Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion
Abstract
:1. Introduction
2. Construction and Materials
3. Mechanical, Physical, and Thermal Properties of Aluminum Strands and Steel Cores
4. ACSS Conductor Production Process
4.1. Aluminum Wires Production Process
4.2. Steel Wire Production Process
4.2.1. Aluminum-Clad Steel Wires
4.2.2. Galvanized Steel Wires
4.2.3. Galfan-Coated Steel Wires
5. Performance Characteristics and Environmental Behavior of ACSS Conductors
5.1. Current-Carrying Capacity and Transmission Losses
5.2. Creep Behavior
5.3. Stress–Strain
5.4. Short-Circuit Current
5.5. Electrical Resistance
5.5.1. DC Electrical Resistance
5.5.2. AC Electrical Resistance
5.6. Self-Damping Behavior
5.7. Current–Temperature Calculation
5.8. Corona Effect
5.9. Sag–Temperature Behavior
5.10. Lightning Resistance
5.11. Galloping
5.12. Aeolian Vibrations
5.13. Fretting Fatigue
6. Environmental Effects and Sustainable Development
7. Conclusions
8. Identified Challenges and Research Needs
- Investigating the impact of various alloying elements on aluminum alloys’ mechanical and electrical properties at high temperatures is imperative;
- Examining aging, fatigue, and corrosion of ACSS conductors with different configurations at high temperatures is essential;
- Specialized investigation is required to understand how alloying elements affect steel alloys’ mechanical and electrical properties under high temperatures;
- Developing specific standards for short-circuit tests on ACSS conductors is crucial, given the current IEC 60794 standard is tailored for OPGW conductors;
- A comparative study assessing ACSS conductors versus other high-capacity conductors should include techno-economic analysis and losses;
- Developing a dedicated standard test method to evaluate creep at high temperatures is essential;
- Research on industrial-scale removal of impurities from aluminum melts is needed to enhance aluminum’s mechanical and electrical properties;
- Selecting and incorporating suitable alloys into aluminum should be followed by a thorough examination of creep, fatigue, aging, and sag under high-temperature conditions, especially for novel ACSS conductors;
- Comprehensive investigations are needed to understand the corrosion, creep, and fatigue behaviors of ACSS conductors with different core materials at high temperatures;
- Evaluating ACSS conductors that have been in service for extended periods at high temperatures should include assessments of physical, mechanical, and electrical properties, as well as corrosion, fatigue, creep, and aging characteristics;
- Further research is required on the mechanical, electrical, and thermal behavior of ACSS conductors and the development of specialized standards, given limited existing resources;
- Research on the self-damping characteristics of ACSS conductors is needed due to the lack of comprehensive studies in this domain;
- Addressing environmental impacts and promoting sustainable development of ACSS and other overhead conductors requires exhaustive life cycle investigations and comparative assessments with traditional ACSR and various HTLS conductors.
Author Contributions
Funding
Conflicts of Interest
References
- Kyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067. [Google Scholar] [CrossRef]
- Nuchprayoon, S.; Chaichana, A. Performance comparison of using ACSR and HTLS conductors for current uprating of 230-kV overhead transmission lines. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Riba, J.-R.; Bogarra, S.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs. Renew. Sustain. Energy Rev. 2020, 134, 110334. [Google Scholar] [CrossRef]
- Kavanagh, T.; Armstrong, O. An evaluation of High Temperature Low Sag conductors for uprating the 220 kV transmission network in Ireland. In Proceedings of the 45th International Universities Power Engineering Conference UPEC2010, Cardiff, UK, 31 August–3 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Filippone, G.; Ippolito, M.; Massaro, F.; Puccio, A. On the roadmap to Supergrid in Sicily: LIDAR technology and HTLS conductors for uprating the 150 kV lines. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Washington, DC, USA, 19–22 February 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Mateescu, E.; Marginean, D.; Florea, G.; St IA, G.; Matea, C. Reconductoring Using HTLS Conductors. Case study for a 220 kV double circuit transmission LINE in Romania. In Proceedings of the 2011 IEEE PES 12th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (ESMO), Providence, RI, USA, 16–19 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–7. [Google Scholar]
- Glaum, P.; Hofmann, F. Leveraging the existing German transmission grid with dynamic line rating. Appl. Energy 2023, 343, 121199. [Google Scholar] [CrossRef]
- Daminov, I.; Blavette, A.; Bourguet, S.; Ahmed, H.B.; Soulard, T.; Warlop, P. Economic performance of an overplanted offshore wind farm under several commitment strategies and dynamic thermal ratings of submarine export cable. Appl. Energy 2023, 346, 121326. [Google Scholar] [CrossRef]
- Safari, N.; Mazhari, S.; Chung, C.; Ko, S. Secure probabilistic prediction of dynamic thermal line rating. J. Mod. Power Syst. Clean Energy 2021, 10, 378–387. [Google Scholar] [CrossRef]
- Rashkovska, A.; Jančič, M.; Depolli, M.; Kosmač, J.; Kosec, G. Uncertainty assessment of dynamic thermal line rating for operational use at transmission system operators. IEEE Trans. Power Syst. 2022, 37, 4642–4650. [Google Scholar] [CrossRef]
