Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of the Resin Mixture
2.3. Preparation of the Composites
2.4. Methods
2.4.1. Gas Chromatography
2.4.2. Assessment of Antimicrobial Activity
2.4.3. Flammability Tests
2.4.4. Hardness Measurements
2.4.5. Material Strength Tests
3. Results and Discussion
3.1. GC Analysis of Plant Extracts
3.2. Assessment of Antimicrobial Properties of Composites with Plant Additives
3.3. The Influence of Plant Additives on the Flammability Properties of Composites
3.4. The Influence of Plant Additives on the Mechanical Properties of Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PN EN 45545-2; Railway Applications—Fire Protection on Railway Vehicles—Part 2: Requirements for Fire Behaviour of Materials and Components). Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 2024.
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in Epoxy Resins. Polym. Rev. 2020, 60, 1–41. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Papež, N.; Sadovský, P.; Holcman, V. A Brief Overview on Epoxies in Electronics: Properties, Applications, and Modifications. Polymers 2023, 15, 3964. [Google Scholar] [CrossRef] [PubMed]
- Mohan, P. A Critical Review: The Modification, Properties, and Applications of Epoxy Resins. Polym.—Plast. Technol. Eng. 2013, 52, 107–125. [Google Scholar] [CrossRef]
- Ly, Y.T.; Leuko, S.; Moeller, R. An Overview of the Bacterial Microbiome of Public Transportation Systems—Risks, Detection, and Countermeasures. Front. Public Health 2024, 12, 1367324. [Google Scholar] [CrossRef]
- Bertani, R.; Bartolozzi, A.; Pontefisso, A.; Quaresimin, M.; Zappalorto, M. Improving the Antimicrobial and Mechanical Properties of Epoxy Resins via Nanomodification: An Overview. Molecules 2021, 26, 5426. [Google Scholar] [CrossRef]
- Martynková, G.S.; Valášková, M. Antimicrobial Nanocomposites Based on Natural Modified Materials: A Review of Carbons and Clays. J. Nanosci. Nanotechnol. 2014, 14, 673–693. [Google Scholar] [CrossRef]
- Yılmaz, G.E.; Göktürk, I.; Ovezova, M.; Yılmaz, F.; Kılıç, S.; Denizli, A. Antimicrobial Nanomaterials: A Review. Hygiene 2023, 3, 269–290. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Adv. Ther. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Adaszyńska, M.; Swarcewicz, M. Wybrane wtórne metabolity roślinne jako środki przeciwdrobnoustrojowe secondary plant metabolities as antimicrobial agents. Wiadomości Chem. 2013, 67, 3–4. [Google Scholar]
- Ahmed, E.; Arshad, M.; Zakriyya Khan, M.; Shoaib Amjad, M.; Mehreen Sadaf, H.; Riaz, I.; Sidra Sabir, P.; Ahmad, N.; Sabaoon, P.; Correspondence Ejaz Ahmed, P.; et al. Secondary Metabolites and Their Multidimensional Prospective in Plant Life. J. Pharmacogn. Phytochem. 2017, 6, 205–214. [Google Scholar]
- Ong, G.; Kasi, R.; Subramaniam, R. A Review on Plant Extracts as Natural Additives in Coating Applications. Prog. Org. Coat. 2021, 151, 106091. [Google Scholar] [CrossRef]
- Zavareh, S.; Darvishi, F.; Samandari, G. Preparation and Characterization of Epoxy/Oregano Oil as an Epoxy-Based Coating Material with Both Antimicrobial Effect and Increased Toughness. J. Coat. Technol. Res. 2015, 12, 407–414. [Google Scholar] [CrossRef]
- Wu, C.; Yan, Y.; Wang, Y.; Sun, P.; Qi, R. Antibacterial Epoxy Composites with Addition of Natural Artemisia Annua Waste. E-Polymers 2020, 20, 262–271. [Google Scholar] [CrossRef]
- Kirschweng, B.; Tátraaljai, D.; Földes, E.; Pukánszky, B. Natural Antioxidants as Stabilizers for Polymers. Polym. Degrad. Stab. 2017, 145, 25–40. [Google Scholar] [CrossRef]
