Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Polyol—Stapanpol PS-2352 (polyester polyol)—Stepan Company (Northfield, IL USA);
- Isocyanate—Purocyn B (4,4′-diphenyl-methane-diisocyanate)—Purinova (Bydgoszcz, Poland);
- Surfactant—Tegostab B8513 (silicone surfactant)—Evonik (Essen, Germany);
- Catalysts—Kosmos 75 (Potassium octoate), Kosmos 33 (Potassium acetate)—Evonik (Essen, Germany);
- Foaming agent—pentane, cyclopentane (physical blowing agent)—Sigma-Aldrich Corporation (Saint Louis, MO, USA), water (chemical blowing agent);
- Walnut shells—Local Company (Lodz, Poland);
- Vermiculite—FlameHunter VE MIC (Mg,Fe,Al)3(Al,Si)4O10(OH)2·4H2O)—NYSA CHEM (Wrocław, Poland);
- Perlite—Sigma-Aldrich (Saint Louis, MO, USA).
2.2. Synthesis of Polyurethane Foams
2.3. Methods
3. Results and Discussion
3.1. Filler Characterization
3.1.1. Optical Microscopy
3.1.2. Size Distribution
3.1.3. FTIR/NIR Characterization
3.1.4. Thermogravimetry Analysis
3.2. Properties of Foams with Walnut Shells and Mineral Fillers
3.2.1. Synthesis of Polyurethane Foams
3.2.2. Cellular Structure
3.2.3. Mechanical Properties
3.2.4. Water Uptake and Contact Angle
3.2.5. Dimensional Stability
3.2.6. Thermogravimetry Analysis
3.2.7. Burning Behavior
3.2.8. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Zheng, Y.; Zhang, B.; Feng, Y.; Zhu, J.; Xu, J.; Zhang, C.; Feng, W.; Liu, T. Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Appl. Mater. Interfaces 2019, 11, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Giannotas, G.; Kamperidou, V.; Barboutis, I. Tree bark utilization in insulating bio-aggregates: A review. Biofuels, Bioprod. Biorefining 2021, 15, 1989–1999. [Google Scholar] [CrossRef]
- Rigid Polyurethane Foam Market—Global Industry Analysis, Size, Share, Growth Trends & Forecasts 2017–2025. Available online: https://www.transparencymarketresearch.com/rigid-polyurethane-foam-market.html (accessed on 18 September 2024).
- Polyurethane Market Size|Global Research Report [2021–2028]. Available online: https://www.fortunebusinessinsights.com/industry-reports/polyurethane-pu-market-101801 (accessed on 17 September 2022).
- Engels, H.W.; Pirkl, H.G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef] [PubMed]
- Peyrton, J.; Avérous, L. Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater. Sci. Eng. R Rep. 2021, 145, 100608. [Google Scholar] [CrossRef]
- Das, A.; Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Polyurethane Market | Global Research Report 2032. Available online: https://www.factmr.com/report/polyurethane-market (accessed on 17 September 2022).
- Fagnani, D.E.; Tami, J.L.; Copley, G.; Clemons, M.N.; Getzler, Y.D.Y.L.; McNeil, A.J. 100th Anniversary of Macromolecular Science Viewpoint: Redefining Sustainable Polymers. ACS Macro Lett. 2021, 10, 41–53. [Google Scholar] [CrossRef]
- Hong, M.; Chen, E.Y.X. Future Directions for Sustainable Polymers. Trends Chem. 2019, 1, 148–151. [Google Scholar] [CrossRef]
- Jabber, L.J.Y.; Grumo, J.C.; Alguno, A.C.; Lubguban, A.A.; Capangpangan, R.Y. Influence of cellulose fibers extracted from pineapple (Ananas comosus) leaf to the mechanical properties of rigid polyurethane foam. Mater. Today Proc. 2021, 46, 1735–1739. [Google Scholar] [CrossRef]
- Uram, K.; Leszczyńska, M.; Prociak, A.; Czajka, A.; Gloc, M.; Leszczyński, M.K.; Michałowski, S.; Ryszkowska, J. Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Filler. Materials 2021, 14, 3474. [Google Scholar] [CrossRef]