- Riba, J.-R.; Liu, Y.; Moreno-Eguilaz, M.; Sanllehí, J. On-Line Core Losses Determination in ACSR Conductors for DLR Applications. Materials 2022, 15, 6143. [Google Scholar] [CrossRef]
- Moradi-Sepahvand, M.; Amraee, T. Secure expansion of energy storage and transmission lines considering bundling option under renewable penetration. Appl. Energy 2023, 347, 121414. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Dong, X.; Wang, C.; Feng, T.; Che, C.; Lu, T. Capacity assessment for wind-storage integration system considering electro-thermal coupling of overhead transmission line. IEEE Trans. Power Syst. 2023, 39, 967–975. [Google Scholar] [CrossRef]
- Lai, C.-M.; Teh, J. Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability. Appl. Energy 2022, 305, 117837. [Google Scholar] [CrossRef]
- Long, Q.; Liu, J.; Ren, C.; Yin, W.; Liu, F.; Hou, Y. Two-Stage Submodular Optimization of Dynamic Thermal Rating for Risk Mitigation Considering Placement and Operation Schedule. IEEE Trans. Power Syst. 2023, 39, 3059–3074. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, R.; Lin, C.; Shen, W. Model predictive control based real-time energy management for hybrid energy storage system. CSEE J. Power Energy Syst. 2020, 7, 862–874. [Google Scholar]
- Zhou, M.; Yan, J. A new solution architecture for online power system analysis. CSEE J. Power Energy Syst. 2018, 4, 250–256. [Google Scholar] [CrossRef]
- Grigsby, L.L. Electric Power Generation, Transmission, and Distribution; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Beryozkina, S. Evaluation study of potential use of advanced conductors in transmission line projects. Energies 2019, 12, 822. [Google Scholar] [CrossRef]
- Yasaranga, H.; Wijayapala, W.; Hemapala, K. Techno economic analysis of the use of high temperature low sag (HTLS) conductors in the Sri Lanka’s transmission system. Eng. J. Inst. Eng. Sri Lanka 2017, 50, 41–52. [Google Scholar] [CrossRef]
- Kachhadiya, A.; Sheth, C.; Gupta, V.; Darji, K. Study and Analysis of HTLS Conductors for Increasing the Thermal Loading of 220 kV Transmission Line. In Proceedings of the Advances in Electric Power and Energy Infrastructure: Proceedings of ICPCCI 2019, Gujarat, India, 4–5 July 2019; Springer: Berlin/Heidelberg, Germany; pp. 229–238. [Google Scholar]
- Kishore, T.; Singal, S.K. Optimal economic planning of power transmission lines: A review. Renew. Sustain. Energy Rev. 2014, 39, 949–974. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Khan, N. Comparative study of HVAC and HVDC transmission systems. Renew. Sustain. Energy Rev. 2016, 59, 1653–1675. [Google Scholar] [CrossRef]
- Conseil international des grands réseaux électriques. Guide for Qualifying High Temperature Conductors for Use on Overhead Transmission Lines; CIGRÉ: Paris, France, 2010. [Google Scholar]
- Papailiou, K.O. Overhead Lines. CIGRE Green Books; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kenge, A.V.; Dusane, S.V.; Sarkar, J. Statistical analysis & comparison of HTLS conductor with conventional ACSR conductor. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2955–2959. [Google Scholar]
- Qiao, K.; Zhu, A.; Wang, B.; Di, C.; Yu, J.; Zhu, B. Characteristics of heat resistant aluminum alloy composite core conductor used in overhead power transmission lines. Materials 2020, 13, 1592. [Google Scholar] [CrossRef]
- Bartos, M.; Chester, M.; Johnson, N.; Gorman, B.; Eisenberg, D.; Linkov, I.; Bates, M. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ. Res. Lett. 2016, 11, 114008. [Google Scholar] [CrossRef]
- Adams, H.W. Steel supported aluminum conductors (SSAC) for overhead transmission lines. IEEE Trans. Power Appar. Syst. 1974, 5, 1700–1705. [Google Scholar] [CrossRef]
- Thrash, F. ACSS/TW-an improved conductor for upgrading existing lines or new construction. In Proceedings of the 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333), New Orleans, LO, USA, 11–16 April 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 852–857. [Google Scholar]
- Zame, K.K.; Brehm, C.A.; Nitica, A.T.; Richard, C.L.; Schweitzer III, G.D. Smart grid and energy storage: Policy recommendations. Renew. Sustain. Energy Rev. 2018, 82, 1646–1654. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 2022, 9, 1032. [Google Scholar] [CrossRef]
- Knych, T.; Piwowarska, M.; Uliasz, P. Studies on the process of heat treatment of conductive AlZr alloys obtained in various productive processes. Arch. Metall. Mater. 2011, 56, 685–692. [Google Scholar] [CrossRef]
- Orlova, T.; Mavlyutov, A.; Latynina, T.; Ubyivovk, E.; Murashkin, M.Y.; Schneider, R.; Gerthsen, D.; Valiev, R. Influence of severe plastic deformation on microstructure, strength and electrical conductivity of aged Al–0.4 Zr (wt.%) alloy. Rev. Adv. Mater. Sci. 2018, 55, 92–101. [Google Scholar] [CrossRef]
- Orlova, T.; Latynina, T.; Mavlyutov, A.; Murashkin, M.; Valiev, R. Effect of annealing on microstructure, strength and electrical conductivity of the pre-aged and HPT-processed Al-0.4 Zr alloy. J. Alloys Compd. 2019, 784, 41–48. [Google Scholar] [CrossRef]
- Pasini, C.; Sildva, H.; Gorja, G.; Peter, Z. High temperature current cycle test of implosive connectors on ACSS conductor. In Proceedings of the IEEE PES T&D 2010, New Orleans, LO, USA, 19–22 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8. [Google Scholar]
- Elder, D.S.; Sekunda, J. Process of Producing Overhead Transmission Conductor. U.S. Patent No. 7,615,127, 10 November 2009. [Google Scholar]
- ASTM B233-22; Standard Specification for Aluminum 1350 Drawing Stock for Electrical Purposes. ASTM International: West Conshohocken, PA, USA, 2022.
