose Geometry on Burr Formation in Face Milling Operations. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1998, 212, 59–72. [Google Scholar] [CrossRef]
- Waszczuk, K.P.; Skowronek, H.; Karolczak, P.; Kowalski, M.; Kołodziej, M. Influence of the Trochoidal Tool Path on Quality Surface of Groove Walls. Adv. Sci. Technol.-Res. J. 2019, 13, 38–42. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Luo, M.; Zhang, D. Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V. Materials 2019, 12, 1937. [Google Scholar] [CrossRef] [PubMed]
- Pleta, A.; Nithyanand, G.; Niaki, F.A.; Mears, L. Identification of Optimal Machining Parameters in Trochoidal Milling of Inconel 718 for Minimal Force and Tool Wear and Investigation of Corresponding Effects on Machining Affected Zone Depth. J. Manuf. Process. 2019, 43, 54–62. [Google Scholar] [CrossRef]
- Yan, R.; Li, H.; Peng, F.; Tang, X.; Xu, J.; Zeng, H. Stability Prediction and Step Optimization of Trochoidal Milling. J. Manuf. Sci. Eng.-Trans. ASME 2017, 139. [Google Scholar] [CrossRef]
- Rauch, M.; Duc, E.; Hascoet, J.-Y. Improving Trochoidal Tool Paths Generation and Implementation Using Process Constraints Modelling. Int. J. Mach. Tools Manuf. 2009, 49, 375–383. [Google Scholar] [CrossRef]
- Zhang, X.H.; Peng, F.Y.; Qiu, F.; Yan, R.; Li, B. Prediction of Cutting Force in Trochoidal Milling Based on Radial Depth of Cut. Adv. Mater. Res. 2014, 852, 457–462. [Google Scholar] [CrossRef]
- Ibaraki, S.; Yamaji, I.; Matsubara, A. On the Removal of Critical Cutting Regions by Trochoidal Grooving. Precis. Eng. 2010, 34, 467–473. [Google Scholar] [CrossRef]
- Otkur, M.; Lazoglu, I. Trochoidal Milling. Int. J. Mach. Tools Manuf. 2007, 47, 1324–1332. [Google Scholar] [CrossRef]
- Shixiong, W.; Wei, M.; Bin, L.; Chengyong, W. Trochoidal Machining for the High-Speed Milling of Pockets. J. Mater. Process. Technol. 2016, 233, 29–43. [Google Scholar] [CrossRef]
- Niaki, F.A.; Pleta, A.; Mears, L. Trochoidal Milling: Investigation of a New Approach on Uncut Chip Thickness Modeling and Cutting Force Simulation in an Alternative Path Planning Strategy. Int. J. Adv. Manuf. Technol. 2018, 97, 641–656. [Google Scholar] [CrossRef]
- Patil, P.; Polishetty, A.; Goldberg, M.; Littlefair, G.; Nomani, J. Slot Machining of TI6AL4V with Trochoidal Milling Technique. J. Mach. Eng. 2014, 14, 42–55. [Google Scholar]
- Pleta, A.; Mears, L. Cutting Force Investigation of Trochoidal Milling in Nickel-Based Superalloy. Procedia Manuf. 2016, 5, 1348–1356. [Google Scholar] [CrossRef]
- Senthil, S.M.; Parameshwaran, R.; Nathan, S.R.; Kumar, M.B.; Deepandurai, K. A Multi-Objective Optimization of the Friction Stir Welding Process Using RSM-Based-Desirability Function Approach for Joining Aluminum Alloy 6063-T6 Pipes. Struct. Multidiscip. Optim. 2020, 62, 1117–1133. [Google Scholar] [CrossRef]
- Srivastava, M.; Maheshwari, S.; Kundra, T.; Rathee, S. Multi-Response Optimization of Fused Deposition Modelling Process Parameters of ABS Using Response Surface Methodology (RSM)-Based Desirability Analysis. Mater. Today Proc. 2017, 4, 1972–1977. [Google Scholar] [CrossRef]
- Canute, X.; Majumder, M.C. Investigation of Tribological and Mechanical Properties of Aluminium Boron Carbide Composites Using Response Surface Methodology and Desirability Analysis. Ind. Lubr. Tribol. 2018, 70, 301–315. [Google Scholar] [CrossRef]
- Jeyakumar, S.; Marimuthu, K.; Ramachandran, T. Prediction of Cutting Force, Tool Wear and Surface Roughness of Al6061/SiC Composite for End Milling Operations Using RSM. J. Mech. Sci. Technol. 2013, 27, 2813–2822. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, R.; Singh, P.K. An Improved Surface Roughness Prediction Model Using Box-Cox Transformation with RSM in End Milling of EN 353. J. Mech. Sci. Technol. 2014, 28, 5149–5157. [Google Scholar] [CrossRef]