- Khaleel, M.; Soykan, U.; Çetin, S. Influences of turkey feather fiber loading on significant characteristics of rigid polyurethane foam: Thermal degradation, heat insulation, acoustic performance, air permeability and cellular structure. Constr. Build. Mater. 2021, 308, 125014. [Google Scholar] [CrossRef]
- Wrześniewska-Tosik, K.; Ryszkowska, J.; Mik, T.; Wesołowska, E.; Kowalewski, T.; Pałczyńska, M.; Sałasińska, K.; Walisiak, D.; Czajka, A. Composites of Semi-Rigid Polyurethane Foams with Keratin Fibers Derived from Poultry Feathers and Flame Retardant Additives. Polymers 2020, 12, 2943. [Google Scholar] [CrossRef] [PubMed]
- Wrześniewska-Tosik, K.; Zajchowski, S.; Bryśkiewicz, A.; Ryszkowska, J. Feathers as a flame-retardant in elastic polyurethane foam. Fibres Text. East. Eur. 2014, 103, 119–128. [Google Scholar]
- Ayrilmis, N.; Kaymakci, A.; Ozdemir, F. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J. Ind. Eng. Chem. 2013, 19, 908–914. [Google Scholar] [CrossRef]
- Abdulwahid, M.Y.; Akinwande, A.A.; Kamarou, M.; Romanovski, V.; Al-Qasem, I.A. The production of environmentally friendly building materials out of recycling walnut shell waste: A brief review. Biomass Convers. Biorefin. 2023, 95, 1–10. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A.; Tabarsa, T. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos. Part B Eng. 2012, 43, 3276–3280. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Amarowicz, R. Walnut (Juglans regia L.) shell pyroligneous acid: Chemical constituents and functional applications. RSC Adv. 2018, 8, 22376. [Google Scholar] [CrossRef]
- Dovi, E.; Aryee, A.A.; Kani, A.N.; Mpatani, F.M.; Li, J.; Li, Z.; Qu, L.; Han, R. Functionalization of walnut shell by grafting amine groups to enhance the adsorption of Congo red from water in batch and fixed-bed column modes. J. Environ. Chem. Eng. 2021, 9, 106301. [Google Scholar] [CrossRef]
- Demirbas, A. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis 2006, 76, 285–289. [Google Scholar] [CrossRef]
- Jannat, N.; Latif Al-Mufti, R.; Hussien, A. Eggshell and Walnut Shell in Unburnt Clay Blocks. CivilEng 2022, 3, 263–276. [Google Scholar] [CrossRef]
- Xiao, N.; Bock, P.; Antreich, S.J.; Staedler, Y.M.; Schönenberger, J.; Gierlinger, N. From the Soft to the Hard: Changes in Microchemistry During Cell Wall Maturation of Walnut Shells. Front. Plant Sci. 2020, 11, 503736. [Google Scholar] [CrossRef]
- ISO 2555:2018; Plastics—Resins in the Liquid State or as Emulsions or Dispersions—Determination of Apparent Viscosity Using a Single Cylinder Type Rotational Viscometer Method. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 845:2006; Cellular Plastics and Rubbers—Determination of Apparent Density. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 844:2021; Rigid Cellular Plastics—Determination of Compression Properties. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 178:2019; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 2896:2001; Rigid Cellular Plastics—Determination of Water Absorption. International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 2796:1986; Cellular Plastics, Rigid—Test for Dimensional Stability. International Organization for Standardization: Geneva, Switzerland, 1986.
- ISO 5660-1:2015; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 4589-2:2017; Plastics—Determination of Burning Behaviour by Oxygen Index—Part 2: Ambient-Temperature Test. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 8301:1991; Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus. International Organization for Standardization: Geneva, Switzerland, 1991.