- Alvarez-Antolin, F.; Amghouz, Z.; Cofiño-Villar, A.; Gonzalez-Pociño, A.; Melero, M.G. Decrease in Electrical Resistivity below 28 nΩm by Aging in Hyperperitectic Al-Zr Alloys Treated at High Temperatures. Metals 2021, 11, 1171. [Google Scholar] [CrossRef]
- Knych, T.; Piwowarska-Uliasz, M.; Uliasz, P. Aluminium alloys with zirconium additions, in the range from 0.05 to 0.32%, intended for applications in the overhead electrical power engineering. Arch. Metall. Mater. 2014, 59, 339–343. [Google Scholar] [CrossRef]
- Chao, R.-Z.; Guan, X.-H.; Guan, R.-g.; Di, T.; Chao, L.; Xiang, W.; Zhang, J. Effect of Zr and Sc on mechanical properties and electrical conductivities of Al wires. Trans. Nonferrous Met. Soc. China 2014, 24, 3164–3169. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Yi, D.; Wang, B.; Wang, H. Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2 Zr-based alloy cables. Mater. Charact. 2018, 145, 126–134. [Google Scholar] [CrossRef]
- Belov, N.; Alabin, A.; Matveeva, I.; Eskin, D. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 2817–2826. [Google Scholar] [CrossRef]
- Kahveci, O.; Çadirli, E.; Arı, M.; Tecer, H.; Gündüz, M. Measurement and prediction of the thermal and electrical conductivity of Al-Zr overhead line conductors at elevated temperatures. Mater. Res. 2018, 22, e20180513. [Google Scholar] [CrossRef]
- Shao, Q.; Elgallad, E.M.; Maltais, A.; Chen, X.-G. Development of thermal-resistant Al–Zr based conductor alloys via microalloying with Sc and manipulating thermomechanical processing. J. Mater. Res. Technol. 2023, 25, 7528–7545. [Google Scholar] [CrossRef]
- Erol, H.; Tecer, H.; Acer, E.; Kadioğlu, C.; Gündüz, M. Tensile strength of Al-Zr overhead line conductors. In Proceedings of the Materials Science Forum, Montreal, QC, Canada, 27–31 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 793–797. [Google Scholar]
- Pozdniakov, A.; Barkov, R.Y. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity. J. Mater. Sci. Technol. 2020, 36, 1–6. [Google Scholar] [CrossRef]
- ASTM B498/B498M-19; Standard Specification for Zinc-Coated (Galvanized) Steel Core Wire for Use in Overhead Electrical Conductors. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM B957/957M-22; Standard Specification for Extra-High-Strength and Ultra-High-Strength Zinc-Coated (Galvanized) Steel Core Wire for Overhead Electrical Conductors. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM B802/B802M-22; Standard Specification for Zinc–5% Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR). ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM B803/B803M-22; Standard Specification for High-Strength Zinc–5% Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Use in Overhead Electrical Conductors. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM B958/B958M-22; Standard Specification for Extra-High-Strength and Ultra-High-Strength Class A Zinc–5% Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Use in Overhead Electrical Conductors. ASTM International: West Conshohocken, PA, USA, 2022.
- Karabay, S. ACSS/TW aerial high-temperature bare conductors as a remedy for increasing transmission line capacity and determination of processing parameters for manufacturing. Mater. Des. 2009, 30, 816–825. [Google Scholar] [CrossRef]
- BS EN 62004; Thermal-Resistant Aluminium Alloy Wire for Overhead Line Conductor. International Electrotechnical Commission: Geneva, Switzerland, 2009.
- BS EN 50540; Conductors for Overhead Lines—Aluminium Conductors Steel Supported (ACSS). International Electrotechnical Commission: Geneva, Switzerland, 2010.
- ASTM B502/B502M-19; Standard Specification for Aluminum-Clad Steel Core Wire for Use in Overhead Electrical Aluminum Conductors. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM B609/B609M-12; Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM B606/B606M-22; Standard Specification for High-Strength Zinc-Coated (Galvanized) Steel Core Wire for Aluminum and Aluminum-Alloy Conductors, Steel Reinforced. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM B941-22; Standard Specification for Heat Resistant Aluminum-Zirconium Alloy Wire for Electrical Purposes. ASTM International: West Conshohocken, PA, USA, 2022.