- Singh, P.K.; Saini, P.; Kumar, D. Multi Response Optimization of CNC End Milling of AISI H11 Alloy Steel for Rough and Finish Machining Using TGRA. Mater. Today Proc. 2020, 26, 2564–2573. [Google Scholar] [CrossRef]
- Santhakumar, J.; Mohammed Iqbal, U. Parametric Optimization of Trochoidal Step on Surface Roughness and Dish Angle in End Milling of AISID3 Steel Using Precise Measurements. Materials 2019, 12, 1335. [Google Scholar] [CrossRef] [PubMed]
- Abou-El-Hossein, K.; Kadirgama, K.; Hamdi, M.; Benyounis, K. Prediction of Cutting Force in End-Milling Operation of Modified AISI P20 Tool Steel. J. Mater. Process. Technol. 2007, 182, 241–247. [Google Scholar] [CrossRef]
- Rajeswari, B.; Amirthagadeswaran, K.S. Experimental Investigation of Machinability Characteristics and Multi-Response Optimization of End Milling in Aluminium Composites Using RSM Based Grey Relational Analysis. Measurement 2017, 105, 78–86. [Google Scholar] [CrossRef]
- Iqbal, U.M.; Kumar, V.S.; Gopalakannan, S. Application of Response Surface Methodology in Optimizing the Process Parameters of Twist Extrusion Process for AA6061-T6 Aluminum Alloy. Measurement 2016, 94, 126–138. [Google Scholar] [CrossRef]
- Chauhan, S.; Dass, K. Optimization of Machining Parameters in Turning of Titanium (Grade-5) Alloy Using Response Surface Methodology. Mater. Manuf. Process. 2011, 27, 531–537. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sreebalaji, V.S. Desirability Based Multiobjective Optimisation of Abrasive Wear and Frictional Behaviour of Aluminium (Al/3.25Cu/8.5Si)/Fly Ash Composites. Tribol.-Mater. Surf. Interfaces 2015, 9, 128–136. [Google Scholar] [CrossRef]
- Mia, M. Multi-Response Optimization of End Milling Parameters under through-Tool Cryogenic Cooling Condition. Measurement 2017, 111, 134–145. [Google Scholar] [CrossRef]
- Koshy, P.; Dewes, R.; Aspinwall, D. High Speed End Milling of Hardened AISI D2 Tool Steel (∼58 HRC). J. Mater. Process. Technol. 2002, 127, 266–273. [Google Scholar] [CrossRef]
Element | Vanadium (V) | Manganese (Mn) | Nickel (Ni) | Silicon (Si) | Carbon (C) | Chromium (Cr) | Iron (Fe) |
---|---|---|---|---|---|---|---|
wt.% content | 0.25 | 0.4 | 0.31 | 0.3 | 2.1 | 11.5 | Balance |
Billet Materials | Mechanical Properties of AISI D3 Steel | ||||
---|---|---|---|---|---|
Density (kg/cm3) | Hardness (HRC) | Heat Conductivity (W/mK) | Yield Strength (N/mm2) | Tensile Strength (N/mm2) | |
AISI D3 | 7.7 | 55–64 | 20 | 850 | 970 |
Variables | Symbol | Units | Coded Values | ||
---|---|---|---|---|---|
(−1) | (0) | (+1) | |||
Cutting speed | A | m/min | 40 | 60 | 80 |
Feed rate | B | mm/tooth | 0.05 | 0.1 | 0.15 |
Trochoidal pitch | C | mm | 1.8 | 3.6 | 5.4 |
Run | Input Factors | Output Performance | ||||
---|---|---|---|---|---|---|
A (m/min) | B (mm/tooth) | C (mm) | Surface Roughness (Ra) (µm) | Nose Radius (N2) (mm) | Nose Radius Deviation (%) | |
1 | 40 | 0.05 | 1.8 | 0.3468 | 1.045 | 23.44 |
2 | 80 | 0.05 | 1.8 | 0.3792 | 0.9 | 11.11 |
3 | 40 | 0.15 | 1.8 | 0.5259 | 1.081 | 25.99 |
4 | 80 | 0.15 | 1.8 | 0.5483 | 0.949 | 15.70 |
5 | 40 | 0.05 | 5.4 | 0.4283 | 1.173 | 31.80 |
6 | 80 | 0.05 | 5.4 | 0.4506 | 0.921 | 13.14 |
7 | 40 | 0.15 | 5.4 | 0.6074 | 1.209 | 33.83 |
8 | 80 | 0.15 | 5.4 | 0.6797 | 0.987 | 18.95 |
9 | 40 | 0.1 | 3.6 | 0.4771 | 1.127 | 29.02 |
10 | 80 | 0.1 | 3.6 | 0.4994 | 0.935 | 14.44 |
11 | 60 | 0.05 | 3.6 | 0.3887 | 0.999 | 19.92 |