- Çelik, Y.H.; Yalcin, R.; Topkaya, T.; Başaran, E.; Kilickap, E. Characterization of Hazelnut, Pistachio, and Apricot Kernel Shell Particles and Analysis of Their Composite Properties. J. Nat. Fibers 2021, 18, 1054–1068. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials 2020, 13, 4573. [Google Scholar] [CrossRef] [PubMed]
- Schwanninger, M.; Rodrigues, J.C.; Fackler, K.; Schwanninger, M.; Rodrigues, J.C.; Fackler, K. A Review of Band Assignments in near Infrared Spectra of Wood and Wood Components. J. Near Infrared Spectrosc. 2011, 19, 287–308. [Google Scholar] [CrossRef]
- Inagaki, T.; Siesler, H.W.; Mitsui, K.; Tsuchikawa, S. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study. Biomacromolecules 2010, 11, 2300–2305. [Google Scholar] [CrossRef]
- Jozanikohan, G.; Abarghooei, M.N. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J. Pet. Explor. Prod. Technol. 2022, 12, 2093–2106. [Google Scholar] [CrossRef]
- Zujovic, Z.; Wheelwright, W.V.K.; Kilmartin, P.A.; Hanna, J.V.; Cooney, R.P. Structural investigations of perlite and expanded perlite using 1H, 27Al and 29Si solid-state NMR. Ceram. Int. 2018, 44, 2952–2958. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef]
- Yu, X.B.; Wei, C.H.; Ke, L.; Wu, H.Z.; Chai, X.S.; Hu, Y. Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water. J. Colloid Interface Sci. 2012, 369, 344–351. [Google Scholar] [CrossRef]
- Long, H.; Wu, P.; Yang, L.; Huang, Z.; Zhu, N.; Hu, Z. Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J. Colloid Interface Sci. 2014, 428, 295–301. [Google Scholar] [CrossRef]
- Oliveira, M.F.L.; China, A.L.; Oliveira, M.G.; Leite, M.C.A.M. Biocomposites based on Ecobras matrix and vermiculite. Mater. Lett. 2015, 158, 25–28. [Google Scholar] [CrossRef]
- Mizera, K.; Ryszkowska, J.; Kurańska, M.; Prociak, A. The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers. Polym. Bull. 2020, 77, 823–846. [Google Scholar] [CrossRef]
- Kurańska, M.; Polaczek, K.; Auguścik-Królikowska, M.; Prociak, A.; Ryszkowska, J. Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer 2020, 190, 122164. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A. Cellulose fibers hydrophobization via a hybrid chemical modification. Polymers 2019, 11, 1174. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A. Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Solution for Green Chemistry (Part I). Materials 2020, 13, 2552. [Google Scholar] [CrossRef]
- Açıkalın, K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J. Therm. Anal. Calorim. 2011, 105, 145–150. [Google Scholar] [CrossRef]
- Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. J. Clean. Prod. 2019, 236, 117615. [Google Scholar] [CrossRef]
- Kurańska, M.; Barczewski, M.; Uram, K.; Lewandowski, K.; Prociak, A.; Michałowski, S. Basalt waste management in the production of highly effective porous polyurethane composites for thermal insulating applications. Polym. Test. 2019, 76, 90–100. [Google Scholar] [CrossRef]