- Properzi, L.a.A.O. Continuous Casting and Rolling by the ‘Properzi’ Method. Wire World Int. 1981, 23, 33–35. [Google Scholar]
- Properzi, I. Continuous Casting Machine with Channel Coolant Control Means. U.S. Patent No. 3,626,479, 1971. [Google Scholar]
- Dablement, S.; Mortensen, D.; Fjaer, H.; Lee, M.; Grandfield, J.; Savage, G.; Nguyen, V. Modelling of shrinkage cavity defects during the wheel and belt casting process. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Schladming, Austria, 17–22 June 2012; IOP Publishing: Bristol, UK, 2012; p. 012056. [Google Scholar]
- Khaliq, A.; Akbar Rhamdhani, M.; Brooks, G.A.; Grandfield, J. Removal of Vanadium from Molten Aluminum—Part III. Analysis of Industrial Boron Treatment Practice. Metall. Mater. Trans. B 2014, 45, 784–794. [Google Scholar] [CrossRef]
- Cooper, P.S.; Kearns, M.A. Removal of transition metal impurities in aluminium melts by boron additives. In Materials Science Forum; Trans Tech Publications: Zurich Switzerland, 1996; pp. 141–146. [Google Scholar]
- Khaliq, A.; Rhamdhani, M.A.; Brooks, G.A.; Grandfield, J.F. Removal of Vanadium from Molten Aluminum-Part I. Analysis of VB 2 Formation. Metall. Mater. Trans. B 2014, 45, 752–768. [Google Scholar] [CrossRef]
- Xu, X.; Feng, Y.; Yang, P.; Zhang, B.; Wang, Y.; Wang, Q.; Fan, X.; Ding, H. The influence of trace elements on the microstructures and properties of the aluminum conductors. Results Phys. 2018, 11, 1058–1063. [Google Scholar] [CrossRef]
- Cui, X.; Wu, Y.; Liu, X.; Zhao, Q.; Zhang, G. Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum. Mater. Des. 2015, 86, 397–403. [Google Scholar] [CrossRef]
- Dewan, M.A.; Rhamdhani, M.A.; Mitchell, J.B.; Davidson, C.; Brooks, G.A.; Easton, M.; Grandfield, J.F. Control and removal of impurities from Al melts: A review. In Proceedings of the Materials Science Forum, Columbus, OH, USA, 16–20 October 2011; Trans Tech Publications: Zurich Switzerland, 2011; pp. 149–160. [Google Scholar]
- Li, C.; Zhang, T.a.; Liu, J.; Liu, Y. Synergistic solid–liquid composite and rapid solidification preparation of aluminum-clad steel wires. Mater. Des. 2024, 244, 113182. [Google Scholar] [CrossRef]
- Transmission and Distribution Committee. IEEE Guide for Determining the Effects of High-Temperature Operation on Conductors, Connectors and Accessories; IEEE Power and Energy Society; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Asgari, H.; Toroghinejad, M.; Golozar, M. Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings. Curr. Appl. Phys. 2009, 9, 59–66. [Google Scholar] [CrossRef]
- Shibli, S.; Meena, B.; Remya, R. A review on recent approaches in the field of hot dip zinc galvanizing process. Surf. Coat. Technol. 2015, 262, 210–215. [Google Scholar] [CrossRef]
- Hanna, F.; Nassif, N. Factors affecting the quality of hot-dip-galvanized steel sheets. Surf. Technol. 1984, 21, 27–37. [Google Scholar] [CrossRef]
- Gelfi, M.; Solazzi, L.; Poli, S. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires. Materials 2017, 10, 264. [Google Scholar] [CrossRef]
- Bicao, P.; Jianhua, W.; Xuping, S.; Zhi, L.; Fucheng, Y. Effects of zinc bath temperature on the coatings of hot-dip galvanizing. Surf. Coat. Technol. 2008, 202, 1785–1788. [Google Scholar] [CrossRef]
- Pokorny, P.; Kolisko, J.; Balik, L.; Novak, P. Effect of chemical composition of steel on the structure of hot–Dip galvanized coating. Metalurgija 2016, 55, 115–118. [Google Scholar]
- Yeomans, S.R. Galvanized steel reinforcement: Recent developments and future opportunities. In Corrosion of Steel in Concrete Structures; Woodhead Publishing: Sawston, UK, 2023; pp. 161–186. [Google Scholar]
- Verma, A.; Van Ooij, W. High-temperature batch hot-dip galvanizing. Part 2. Comparison of coatings formed in the temperature range 520–555 C. Surf. Coat. Technol. 1997, 89, 143–150. [Google Scholar] [CrossRef]
- Baboian, R. Corrosion Tests and Standards: Application and Interpretation; ASTM International: West Conshohocken, PA, USA, 2005; Volume 20. [Google Scholar]
- Hoffman, S.; Tunstall, M. Maximizing the Ratings of National Grids Existing Transmission Lines Using High Temperature, Low Sag Conductor; CIGRE: Paris, France, 2000; pp. 22–202. [Google Scholar]
- Kopsidas, K.; Boumecid, B.; Cooper, I.P. Overhead line design considerations for conductor creep mitigation. IET Gener. Transm. Distrib. 2016, 10, 2424–2432. [Google Scholar] [CrossRef]
- Cigre, W. Permanent elongation of conductors. Predictior equation and evaluation methods. Electra 1981, 75, 1–36. [Google Scholar]