- Mattar, N.; De Anda, A.R.; Vahabi, H.; Renard, E.; Langlois, V. Resorcinol-Based Epoxy Resins Hardened with Limonene and Eugenol Derivatives: From the Synthesis of Renewable Diamines to the Mechanical Properties of Biobased Thermosets. ACS Sustain. Chem. Eng. 2020, 8, 13064–13075. [Google Scholar] [CrossRef]
- Starón, A.; Dlugosz, O.; Pulit-Prociak, J.; Banach, M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. Materials 2020, 13, 349. [Google Scholar] [CrossRef]
- Espanani, H.R.; Faghfoori, Z.; Izadpanah, M.; YousefiBabadi, V. Toxic Effect of Nano-Zinc Oxide. Bratisl. Med. J. 2015, 116, 616–620. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Maitra, S.S. In Vitro and in Vivo Toxicity Assessment of Nanoparticles. Int. Nano Lett. 2017, 7, 243–256. [Google Scholar] [CrossRef]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pulit, J.; Banach, M.; Kowalski, Z. Nanosilver-making difficult decisions. Ecol. Chem. Eng. 2011, 18, 185–196. [Google Scholar]
- Jafernik, K.; Szopa, A.; Ekiert, H. Pelargonia przylądkowa (afrykańska) (Pelargonium sidoides), chrzan pospolity (Armoracia rusticana) oraz nasturcja większa (Tropaeolum majus)—Skład chemiczny, aktywność biologiczna oraz znaczenie w fitoterapii. Lek. W Polsce 2019, 29, 12–19. [Google Scholar]
- Kim, H.Y.; Gornsawun, G.; Shin, I.S. Antibacterial Activities of Isothiocyanates (ITCs) Extracted from Horseradish (Armoracia rusticana) Root in Liquid and Vapor Phases against 5 Dominant Bacteria Isolated from Low-Salt Jeotgal, a Korean Salted and Fermented Seafood. Food Sci. Biotechnol. 2015, 24, 1405–1412. [Google Scholar] [CrossRef]
- Park, H.W.; Choi, K.D.; Shin, I.S. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms. Biocontrol Sci. 2013, 18, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Radu, F.; Alexa, E.; Mucete, D.; Borozan, A.; Jianu, I. Researches about the antimicrobial action of some active principles in Armoracia rusticana. J. Agroaliment. Process. Technol. 2005, 11, 237–242. [Google Scholar]
- Walters, S.A. Horseradish: A Neglected and Underutilized Plant Species for Improving Human Health. Horticulturae 2021, 7, 167. [Google Scholar] [CrossRef]
- Gafrikova, M.; Galova, E.; Sevcovicova, A.; Imreova, P.; Mucaji, P.; Miadokova, E. Extract from Armoracia rusticana and Its Flavonoid Components Protect Human Lymphocytes against Oxidative Damage Induced by Hydrogen Peroxide. Molecules 2014, 19, 3160–3172. [Google Scholar] [CrossRef]
- Romeo, L.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018, 23, 624. [Google Scholar] [CrossRef]
- Politeo, O.; Maravić, A.; Burčul, F.; Carev, I.; Kamenjarin, J. Phytochemical Composition and Antimicrobial Activity of Essential Oils of Wild Growing Cistus Species in Croatia. Nat. Prod. Commun. 2018, 13, 771–774. [Google Scholar] [CrossRef]
- Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A Review on Cistus Sp.: Phytochemical and Antimicrobial Activities. Plants 2021, 10, 1214. [Google Scholar] [CrossRef] [PubMed]
- Malu, S.P.; Obochi, G.O.; Tawo, E.N.; Nyong, B.E. Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Glob. J. Pure Appl. Sci. 2009, 15, 365–368. [Google Scholar] [CrossRef]
- Gunasena, M.T.; Rafi, A.; Zobir, S.A.M.; Hussein, M.Z.; Ali, A.; Kutawa, A.B.; Wahab, M.A.A.; Sulaiman, M.R.; Adzmi, F.; Ahmad, K. Phytochemicals Profiling, Antimicrobial Activity and Mechanism of Action of Essential Oil Extracted from Ginger (Zingiber Officinale Roscoe Cv. Bentong) against Burkholderia Glumae Causative Agent of Bacterial Panicle Blight Disease of Rice. Plants 2022, 11, 1466. [Google Scholar] [CrossRef]
- ASTM E2180; Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials. American Society for Testing and Materials (ASTM): West Conshocken, PA, USA, 2024.