- Barczewski, M.; Kurańska, M.; Sałasińska, K.; Michałowski, S.; Prociak, A.; Uram, K.; Lewandowski, K. Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste. Polym. Test. 2020, 81, 106190. [Google Scholar] [CrossRef]
- Kastanaki, E.; Vamvuka, D.; Grammelis, P.; Kakaras, E. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process. Technol. 2002, 77–78, 159–166. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, Y.; Wu, Q.; Zeng, J. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols. Int. J. Biol. Macromol. 2018, 115, 786–791. [Google Scholar] [CrossRef]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur. Polym. J. 2015, 68, 1–9. [Google Scholar] [CrossRef]
- Majouli, A.; Younssi, S.A.; Tahiri, S.; Albizane, A.; Loukili, H.; Belhaj, M. Characterization of flat membrane support elaborated from local Moroccan Perlite. Desalination 2011, 277, 61–66. [Google Scholar] [CrossRef]
- Gómez-Fernández, S.; Ugarte, L.; Calvo-Correas, T.; Peña-Rodríguez, C.; Corcuera, M.A.; Eceiza, A. Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crops Prod. 2017, 100, 51–64. [Google Scholar] [CrossRef]
- Lee, L.J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer nanocomposite foams. Compos. Sci. Technol. 2005, 65, 2344–2363. [Google Scholar] [CrossRef]
- Kuranska, M.; Prociak, A. Porous polyurethane composites with natural fibres. Compos. Sci. Technol. 2012, 72, 299–304. [Google Scholar] [CrossRef]
- Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kowalski, M.; Krauze, S.; Lewandowska, M. The influence of carbon fillers on the thermal properties of polyurethane foam. J. Therm. Anal. Calorim. 2016, 123, 283–291. [Google Scholar] [CrossRef]
- Formela, K.; Hejna, A.; Zedler, Ł.; Przybysz, M.; Ryl, J.; Saeb, M.R.; Piszczyk, Ł. Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind. Crops Prod. 2017, 108, 844–852. [Google Scholar] [CrossRef]
- Gursoy, T.; Alma, M. Water absorption and biodegradation properties of potato waste-based polyurethane foams. Middle East J. Sci. 2017, 3, 40–47. [Google Scholar] [CrossRef]
- Li, B.; Zhou, M.; Huo, W.; Cai, D.; Qin, P.; Cao, H.; Tan, T. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crops Prod. 2020, 143, 111887. [Google Scholar] [CrossRef]
Component | Brand Name | Proportion |
---|---|---|
Polyol | Stapanpol PS-2352 | 100 |
Isocyanate | Purocyn B | 160 |
Surfactant | Tegostab B8513 | 2.5 |
Catalysts | Kosmos 75 | 6 |
Kosmos 33 | 0.8 | |
Foaming agent | Pentane/cycliopentane | 11 |
Water | 0.5 | |
Nutshell | Walnut shells | 0–10 |
Mineral filler | Vermiculite | 0–10 |
Perlite | 0–10 |
Nutshell | Amount [wt.%] | Mineral Filler | Amount [wt.%] | |
---|---|---|---|---|
PU_0 | - | - | - | - |
PU_10WS | walnut shell | 10 | - | - |
PUR foam with walnut shells/perlite | ||||
PU_7.5WS_2.5P | walnut shell | 7.5 | perlite | 2.5 |
PU_5WS_5P | walnut shell | 5 | perlite | 5 |