- Bradbury, J.; Dey, P.; Orawski, G.; Pickup, K. Long-term-creep assessment for overhead-line conductors. In Proceedings of the Institution of Electrical Engineers; IET: London, UK, 1975; pp. 1146–1152. [Google Scholar]
- Bradbury, J.; Kuska, G.; Tarr, D. Sag and tension calculations for mountainous terrain. In Proceedings of the IEE Proceedings C (Generation, Transmission and Distribution); IET: London, UK, 1982; pp. 213–220. [Google Scholar]
- Global, C. Engineering Transmission Lines with High Capacity Low Sag ACCC Conductors, 1st ed.; CTC Global: Irvine, CA, USA, 2011. [Google Scholar]
- Cahill, T. Development of a low-creep ACSR conductor. Wire J. 1973, 6, 66–73. [Google Scholar]
- Stickley, G. Stress-strain studies of transmission line conductors. Electr. Eng. 1932, 51, 413. [Google Scholar] [CrossRef]
- CIGRE. Guide on Repair of Conductor-Fitting Systems; CIGRE: Paris, France, 2017. [Google Scholar]
- Soulinaris, G.; Halevidis, C.; Polykrati, A.; Bourkas, P. Evaluation of the thermal stresses and dielectric phenomena in the investigation of the causes of wildfires involving distribution power lines. Electr. Power Syst. Res. 2014, 117, 76–83. [Google Scholar] [CrossRef]
- Wilkins, R.; Saengsuwan, T.; O’Shields, L. Short-circuit tests on current-limiting fuses: Modelling of the test circuit. In Proceedings of the IEE Proceedings C (Generation, Transmission and Distribution); IEEE: Piscataway, NJ, USA, 1993; pp. 30–36. [Google Scholar]
- Yusop, F.M.; Masri, S.; Ishak, D.; Kamarol, M. Investigation of Electromagnetic Force in 3P5W Busbar System under Peak Short-Circuit Current. Int. J. Electr. Comput. Eng. 2014, 8, 180–184. [Google Scholar]
- Migliori, M.; Lauria, S.; Aluisio, B.; Gadaleta, C.; Carlini, E.M.; Piemonti, L. Series compensation of an uprated 230 kV–50 Hz backbone in central Italy: Impact on fault quantities. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Torino, Italy, 1–4 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- ASTM B856-18; Standard Specification for Concentric-Lay-Stranded Aluminum Conductors, Coated Steel Supported (ACSS). ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM B857-18; Standard Specification for Shaped Wire Compact Concentric-Lay-Stranded Aluminum Conductors, Coated-Steel Supported (ACSS/TW)1. ASTM International: West Conshohocken, PA, USA, 2018.
- AEST. Electrical Transmission and Distribution Reference Book; ABB Power T&D Company, Inc.: Bland, VA, USA, 1997. [Google Scholar]
- Hardy, C. Analysis of self-damping characteristics of stranded cables in transverse vibrations. In Proceedings of the CSME Mechanical Engineering Forum 1990, Toronto, ON, Canada, 3–9 June 1990. [Google Scholar]
- Std 563-1978; Guide on Conductor Self-Damping Measurements. IEEE: Piscataway, NJ, USA, 1978; p. 0_1.
- Vecchiarelli, J. Aeolian Vibration of a Conductor with a Stockbridge-Type Damper. Ph.D. Thesis, University of Toronto, Toronto, ON, USA, 1998. [Google Scholar]
- Munaswamy, K.; Haldar, A. Self-damping measurements of conductors with circular and trapezoidal wires. IEEE Trans. Power Deliv. 2000, 15, 604–609. [Google Scholar] [CrossRef]
- Michiorri, A.; Nguyen, H.-M.; Alessandrini, S.; Bremnes, J.B.; Dierer, S.; Ferrero, E.; Nygaard, B.-E.; Pinson, P.; Thomaidis, N.; Uski, S. Forecasting for dynamic line rating. Renew. Sustain. Energy Rev. 2015, 52, 1713–1730. [Google Scholar] [CrossRef]
- Karimi, S.; Musilek, P.; Knight, A.M. Dynamic thermal rating of transmission lines: A review. Renew. Sustain. Energy Rev. 2018, 91, 600–612. [Google Scholar] [CrossRef]
- Fernandez, E.; Albizu, I.; Bedialauneta, M.; Mazon, A.; Leite, P.T. Review of dynamic line rating systems for wind power integration. Renew. Sustain. Energy Rev. 2016, 53, 80–92. [Google Scholar] [CrossRef]
- Rahman, S.A. Re-Assessing the Current-Temperature Calculation for Bare Overhead Conductors at Low Wind Conditions; University of Manchester: Manchester, UK, 2019. [Google Scholar]
- Silva, A.; Bezerra, J. Applicability and limitations of ampacity models for HTLS conductors. Electr. Power Syst. Res. 2012, 93, 61–66. [Google Scholar] [CrossRef]
- Bergman, T.L. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Muratori, B. IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors; IEEE Standard: Piscataway, NJ, USA, 2013; pp. 738–2012. [Google Scholar]
- Iglesias, J.; Watt, G.; Douglass, D.; Morgan, V.; Stephen, R.; Bertinat, M.; Muftic, D.; Puffer, R.; Guery, D.; Ueda, S. Guide for Thermal Rating Calculations of Overhead Lines; CIGRE: Paris, France, 2014. [Google Scholar]