- ISO 5660-1; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- PN-EN ISO 5659-2; Plastics—Smoke Generation—Part 2: Determination of Optical Density by a Single-Chamber Test. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 2017.
- PN-EN ISO 527-4; Plastics—Determination of Tensile Properties—Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 2023.
- PN-EN ISO 178; Plastics—Determination of Flexural Properties. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 2019.
- Kaiser, S.J.; Mutters, N.T.; Blessing, B.; Günther, F. Natural Isothiocyanates Express Antimicrobial Activity against Developing and Mature Biofilms of Pseudomonas Aeruginosa. Fitoterapia 2017, 119, 57–63. [Google Scholar] [CrossRef]
- Radu, F. Antibacterial Activity of Isothyocianates, Active Principles in Armoracia rusticana Roots (II). J. Agroal. Process. Technol. 2006, 12, 443–452. [Google Scholar]
- NIST Chemistry WebBook, SRD 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 19 September 2024).
- Gumgumjee, N.M.; Abdulrahaman, S.H. Antibacterial activities and gc-ms analysis of phytocomponents of ehretia abyssinica r.br. Ex fresen. Int. J. Appl. Biol. Pharm. Technol. 2015, 6, 236–241. [Google Scholar]
- Amudha, P.; Jayalakshmi, M.; Pushpabharathi, N.; Vanitha, V. Identification of Bioactive Components in Enhalus Acoroides Seagrass Extract by Gas Chromatography–Mass Spectrometry. Asian J. Pharm. Clin. Res. 2018, 11, 313–317. [Google Scholar] [CrossRef]
- Wulandari, A.P.; Rossiana, N.; Wandira, A. Analysis of the Bioactive Compounds and Antibacterial Test on N-Hexane Extract of Ramie (Boehmeria Nivea). Biosaintifika 2022, 14, 356–363. [Google Scholar] [CrossRef]
- Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Najmi, A.; Alam, M.S.; Rehman, Z.; Moni, S.S. Spectral Analysis and Antibacterial Activity of the Bioactive Principles of Sargassum Tenerrimum J. Agardh Collected from the Red Sea, Jazan, Kingdom of Saudi Arabia. Braz. J. Biol. 2023, 83, e249536. [Google Scholar] [CrossRef]
- Antonia Nostro; Teresa Papalia Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent. Pat. Antiinfect. Drug Discov. 2012, 7, 28–35. [CrossRef] [PubMed]
- Guvensen, N.C.; Keskin, D. Chemical Content and Antimicrobial Properties of Three Different Extracts of Mentha Pulegium Leaves from Mugla Region, Turkey Pollen Analysis and Antimicrobial Properties of Honey Samples Sold in Western Turkey View Project Comparison of Antimicrobial Activity of Echinops Viscosus Subsp Bithynicus and E. Microcephalus Leaves and Flowers Extracts from Turkey View Project. J. Environ. Biol. 2016, 37, 1341–1346. [Google Scholar]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia Coli and Staphylococcus Aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Chemistry, Antioxidant and Antimicrobial Investigations on Essential Oil and Oleoresins of Zingiber Officinale. Food Chem. Toxicol. 2008, 46, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Mihalcea, L.; Dunarea, U.; Galati, J.; Vizireanu, C.; Cirimbei, M.R.; Dinică, R.; Gitin, L. Study on Herbal Actions of Horseradish (Armoracia rusticana). J. Agroaliment. Process. Technol. 2013, 19, 111–115. [Google Scholar]
- Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and Stability of Selected Flavor Compounds. J. Food Drug Anal. 2015, 23, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.R.; Kim, S.H.; Shin, Y.J.; Lee, D.H.; Yang, M.; Min, J.H.; Shin, J.S. A Comparison of Some Imidazoles in the Curing of Epoxy Resin. J. Ind. Eng. Chem. 2010, 16, 556–559. [Google Scholar] [CrossRef]
- Sienkiewicz, N.; Dominic, M.; Parameswaranpillai, J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers 2022, 14, 265. [Google Scholar] [CrossRef]
Symbol | Composition |
---|---|
Ref. | Glass-fibre-reinforced epoxy composite [GFRC] |
GFRC_CH | GFRC + A. rusticana powder |
GFRC_I | GFRC + Zingiber officinale powder |
GFRC_CZ | GFRC + Cistus incanus powder |
Isothiocyanate | R.T. (min) | Area [%] |
---|---|---|
Allyl Isothiocyanate | 3.77 | 1.78 |
Benzene, (2-isothiocyanatoethyl)- | 9.48 | 1.56 |
4-Methoxyphenyl isothiocyanate | 8.44 | 0.44 |
Terpenoid | ||
γ-Sitosterol | 23.00 | 0.58 |
Caryophyllene | 9.09 | 0.24 |
Campesterol | 21.84 | 0.22 |
Phenylpropanoid | ||
Myristicin | 9.85 | 0.62 |
Terpenoid | R.T. (min) | Area % | Other Name |
---|---|---|---|
1-Naphthalenepropanol, α-ethenyldecahydro-5-(hydroxymethyl)-α,5,8a-trimethyl-2-methylene-, [1S-[1α(S*),4aβ,5α,8aα]]- | 15.75 | 2.98 | Epimanool |
1-Phenanthrenemethanol, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-, [1S-(1α,4aα,10aβ)]- | 15.62 | 1.31 | Abietyl alcohol |
Phenol, 2-methyl-5-(1-methylethyl)- | 7.88 | 1.18 | Carvacrol |
1,3-Butadiene, 2-(4,8,12-trimethyltridecyl)- | 12.12 | 0.90 | Neophytadiene |
γ-Sitosterol | 23.02 | 0.88 | Clionasterol |
dl-α-Tocopherol | 20.50 | 0.80 | 6-Chromanol |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 13.94 | 0.65 | Phytol |
7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene | 13.83 | 0.60 | |
1H-Naphtho [2,1-b]pyran, 3-ethenyldodecahydro-3,4a,7,7,10a-pentamethyl-, [3R-(3α,4aβ,6aα,10aβ,10bα)]- | 13.46 | 0.45 | Manoyl oxide |
1-Naphthalenepropanol, α-ethenyldecahydro-2-hydroxy-α,2,5,5,8a-pentamethyl-, [1R-[1α(R*),2β,4aβ,8aα]]- | 16.39 | 0.41 | Sclareol |
Urs-12-en-3-ol, (3β)- | 24.47 | 0.41 | α-Amyrin |
Olean-12-en-3-ol, (3β)- | 23.74 | 0.41 | β-Amyrin |
2-Phenanthrenol, 4b,5,6,7,8,8a,9,10-octahydro-4b,8,8-trimethyl-1-(1-methylethyl)-, (4bS-trans)- | 15.57 | 0.32 | Totarol |
1-Phenanthrenemethanol, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-, [1R-(1α,4aβ,10aα)]- | 15.34 | 0.29 | Abietyl alcohol |