PU_2.5WS_7.5P | walnut shell | 2.5 | perlite | 7.5 |
PU_10P | walnut shell | - | perlite | 10 |
PUR foam with walnut shells/vermiculite | ||||
PU_7.5WS_2.5V | walnut shell | 7.5 | vermiculite | 2.5 |
PU_5WS_5V | walnut shell | 5 | vermiculite | 5 |
PU_2.5WS_7.5V | walnut shell | 2.5 | vermiculite | 7.5 |
PU_2.5WS_7.5V | walnut shell | - | vermiculite | 10 |
Foam | 1st Stage | 2nd Stage | 3rd Stage | Char Residue at 600 °C [wt.%] |
---|---|---|---|---|
Tmax [°C] | ||||
WS | 77 ± 2 | 296 ± 3 | 524 ± 3 | 5.2 ± 0.1 |
P | 193 ± 2 | - | - | 96.4 ± 0.1 |
V | 104 ± 2 | - | - | 87.8 ± 0.1 |
Start Time [s] | Expansion Time [s] | Stabilization Time [s] | Total Time [s] | Maximum Temperature [° C] | |
---|---|---|---|---|---|
PU_0 | 29 ± 2 | 262 ± 8 | 351 ± 6 | 642 ± 6 | 121 ± 2 |
PU_10WS | 29 ± 1 | 270 ± 7 | 381 ± 5 | 680 ± 7 | 129 ± 2 |
PU_7.5WS_2.55P | 29 ± 1 | 273 ± 5 | 380 ± 9 | 682 ± 9 | 129 ± 1 |
PU_5WS_5P | 30 ± 2 | 279 ± 7 | 379 ± 9 | 688 ± 9 | 130 ± 1 |
PU_2.5WS_7.5P | 30 ± 2 | 284 ± 7 | 380 ± 8 | 694 ± 8 | 130 ± 1 |
PU_10P | 32 ± 2 | 287 ± 6 | 393 ± 7 | 712 ± 7 | 131 ± 1 |
PU_7.5WS_2.5V | 30 ± 1 | 277 ± 8 | 389 ± 7 | 696 ± 7 | 129 ± 2 |
PU_5WS_5V | 30 ± 3 | 280 ± 7 | 405 ± 5 | 715 ± 6 | 132 ± 1 |
PU_2.5WS_7.5V | 31 ± 2 | 285 ± 9 | 409 ± 7 | 725 ± 8 | 134 ± 2 |
PU_10V | 31 ± 2 | 281 ± 6 | 389 ± 7 | 701 ± 7 | 134 ± 1 |
Dynamic Viscosity at 10 RPM [mPa·s] | Cell Diameter [µm] | Anisotropy [-] | Apparent Density [kg m−3] | |
---|---|---|---|---|
PU_0 | 780 ± 10 | 510 ± 143 | 1.62 ± 0.14 | 35.49 ± 0.17 |
PU_10WS | 2820 ± 10 | 498 ± 146 | 1.67 ± 0.16 | 38.17 ± 0.77 |
PU_7.5WS_2.5P | 2880 ± 10 | 452 ± 88 | 1.67 ± 0.16 | 38.23 ± 0.34 |
PU_5WS_5P | 3040 ± 10 | 431 ± 102 | 1.66 ± 0.24 | 39.89 ± 0.49 |
PU_2.5WS_7.5P | 3270 ± 10 | 412 ± 111 | 1.67 ± 0.26 | 42.03 ± 0.11 |
PU_10P | 3370 ± 10 | 411 ± 97 | 1.56 ± 0.10 | 43.08 ± 0.26 |
PU_7.5WS_2.5V | 2810 ± 20 | 452 ± 130 | 1.70 ± 0.25 | 38.22 ± 0.08 |
PU_5WS_5V | 2710 ± 20 | 450 ± 145 | 1.70 ± 0.29 | 38.79 ± 0.24 |
PU_2.5WS_7.5V | 2750 ± 20 | 435 ± 130 | 1.68 ± 0.30 | 39.18 ± 0.45 |
PU_10V | 2350 ± 20 | 444 ± 107 | 1.70 ± 0.17 | 39.54 ± 0.46 |
Temperature of −20 °C | Temperature of +70 °C | |||||
---|---|---|---|---|---|---|
Foam | Δh [%] | Δw [%] | Δt [%] | Δh [%] | Δw [%] | Δt [%] |
PU_0 | 0.42 ± 0.02 | 0.73 ± 0.00 | 0.73 ± 0.02 | 0.37 ± 0.17 | 0.54 ± 0.19 | 0.65 ± 0.02 |
PU_10WS | 0.17 ± 0.14 | 0.23 ± 0.18 | 0.26 ± 0.21 | 0.19 ± 0.14 | 0.11 ± 0.09 | 0.35 ± 0.21 |
PU_7.5WS_2.55P | 0.25 ± 0.15 | 0.05 ± 0.02 | 0.04 ± 0.04 | 0.30 ± 0.10 | 0.39 ± 0.19 | 0.36 ± 0.04 |
PU_5WS_5P | 0.25 ± 0.15 | 0.07 ± 0.02 | 0.18 ± 0.06 | 0.26 ± 0.01 | 0.27 ± 0.00 | 0.40 ± 0.06 |
PU_2.5WS_7.5P | 0.19 ± 0.19 | 0.09 ± 0.06 | 0.05 ± 0.00 | 0.33 ± 0.06 | 0.46 ± 0.21 | 0.57 ± 0.00 |
PU_10P | 0.05 ± 0.04 | 0.11 ± 0.01 | 0.25 ± 0.15 | 0.17 ± 0.09 | 0.33 ± 0.06 | 0.38 ± 0.04 |
PU_7.5WS_2.5V | 0.16 ± 0.09 | 0.12 ± 0.05 | 0.08 ± 0.00 | 0.08 ± 0.04 | 0.15 ± 0.07 | 0.06 ± 0.00 |