- Laplant, E.P.A. Electrical Engineering Dictionary; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Gallimberti, I. The mechanism of the long spark formation. Le J. De Phys. Colloq. 1979, 40, C7–C193. [Google Scholar] [CrossRef]
- Faraday, M., VIII. Experimental researches in electricity—Thirteenth series. Philos. Trans. R. Soc. Lond. 1838, 4, 125–168. [Google Scholar]
- Adamiak, K.; Atrazhev, V.; Atten, P. Corona discharge in the hyperbolic point-plane configuration: Direct ionization criterion versus an approximate formulations. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1015–1024. [Google Scholar] [CrossRef]
- Lings, R.J. EPRI AC Transmission Line Reference Book-200 kV and Above; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2005. [Google Scholar]
- Li, Q.; Rowland, S.M.; Dupere, I.; Morris, R.S. The impact of water droplet vibration on corona inception on conductors under 50 Hz AC fields. IEEE Trans. Power Deliv. 2018, 33, 2428–2436. [Google Scholar] [CrossRef]
- Qi, X.; Bian, X.; Lu, T.; Ma, W.; Liu, Y.; Zhang, X.; Cao, X. The features of positive dc corona discharge on the surface of the conductor with different contaminations. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 346–349. [Google Scholar]
- Jie, Z.; Zichen, H.; Jiale, W.; Xingming, B. Experimental studies on effects of surface morphologies on corona characteristics of conductors subjected to positive DC voltages. High Volt. 2020, 5, 489–497. [Google Scholar] [CrossRef]
- Xu, P.; Ma, Y.; Zhu, J.; Zhao, L.; Shen, B.; Bian, X. Effect of TiO2 coating on the surface condition and corona characteristics of positive DC conductors with particle matters. High Volt. 2022, 7, 147–157. [Google Scholar] [CrossRef]
- Megala, V.; Karpagam, R.; Sathishkumar, G.; Gopinath, B.; Kumar, P.M.; Brindha, M.D. Investigation on corona performance of conductors using fabricated indoor corona cage. Mater. Today Proc. 2021, 44, 3652–3656. [Google Scholar] [CrossRef]
- CIGRE. Sag-Tension Calculation Methods for Overhead Lines; Task Force B; CIGRE: Paris, France, 2007; Volume 2, p. 12.3. [Google Scholar]
- Prasetyo, H.; Sudiarto, B.; Setiabudy, R. Analysis of Knee Point Temperature (KPT) determination on High Capacity Low Sag (HCLS) conductors for optimizing the ampacity load and sag on the overhead transmission lines system. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; p. 042021. [Google Scholar]
- Southwire. Overhead Conductor Manual, 3rd ed.; Southwire: Carrollton, GA, USA, 2018. [Google Scholar]
- Banjanin, M.S.; Savić, M.S.; Stojković, Z.M. Lightning protection of overhead transmission lines using external ground wires. Electr. Power Syst. Res. 2015, 127, 206–212. [Google Scholar] [CrossRef]
- CIGRE. Lightning Parameters for Engineering Applications; CIGRE: Paris, France, 2013; p. 549. [Google Scholar]
- Takami, J.; Okabe, S. Characteristics of direct lightning strokes to phase conductors of UHV transmission lines. IEEE Trans. Power Deliv. 2006, 22, 537–546. [Google Scholar] [CrossRef]
- Gołębiowska, I.; Dutkiewicz, M.; Usewicz, B. Galloping of overhead power lines conductors. In Proceedings of the 24th International Conference on Engineering Mechanics, Svratka, Czech Republic, 14–17 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 257–260. [Google Scholar]
- Wang, J. Overhead transmission line vibration and galloping. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 9–13 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 120–123. [Google Scholar]
- Kiessling, F.; Nefzger, P.; Nolasco, J.F.; Kaintzyk, U.; Kiessling, F.; Nefzger, P.; Nolasco, J.F.; Kaintzyk, U. Conductor vibrations. In Overhead Power Lines: Planning, Design, Construction; Springer: Berlin/Heidelberg, Germany, 2003; pp. 321–348. [Google Scholar]
- Lilien, J.-L. Review of galloping control methods. Electra 2000, 191, 45–61. [Google Scholar]
- Chan, J.; Havard, D.; Rawlins, C.; Diana, G.; Cloutier, L.; Lilien, J.-L.; Hardy, C.; Wang, J.; Goel, A. EPRI Transmission Line Reference Book: Wind-induced Conductor Motion; EPRI, N° 1018554; EPRI: Palo Alto, CA, USA, 2009. [Google Scholar]
- Wolf, H.; AduM, B.; SeMenSKi, D.; PuSTAić, D. Using the energy balance method in estimation of overhead transmission line aeolian vibrations. Stroj. Časopis Za Teor. I Praksu U Stroj. 2008, 50, 269–276. [Google Scholar]
- Kraus, M.; Hagedorn, P. Aeolian vibrations: Wind energy input valuated from measurements on an energized transmission line. IEEE Trans. Power Deliv. 1991, 6, 1264–1270. [Google Scholar] [CrossRef]
- IEEE Std 1368; IEEE Guide for Aeolian Vibration Field Measurement of Overhead Conductors. IEEE: Piscataway, NJ, USA, 2006; pp. 1–35.