2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-(4,8,12-trimethyltridecyl)- | 19.72 | 0.27 | γ-Tocopherol |
(-)-Bicyclo [2.2.1]heptan-2-one, 1,3,3-trimethyl- | 5.86 | 0.26 | L-Fenchone |
1-Phenanthrenecarboxaldehyde, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-, [1S-(1α,4aα,10aβ)]- | 15.08 | 0.26 | Dehydroabietal |
Bicyclo [2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1S)- | 6.46 | 0.24 | Camphor |
Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-(1-methylethyl)-, (1S-cis)- | 9.92 | 0.24 | Calamenene |
Androstan-3-ol, (3β,5α)- | 15.69 | 0.15 | Androstanol |
Cyclopentane, 1,2-dimethyl-3-(1-methylethyl)- | 16.07 | 0.15 | |
2-Pentadecanone, 6,10,14-trimethyl- | 12.18 | 0.14 | Hexahydrofarnesyl acetone |
4,7-Methanoazulene, 1,2,3,4,5,6,7,8-octahydro-1,4,9,9-tetramethyl-, [1S-(1α,4α,7α)]- | 16.32 | 0.13 | β-Patchoulene |
1H-Naphtho [2,1-b]pyran-8(4aH)-one, 3-ethenyldecahydro-3,4a,7,7,10a-pentamethyl- | 14.99 | 0.12 | Epimanoyl oxide |
1-((1S,3aR,4R,7S,7aS)-4-Hydroxy-7-isopropyl-4-methyloctahydro-1H-inden-1-yl)ethanone | 11.62 | 0.11 | Oplopanone |
Naphtho [2,1-b]furan-2(1H)-one, decahydro-3a,6,6,9a-tetramethyl- | 14.02 | 0.11 | Sclareolide |
Cyclohexene, 1-methyl-4-(1-methylethenyl)-, ds.- | 5.22 | 0.11 | D-Limonene |
Benzene, 1-methyl-2-(1-methylethyl)- | 5.17 | 0.11 | o-Cymene |
Ergost-5-en-3-ol, (3β,24R)- | 21.85 | 0.11 | Campesterol |
Azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl)-, [1S-(1α,7α,8aβ)]- | 15.80 | 0.10 | α-Bulnesene |
Flavonoid | |||
4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-3,7-dimethoxy- | 19.94 | 1.05 | Kumatakenin |
Phenol, p-(2-methylallyl)- | 16.93 | 0.61 | |
2-(3-Hydroxy-4-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one | 19.23 | 0.9 | 3′-Hydroxy-’,4′,7-trimethoxyflavone |
4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (S)- | 17.86 | 0.19 | Sakuranetin |
Quercetin-3,’,3′,4′-tetramethyl ether | 20.79 | 0.13 | Retusine |
2-(4-Hydroxyphenyl)-3,6,7-trimethoxy-5-hydroxy-4H-1-benzopyran-4-one | 20.53 | 0.11 | Penduletin |
Benzofuran, 2,3-dihydro- | 7.14 | 0.59 | Coumaran |
4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)- | 19.08 | 0.58 | Tectochrysin |
Alkaloid | |||
Pyrazine, 2,3-dimethyl-5-(1-propenyl)-, (E)- | 9.05 | 0.48 | |
Pyridine, 2-ethyl-6-methyl- | 23.79 | 0.46 | |
Oxazolidine, 2,2-diethyl-3-methyl- | 4.95 | 0.25 | |
Hydrazine, 1,1-diethyl-2-(1-methylpropyl)- | 7.96 | 0.25 | |
Phenol | |||
(E)-4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenol | 11.55 | 0.21 | (E)-Conipheryl alcohol |
Benzeneacetic acid, 4-hydroxy-3-methoxy- | 10.87 | 0.20 | Homovanillic acid |
1,2,3-Benzenetriol | 8.77 | 0.91 | Pyrogallol |
2-Methoxy-4-vinylphenol | 8.05 | 0.33 | Varamol |
Benzaldehyde | 4.58 | 0.32 | Artificial Almond Oil |
Hydrocarbone | |||
