Notches and Fatigue on Aircraft-Grade Aluminium Alloys
Abstract
:1. Introduction
2. Aluminium Alloys and Methodology
2.1. Aircraft-Grad Aluminium Alloys
2.2. Experimental Plan
2.3. Notch Methodology
- 3 orientation directions (Figure 4a): along the path of force application (0°), perpendicular to this direction (90°), and at an intermediate angle (45°).
- 3 notch lengths, as a percentage of the available length, based on the angle of orientation, are as follows (Figure 4b): the whole length (100%), half of the length (50%), and one-fourth of the length (25%).
- 3 notch depths (Figure 4c), which are expressed as percentages of the specimen thickness: 50%, 25%, and 12.5%.
- Considering the 3 orientations with 3 lengths (Figure 4d–f) and 3 depths, a total of 27 different combinations were executed.
Aluminium Alloy | Notch Direction ° | Specimen Thickness mm | Notch Length in mm as 100, 50, and 25% of Maximum Available Length | Notch Depth in mm as 50, 25, 12.5% of Specimen Thickness | Cross-Section Area mm2 | ||
---|---|---|---|---|---|---|---|
2024-T3 | 0 | 1.0 | 25% | 18.75 | 12.5% | 0.125 | 12.49 |
50% | 37.5 | 50% | 0.5 | 12.36 | |||
1.6 | 50% | 37.5 | 12.5% | 0.2 | 19.98 | ||
100% | 75.0 | 12.5% | 0.2 | 19.98 | |||
1.8 | 100% | 75.0 | 50% | 0.9 | 22.03 | ||
2.0 | 100% | 75.0 | 12.5% | 0.25 | 24.96 | ||
45 | 1.0 | 100% | 17.678 | 12.5% | 0.125 | 12.49 | |
1.2 | 100% | 17.678 | 25% | 0.3 | 14.93 | ||
2.0 | 25% | 4.419 | 50% | 1.0 | 24.18 | ||
100% | 17.678 | 50% | 1.0 | 24.18 | |||
90 | 1.2 | 12.5 | 12.5 | 12.5% | 0.15 | 13.13 | |
3.125 | 3.125 | 25% | 0.30 | 14.01 | |||
1.6 | 6.25 | 6.25 | 25% | 0.40 | 17.41 | ||
1.8 | 3.125 | 3.125 | 12.5% | 0.225 | 21.77 | ||
12.5 | 12.5 | 25% | 0.45 | 16.88 | |||
6061-T4 | 0 | 1.27 | 25% | 18.75 | 12.5% | 0.159 | 15.86 |
100% | 75.0 | 12.5% | 0.159 | 15.86 | |||
100% | 75.0 | 50% | 0.635 | 15.64 | |||
1.6 | 25% | 18.75 | 50% | 0.8 | 19.63 | ||
45 | 1.27 | 12.5% | 4.419 | 50% | 0.635 | 15.55 | |
1.6 | 12.5% | 4.419 | 12.5% | 0.2 | 19.97 | ||
50% | 8.839 | 25% | 0.4 | 19.87 | |||
100% | 17.678 | 50% | 0.8 | 19.48 | |||
90 | 1.27 | 100% | 12.5 | 50% | 0.635 | 7.94 | |
1.6 | 25% | 3.125 | 25% | 0.4 | 18.66 | ||
6061-T4 uncoated | 0 | 2.0 | 25% | 18.75 | 12.5% | 0.25 | 24.96 |
45 | 2.0 | 100% | 17.678 | 50% | 1.0 | 24.18 | |
90 | 2.0 | 50% | 6.25 | 12.5% | 0.25 | 23.40 | |
2.0 | 50% | 6.25 | 25% | 0.5 | 21.73 | ||
2.0 | 100% | 12.5 | 50% | 1.0 | 12.50 | ||
6061-T6 uncoated | 0 | 1.6 | 50% | 37.5 | 12.5% | 0.2 | 19.98 |
1.6 | 50% | 37.5 | 50% | 0.8 | 19.63 | ||
1.6 | 100% | 75.0 | 12.5% | 0.2 | 19.98 | ||
45 | 1.6 | 100% | 17.678 | 50% | 0.8 | 19.48 | |
90 | 1.6 | 100% | 12.5 | 50% | 0.8 | 10.00 | |
7075-T0 | 0 | 1.6 | 25% | 18.75 | 12.5% | 0.2 | 19.98 |
1.6 | 50% | 37.5 | 25% | 0.4 | 19.91 | ||