PU_5WS_5V | 0.15 ± 0.10 | 0.15 ± 0.02 | 0.14 ± 0.06 | 0.03 ± 0.02 | 0.53 ± 0.38 | 0.04 ± 0.06 |
PU_2.5WS_7.5V | 0.11 ± 0.01 | 0.05 ± 0.05 | 0.06 ± 0.01 | 0.28 ± 0.09 | 0.05 ± 0.05 | 0.42 ± 0.01 |
PU_10V | 0.04 ± 0.01 | 0.33 ± 0.04 | 0.18 ± 0.01 | 0.07 ± 0.07 | 0.07 ± 0.02 | 0.27 ± 0.07 |
Foam | 1st Stage | 2nd Stage | 3rd Stage | Char Residue at 600 °C [wt.%] |
---|---|---|---|---|
Tmax [°C] | ||||
PU_0 | 202 ± 2 | 310 ± 3 | 585 ± 4 | 22.3 ± 0.1 |
PU_10WS | 221 ± 2 | 319 ± 3 | 636 ± 3 | 28.9 ± 0.1 |
PU_7.5WS_2.5P | 216 ± 3 | 319 ± 2 | 627 ± 2 | 32.6 ± 0.1 |
PU_5WS_5P | 216 ± 3 | 319 ± 2 | 608 ± 4 | 32.7 ± 0.1 |
PU_2.5WS_7.5P | 221 ± 2 | 319 ± 2 | 632 ± 4 | 33.2 ± 0.1 |
PU_10P | 216 ± 3 | 319 ± 3 | 632 ± 3 | 34.2 ± 0.1 |
PU_7.5WS_2.5V | 207 ± 2 | 314 ± 3 | 608 ± 3 | 30.3 ± 0.1 |
PU_5WS_5V | 212 ± 2 | 319 ± 3 | 604 ± 3 | 31.6 ± 0.1 |
PU_2.5WS_7.5V | 207 ± 3 | 314 ± 2 | 604 ± 2 | 31.7 ± 0.1 |
PU_10V | 216 ± 2 | 314 ± 2 | 604 ± 4 | 34.0 ± 0.1 |
Foam | IT [s] | THR [MJ m−2] | TSR [m2 m−2] | COY [kg kg−1] | CO2Y [kg kg−1] | COY/CO2Y [-] | MARHE [kW m−2] |
---|---|---|---|---|---|---|---|
PU_0 | 4 ± 0 | 20.4 ± 0.8 | 750 ± 8 | 0.38 ± 0.04 | 3.95 ± 0.03 | 0.10 ± 0.01 | 102 ± 4 |
PU_10WS | 6 ± 1 | 14.2 ± 0.6 | 464 ± 8 | 0.24 ± 0.03 | 2.79 ± 0.04 | 0.08 ± 0.01 | 89 ± 5 |
PU_5WS_5P | 8 ± 1 | 13.4 ± 0.6 | 556 ± 9 | 0.16 ± 0.02 | 2.42 ± 0.04 | 0.07 ± 0.01 | 77 ± 5 |
PU_10P | 8 ± 1 | 14.4 ± 0.7 | 537 ± 7 | 0.30 ± 0.02 | 3.69 ± 0.05 | 0.08 ± 0.01 | 71 ± 4 |
PU_5WS_5V | 8 ± 1 | 19.1 ± 0.8 | 384 ± 6 | 0.40 ± 0.03 | 4.38 ± 0.04 | 0.09 ± 0.01 | 72 ± 4 |
PU_10V | 8 ± 1 | 13.4 ± 0.8 | 538 ± 6 | 0.44 ± 0.04 | 4.44 ± 0.05 | 0.10 ± 0.01 | 63 ± 5 |
Foam | LOI [%] | UL-94 Test | Total Burning Time [s] |
---|---|---|---|
PU_0 | 19.8 ± 0.1 | No Rating | >100 |
PU_10WS | 21.0 ± 0.1 | No Rating | >100 |
PU_5WS_5P | 20.8 ± 0.1 | No Rating | >100 |
PU_10P | 21.2 ± 0.1 | No Rating | >100 |
PU_5WS_5V | 20.0 ± 0.1 | No Rating | >100 |
PU_10V | 20.7 ± 0.1 | No Rating | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowska, S.; Miedzińska, K.; Kairytė, A.; Šeputytė-Jucikė, J.; Strzelec, K. Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers. Materials 2024, 17, 4629. https://doi.org/10.3390/ma17184629
Makowska S, Miedzińska K, Kairytė A, Šeputytė-Jucikė J, Strzelec K. Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers. Materials. 2024; 17(18):4629. https://doi.org/10.3390/ma17184629
Chicago/Turabian StyleMakowska, Sylwia, Karolina Miedzińska, Agnė Kairytė, Jurga Šeputytė-Jucikė, and Krzysztof Strzelec. 2024. "Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers" Materials 17, no. 18: 4629. https://doi.org/10.3390/ma17184629
APA StyleMakowska, S., Miedzińska, K., Kairytė, A., Šeputytė-Jucikė, J., & Strzelec, K. (2024). Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers. Materials, 17(18), 4629. https://doi.org/10.3390/ma17184629