Tetratetracontane | 18.29 | 6.04 |
Terpenoid | R.T. (min) | Area % | Other Name |
---|---|---|---|
1,3-Cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-, [S-(R*,S*)]- | 9.60 | 15.34 | Zingiberene |
Cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-, [S-(R*,S*)]- | 9.86 | 7.27 | β-Sesquiphellandrene |
Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- | 9.51 | 5.33 | α-Curcumene |
Cyclohexene, 1-methyl-4-(5-methyl-1-methylene-4-hexenyl)- | 9.72 | 3.89 | β-Bisabolene |
1,3,6,10-Dodecatetraene, 3,7,11-trimethyl- | 9.65 | 2.28 | α-Farnesene |
Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-, (1α,4aβ,8aα)- | 9.75 | 1.72 | α-Muurolene |
2-Naphthalenemethanol, decahydro-α,α,4a-trimethyl-8-methylene-, [2R-(2α,4aα,8aβ)]- | 10.99 | 0.60 | β-Eudesmol |
Bicyclo [2.2.1]heptan-2-ol, 1,7,7-trimethyl-, (1S-endo)- | 6.66 | 0.57 | L-Borneol |
(1R,4R)-1-methyl-4-(6-Methylhept-5-en-2-yl)cyclohex-2-enol | 10.58 | 0.52 | Zingiberenol |
1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl- | 10.12 | 0.47 | Nerolidol 2 |
Diepicedrene-1-oxide | 12.03 | 0.42 | |
7,11-dimethyl-3-methylene- | 9.22 | 0.41 | cis-β-Farnesene |
3-Cyclohexene-1-methanol, α,α4-trimethyl- | 6.87 | 0.39 | α-Terpineol |
Longipinocarveol, trans- | 22.68 | 0.34 | |
(I12Z)-(E)-3,7-Dimethylocta-2,6-dien-1-yl octadeca-9,12-dienoate | 18.55 | 0.32 | Geranyl linoleate |
2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-(4,8,12-trimethyltridecyl)- | 19.72 | 0.31 | γ-Tocopherol |
Humulenol-II | 24.31 | 0.28 | |
Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(1-methylethylidene)- | 9.93 | 0.28 | Selina-3,7(11)-diene |
5-(2,6-Dimethylbicyclo [3.1.1]hept-2-en-6-yl)-2-methyl-2-penten-1-ol- | 12.45 | 0.26 | Z-α-trans-Bergamotol |
Bicyclo [3.1.0]hexan-2-ol, 5-(1,5-dimethyl-4-hexenyl)-2-methyl- | 10.40 | 0.22 | trans-Sesquisabinene hydrate |
Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- | 9.89 | 0.20 | δ-Cadinene |
1,6,10,14-Hexadecatetraen-3-ol, 3,7,11,15-tetramethyl-, (E,E)- | 14.26 | 0.19 | Geranyl Linalool |
ricyclo [4.4.0.02,7]dec-3-ene, 8-isopropyl-1,3-dimethyl-, (1R,2S,6S,7S,8S)-(-)-; (-)-α-Copaene | 8.66 | 0.18 | Copaene |
Bicyclo [7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-, [1R-(1R*,4E,9S*)]- | 9.28 | 0.16 | Caryophyllene |
Phenol, 5-(1,5-dimethyl-4-hexenyl)-Iethyl-, (R)- | 11.58 | 0.16 | Xanthorrhizol |
Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-(1-methylethyl)-, (1S-cis)- | 9.92 | 0.14 | Calamenene |
(1R,4aR,7R,8aR)-7-(2-Hydroxypropan-2-yl)-1,4a-dimethyldecahydronaphthalen-1-ol | 12.19 | 0.13 | Cryptomeridiol |
Stigmast-5-en-3-ol, (3β,24S)- | 23.01 | 0.13 | γ-Sitosterol |
Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- | 23.93 | 0.11 | Curcumene |
Alkaloid | |||
1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- | 12.38 | 1.69 | Caffeine |