- Kopsidas, K.; Al Aqil, M.; Haldar, A.; Kavanagh, T. Evaluating Aeolian Vibration Performance of High-Temperature Low-Sag OHL Conductors. IEEE Trans. Power Deliv. 2021, 37, 1775–1784. [Google Scholar] [CrossRef]
- Papailiou, K.O. Overhead Lines; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Azevedo, C.; Cescon, T. Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Parana River. Eng. Fail. Anal. 2002, 9, 645–664. [Google Scholar] [CrossRef]
- Azevedo, C.R.d.F.; Henriques, A.; Pulino Filho, A.R.; Ferreira, J.; Araújo, J. Fretting fatigue in overhead conductors: Rig design and failure analysis of a Grosbeak aluminium cable steel reinforced conductor. Eng. Fail. Anal. 2009, 16, 136–151. [Google Scholar] [CrossRef]
- Fricke, W.G.; Rawlins, C.B. Importance of fretting in vibration failures of stranded conductors. IEEE Trans. Power Appar. Syst. 1968, 6, 1381–1384. [Google Scholar] [CrossRef]
- Kalombo, R.; Araújo, J.; Ferreira, J.; Da Silva, C.; Alencar, R.; Capra, A. Assessment of the fatigue failure of an All Aluminium Alloy Cable (AAAC) for a 230 kV transmission line in the Center-West of Brazil. Eng. Fail. Anal. 2016, 61, 77–87. [Google Scholar] [CrossRef]
- Ouaki, B.; Goudreau, S.; Cardou, A.; Fiset, M. Fretting fatigue analysis of aluminium conductor wires near the suspension clamp: Metallurgical and fracture mechanics analysis. J. Strain Anal. Eng. Des. 2003, 38, 133–147. [Google Scholar] [CrossRef]
- Matos, I.; Araújo, J.; Castro, F. Fretting fatigue performance and life prediction of 1120 aluminum alloy wires of overhead conductors. Theor. Appl. Fract. Mech. 2022, 121, 103521. [Google Scholar] [CrossRef]
- Lalonde, S.; Guilbault, R.; Langlois, S. Numerical analysis of ACSR conductor–clamp systems undergoing wind-induced cyclic loads. IEEE Trans. Power Deliv. 2017, 33, 1518–1526. [Google Scholar] [CrossRef]
- Baumann, R.; Novak, P. Efficient computation and experimental validation of ACSR overhead line conductors under tension and bending. CIGRE Sci. Eng. 2017, 9, 5–16. [Google Scholar]
- Frigerio, M.; Buehlmann, P.; Buchheim, J.; Holdsworth, S.R.; Dinser, S.; Franck, C.M.; Papailiou, K.; Mazza, E. Analysis of the tensile response of a stranded conductor using a 3D finite element model. Int. J. Mech. Sci. 2016, 106, 176–183. [Google Scholar] [CrossRef]
- Fadel, A.A.; Rosa, D.; Murça, L.; Fereira, J.; Araújo, J. Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor. Int. J. Fatigue 2012, 42, 24–34. [Google Scholar] [CrossRef]
- Jurkiewicz, B.; Smyrak, B. Studies on the Evolution of Fatigue Strength of Aluminium Wires for Overhead Line Conductors. Materials 2024, 17, 2537. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-P.; Wang, Q.; Yang, H.-J.; Wu, X.-M.; Li, C.-H.; Zhang, Z.-F.; Li, X.-W. Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire. Materials 2016, 9, 764. [Google Scholar] [CrossRef]
- Rocha, P.; Langlois, S.; Lalonde, S.; Araújo, J.; Castro, F. A general life estimation method for overhead conductors based on fretting fatigue behavior of wires. Theor. Appl. Fract. Mech. 2022, 121, 103443. [Google Scholar] [CrossRef]
- Engineering Guidelines Relating to Fatigue Endurance Capability of Conductor/Clamp Systems; Technical Brochures 429: B2 Overhead Lines, Research Publications at Politecnico di Milano: Milan, Italy, 2010.
- Sonsino, C.M. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int. J. Fatigue 2007, 29, 2246–2258. [Google Scholar] [CrossRef]
- Thrash, F. ACSS/TW-An improved high temperature conductor for upgrading existing lines or new construction. In Proceedings of the 2001 Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 15–19 July 2001; Conference Proceedings (Cat. No. 01CH37262). IEEE: Piscataway, NJ, USA, 2001; pp. 182–185. [Google Scholar]
- Cooper, D.; Jeter, D. Self-Damping Tests of Various “Drake” Conductors; Southwire Company: Carrollton, GA, USA, 2021. [Google Scholar]
- Shivashankar, G. Overview of different overhead transmission line conductors. Mater. Today Proc. 2017, 4, 11318–11324. [Google Scholar]
- Willis, H. Power Distribution Planning Reference Book; M. Dekker: New York, NY, USA, 2004. [Google Scholar]