12 | 60 | 0.15 | 3.6 | 0.5678 | 1.034 | 22.63 |
13 | 60 | 0.1 | 1.8 | 0.4375 | 0.952 | 15.97 |
14 | 60 | 0.1 | 5.4 | 0.519 | 1.08 | 25.93 |
15 | 60 | 0.1 | 3.6 | 0.4449 | 0.963 | 16.93 |
16 | 60 | 0.1 | 3.6 | 0.4324 | 0.99 | 19.19 |
17 | 60 | 0.1 | 3.6 | 0.4532 | 0.981 | 18.45 |
18 | 60 | 0.1 | 3.6 | 0.4286 | 0.971 | 17.61 |
19 | 60 | 0.1 | 3.6 | 0.4178 | 0.982 | 18.53 |
20 | 60 | 0.1 | 3.6 | 0.4456 | 0.994 | 19.52 |
Source | SS | d.f. | MS | F-Value | p-Value Prob > F | Remarks |
---|---|---|---|---|---|---|
Model | 0.1213 | 9 | 0.0135 | 34.38 | <0.0001 | significant |
A | 0.0029 | 1 | 0.0029 | 7.52 | <0.0001 | |
B | 0.0875 | 1 | 0.0875 | 223.18 | <0.0001 | |
C | 0.0200 | 1 | 0.0200 | 51.02 | <0.0001 | |
A × B | 0.0002 | 1 | 0.0002 | 10.510 | <0.0001 | |
A × C | 0.0002 | 1 | 0.0002 | 0.5049 | 0.4936 | |
B × C | 0.0004 | 1 | 0.0125 | 25.15 | <0.0001 | |
A2 | 0.0016 | 1 | 0.0016 | 4.03 | 0.0726 | |
B2 | 0.0005 | 1 | 0.0095 | 14.37 | <0.0001 | |
C2 | 0.0005 | 1 | 0.0005 | 1.37 | 0.2694 | |
Residual | 0.0039 | 10 | 0.0004 | |||
Lack of fit | 0.0031 | 5 | 0.0006 | 3.56 | 0.0947 | not significant |
Pure error | 0.0009 | 5 | 0.0002 | |||
Total | 0.1252 | 19 | ||||
Standard Dev. | 0.0198 | R2 | 0.9480 | |||
Mean | 0.4739 | Adj R2 | 0.9405 | |||
Cv % | 4.10 | Pred R2 | 0.8152 | |||
Adeq Precision | 21.203 |
Source | SS | d.f. | MS | F-Value | p-Value Prob > F | Remarks |
---|---|---|---|---|---|---|
Model | 680.71 | 9 | 75.63 | 27.94 | <0.0001 | significant |
A | 500.41 | 1 | 500.41 | 184.86 | <0.0001 | |
B | 31.29 | 1 | 31.29 | 20.56 | <0.0001 | |
C | 98.85 | 1 | 98.85 | 36.52 | <0.0001 | |
A × B | 4.23 | 1 | 4.23 | 1.56 | 0.2395 | |
A × C | 14.91 | 1 | 14.91 | 10.51 | <0.0001 | |
B × C | 0.0612 | 1 | 0.0612 | 0.0226 | 0.8834 | |
A2 | 5.16 | 1 | 15.16 | 9.91 | <0.0001 | |
B2 | 2.30 | 1 | 2.30 | 0.8514 | 0.3779 | |
C2 | 0.9588 | 1 | 0.9588 | 0.3542 | 0.5650 | |
Residual | 27.07 | 10 | 2.71 | |||
Lack of fit | 22.39 | 5 | 4.48 | 4.79 | 0.0554 | not significant |
Pure error | 4.68 | 5 | 0.9356 | |||
Total | 707.78 | 19 | ||||
Standard Dev. | 1.65 | R2 | 0.9618 | |||
Mean | 20.61 | Adj R2 | 0.9273 | |||
Cv % | 7.98 | Pre R2 | 0.8037 | |||
Adeq Precision | 20.6071 |
Description | Input Parameters | Nose Radius Deviation (%) | Error (%) | ||||
---|---|---|---|---|---|---|---|
A (m/min) | B (mm/tooth) | C (mm) | Value | Values | |||
Desirability optimal solution | 78 | 0.05 | 1.8 | 0.3717 | 4.25 | 11.11 | 5.31 |
Optimum (Actual) | 78 | 0.05 | 1.8 | 0.3559 | - | 10.52 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakumar, S.; Kannan, S.; Iqbal, U.M. Impact of Toolpath Pitch Distance on Cutting Tool Nose Radius Deviation and Surface Quality of AISI D3 Steel Using Precision Measurement Techniques. Materials 2024, 17, 4519. https://doi.org/10.3390/ma17184519
Jayakumar S, Kannan S, Iqbal UM. Impact of Toolpath Pitch Distance on Cutting Tool Nose Radius Deviation and Surface Quality of AISI D3 Steel Using Precision Measurement Techniques. Materials. 2024; 17(18):4519. https://doi.org/10.3390/ma17184519
Chicago/Turabian StyleJayakumar, Santhakumar, Sathish Kannan, and U. Mohammed Iqbal. 2024. "Impact of Toolpath Pitch Distance on Cutting Tool Nose Radius Deviation and Surface Quality of AISI D3 Steel Using Precision Measurement Techniques" Materials 17, no. 18: 4519. https://doi.org/10.3390/ma17184519
APA StyleJayakumar, S., Kannan, S., & Iqbal, U. M. (2024). Impact of Toolpath Pitch Distance on Cutting Tool Nose Radius Deviation and Surface Quality of AISI D3 Steel Using Precision Measurement Techniques. Materials, 17(18), 4519. https://doi.org/10.3390/ma17184519