6-Nonenamide, N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methyl- | 16.56 | 0.50 | Capsaicin |
Phenol | |||
1-(4-Hydroxy-3-methoxyphenyl)dec-4-en-3-one | 15.10 | 15.29 | (6)-Shogaol |
1-(4-Hydroxy-3-exadichenyl)tetradec-4-en-3-one | 17.36 | 5.04 | (10)-Shogaol |
1-(4-Hydroxy-3-methoxyphenyl)dodec-4-en-3-one | 16.24 | 2.78 | (8)-Shogaol |
Phenol, 2-methoxy-4-propyl- | 14.03 | 1.74 | DiIroeugenol |
(E)-1-(4-Hydroxy-3-methoxyphenyl)dec-3-en-5-one | 14.70 | 1.47 | [6]-Isoshogaol |
(E)-1-(4-Hydroxyexadicxyphenyl)tetradec-3-en-5-one | 16.95 | 1.05 | [10]-Isoshogaol |
2-Butanone, 4-(4-hydroxy-3-methoxyphenyl)- | 10.88 | 1.00 | Zingerone |
3-Decanone, 1-(4-hydroxy-3-methoxyphenyl)- | 14.75 | 0.96 | Paradol |
5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-3-one | 15.66 | 0.85 | (S)-(+)-[6]-Gingerol |
1-(4-Hydroxy-3-methoxyphenyl)decane-3,5-dione | 15.35 | 0.52 | (8)-Gingerdione |
(E)-1-(4-Hydroxy-3-methoxyphenyl)dodec-3-en-5-one | 15.86 | 0.39 | [8]-Isoshogaol |
(E)-1-(3,4-Dimethoxyphenyl)dec-4-en-3-one | 15.22 | 0.33 | [6]-Ishogaol |
(E)-1-(4-Hydrexadicethoxyphenyl)hexadec-4-ds.3-one | 18.70 | 0.22 | (E)-[12]-shogaol |
1-(4-Hydroxy-3-methoxyphenyl)dodecan-3-one | 15.93 | 0.15 | [8]-Paradol |
Benzaldehyde, 4-hydroxy-3-methoxy- | 8.91 | 0.14 | Vanillin |
1-(4-Hydroxy-3-methoxyphenyl)dodecane-3,5-dione | 16.48 | 0.12 | [8]-Gingerdione |
Sample | Log (CFU/cm2) |
---|---|
D | |
E. coli | |
Ref. | 0.07 |
GFRC-CH | 0.31 |
GFRC-I | 1.49 |
GFRC-CZ | 1.51 |
S. aureus | |
Ref. | 0.24 |
GFRC-CH | −0.61 |
GFRC-I | −0.27 |
GFRC-CZ | 2.13 |
C. albicans | |
Ref. | 0.35 |
GFRC-CH | 0.37 |
GFRC-I | 0.40 |
GFRC-CZ | 0.81 |
Requirement R6 of PN-EN 45545-2 | |||
---|---|---|---|
MARHE [kW/m2] | Ds-4 | VOF-4 [min] | |
HL1 | 90 | 600 | 1200 |
HL2 | 90 | 300 | 600 |
HL3 | 60 | 150 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgier, A.; Kaźmierczyk, F.; Efenberger-Szmechtyk, M.; Rosiak, A.; Kałużna-Czaplińska, J.; Masek, A. Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport. Materials 2024, 17, 4666. https://doi.org/10.3390/ma17184666
Węgier A, Kaźmierczyk F, Efenberger-Szmechtyk M, Rosiak A, Kałużna-Czaplińska J, Masek A. Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport. Materials. 2024; 17(18):4666. https://doi.org/10.3390/ma17184666
Chicago/Turabian StyleWęgier, Aleksandra, Filip Kaźmierczyk, Magdalena Efenberger-Szmechtyk, Angelina Rosiak, Joanna Kałużna-Czaplińska, and Anna Masek. 2024. "Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport" Materials 17, no. 18: 4666. https://doi.org/10.3390/ma17184666
APA StyleWęgier, A., Kaźmierczyk, F., Efenberger-Szmechtyk, M., Rosiak, A., Kałużna-Czaplińska, J., & Masek, A. (2024). Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport. Materials, 17(18), 4666. https://doi.org/10.3390/ma17184666