- Moreira, L.; Lopes, A. Use of high-temperature conductors in existing lines: Economic and environmental benefits. CIRED-Open Access Proc. J. 2017, 2017, 481–486. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hawkins, T.R.; Hertwich, E.G. Life cycle assessment of electricity transmission and distribution—Part 1: Power lines and cables. Int. J. Life Cycle Assess. 2012, 17, 9–15. [Google Scholar] [CrossRef]
- Dong, X.; Kang, C.; Zhang, N.; Yan, H.; Meng, J.; Niu, X.; Tian, X. Estimating life-cycle energy payback ratio of overhead transmission line toward low carbon development. J. Mod. Power Syst. Clean Energy 2015, 3, 123–130. [Google Scholar] [CrossRef]
Element | Composition, % | ||
---|---|---|---|
GA2/MA2 | GA3/MA3 | GA4/GA5/MA4/MA5 | |
Carbon | 0.5 to 0.88 | 0.5 to 0.88 | 0.5 to 1.00 |
Manganese | 0.5 to 1.10 | 0.5 to 1.30 | 0.30 to 1.30 |
Phosphorus, max. | 0.035 | 0.035 | 0.035 |
Sulfur, max. | 0.045 | 0.045 | 0.045 |
Silicon | 0.1 to 0.35 | 0.1 to 0.35 | 0.1 to 1.20 |
Wire Type | Standard | Density (kg/m3) | Electrical Conductivity (%IACS) | Coefficient of Linear Expansion (10−6 K−1) | Ultimate Tensile Strength (MPa) | Tensile Stress at 1% Elongation (MPa) | Elongation (%) |
---|---|---|---|---|---|---|---|
GA2 | ASTM | 7780 | 9.0 | - | 1240–1450 | 1070–1310 | 3.0–4.0 |
BS EN | 7780 | - | 11.5 | 1600–1700 | 1100–1170 | 3.0–4.0 | |
GA3/HS | ASTM | 7780 | 9.0 | - | 1520–1620 | 1340–1450 | 3.0–3.5 |
BS EN | 7780 | - | 11.5 | 1600–1700 | 1340–1450 | 2.0–2.5 | |
GA4/EHS | ASTM | 7780 | 9.0 | - | 1725–1825 | 1450–1550 | 3.0–3.5 |
BS EN | 7780 | - | 11.5 | 1600–1700 | 1340–1450 | 2.0–2.5 | |
GA5/UHS | ASTM | 7780 | 9.0 | - | 1825–1965 | 1480–1580 | 3.0–3.5 |
BS EN | 7780 | - | 11.5 | 1600–1700 | 1340–1450 | 2.0–2.5 | |
MA2 | ASTM | 7780 | 9.0 | - | 1240–1450 | 1070–1310 | 3.0–4.0 |
MA3/HS | ASTM | 7780 | 9.0 | - | 1520–1620 | 1340–1450 | 3.0–3.5 |
MA4/EHS | ASTM | 7780 | 9.0 | - | 1725–1825 | 1450–1550 | 3.0–3.5 |
BS EN | 7780 | - | 11.5 | 1725–1825 | 1450–1550 | 3.0–3.5 | |
MA5/UHS | ASTM | 7780 | 9.0 | - | 1825–1965 | 1480–1580 | 3.0–3.5 |
BS EN | 7780 | - | 11.5 | 1825–1965 | 1480–1580 | 3.0–3.5 | |
ACS/AW2 | ASTM | 6590 | 20.3 | - | 1103–1344 | 1000–1206 | 1.5 |
ACS/AW3 | ASTM | 6590 | 20.3 | - | 1340–1450 | 1170–1310 | 1.5 |
BS EN | 6590 | 20.3 | 13.0 | 1515–1620 | 1300–1390 | 1.5 | |
Al 1350-O | ASTM | 2705 | 61.8 | - | 60–95 | - | - |
BS EN | 2703 | 61.8 | - | 60–95 | - | 20.0 | |
Al-Zr Alloy | ASTM | 2700 | 60.0 | 23.0 | 155–165 | - | 2.0 |
BS EN | 2703 | 55.0–60.0 | 23.0 | 159–248 | - | 1.5–2.0 |
Element | Composition, % |
---|---|
Silicon, max. | 0.10 |
Iron, max. | 0.40 |
Copper, max. | 0.05 |
Manganese, max. | 0.01 |
Chromium, max. | 0.01 |
Zinc, max. | 0.05 |
Boron, max. | 0.05 |
Gallium, max. | 0.03 |
Vanadium plus titanium, total, max. | 0.02 |
Other elements, each, max. | 0.03 |
Other elements, total, max. | 0.10 |
Aluminum, min. | 99.50 |
Parameter | ACSS to ACSR | Ref. |
---|---|---|
Maximum operating temperature | Much higher (up to 3 times higher) | [120,149] |
Current-carrying capacity at maximum operating temperature | Much higher (up to 2 times higher) | [85,120,149] |
Current-carrying capacity at same operating temperature | Higher (up to 25%) | [85,149] |
Transmission losses at same operating temperature | Lower (up to 5%) | [85,149] |
Creep strain | Lower | [85,149] |
Temperature effect on sag | Much lower | [85,120] |
Self-damping | Much higher (5 to 20 times) | [120,133,150] |
Electrical conductivity at room temperature | Higher (up to 5%) | [85,149] |
Tensile strength | Lower (up to 35 %) | [85,133,149] |
Fatigue life | Lower probability | [144,148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalilian, M.; Riba, J.-R.; Parvizi, P. Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion. Materials 2024, 17, 4536. https://doi.org/10.3390/ma17184536
Jalilian M, Riba J-R, Parvizi P. Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion. Materials. 2024; 17(18):4536. https://doi.org/10.3390/ma17184536
Chicago/Turabian StyleJalilian, Milad, Jordi-Roger Riba, and Pooya Parvizi. 2024. "Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion" Materials 17, no. 18: 4536. https://doi.org/10.3390/ma17184536
APA StyleJalilian, M., Riba, J. -R., & Parvizi, P. (2024). Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion. Materials, 17(18), 4536. https://doi.org/10.3390/ma17184536