45 | 1.0 | 100% | 17.678 | 25% | 0.25 | 12.45 | |
1.6 | 100% | 17.678 | 12.5% | 0.2 | 19.97 | ||
12.5% | 4.419 | 25% | 0.4 | 19.87 | |||
90 | 1.0 | 50% | 6.25 | 12.5% | 0.125 | 11.71 | |
1.0 | 100% | 12.5 | 25% | 0.25 | 9.38 | ||
1.0 | 25% | 3.125 | 50% | 0.5 | 10.79 | ||
1.0 | 100% | 12.5 | 50% | 0.5 | 6.25 | ||
1.6 | 25% | 3.125 | 50% | 0.8 | 17.13 | ||
7075-T6 | 0 | 1.27 | 100% | 75.0 | 50% | 0.635 | 15.64 |
1.8 | 25% | 18.75 | 25% | 0.45 | 22.38 | ||
2.0 | 25% | 18.75 | 12.5% | 0.25 | 24.95 | ||
45 | 1.0 | 50% | 8.839 | 12.5% | 0.125 | 12.49 | |
100% | 17.678 | 12.5% | 0.125 | 12.49 | |||
1.27 | 25% | 4.419 | 12.5% | 0.159 | 15.85 | ||
1.6 | 25% | 4.419 | 12.5% | 0.2 | 19.97 | ||
1.8 | 25% | 4.419 | 25% | 0.45 | 22.34 | ||
100% | 17.678 | 25% | 0.45 | 22.34 | |||
2.0 | 25% | 4.419 | 50% | 1.0 | 24.18 | ||
90 | 1.0 | 100% | 12.5 | 12.5% | 0.125 | 10.94 | |
1.27 | 100% | 12.5 | 12.5% | 4.419 | 13.89 | ||
1.6 | 25% | 3.125 | 50% | 0.8 | 17.13 | ||
100% | 12.5 | 50% | 0.8 | 10.00 | |||
2.0 | 100% | 12.5 | 12.5% | 0.25 | 21.88 |
2.4. Fatigue Setup and Tensile Test
3. Results and Statistical Analysis
- UTSn—a Model F-value of 860.15 indicates that the model is statistically significant. The probability of an F-value of this magnitude occurring solely due to noise is just 0.01%; p-values below 0.0500 imply that the model terms are statistically significant. In this case, the relevant model terms are ND, CSA, material, and ND2. The F-value of 4.56 for the Lack of Fit indicates that the Lack of Fit is statistically significant. The probability of a Lack of Fit F-value of this magnitude occurring solely due to noise is just 3.21%. The Predicted R2 value of 0.9277 shows a strong correlation with the Adjusted R2 value of 0.9266, indicating a high level of agreement between the two, the difference between these values being less than 0.2.
- εn—a Model F-value of 120.93 indicates that the model is statistically significant; the p-values are below 0.0500 and imply that the model terms are statistically significant (in this scenario, the model terms ND, CSA, material, and the interaction between material and ND have major importance). An F-value of 33.44 for the Lack of Fit indicates that the Lack of Fit is statistically significant. The Predicted R2 value of 0.9115 shows a strong correlation with the Adjusted R2 value of 0. 8934.
- UTSnf—a Model F-value of 175.70 indicates that the model is statistically significant; the p-values are below 0.0500 and indicate that the model terms are statistically significant, the relevant model terms being ND, CSA, material, and ND2. The F-value of 3.80 for the Lack of Fit indicates that the Lack of Fit is statistically significant. The probability of a Lack of Fit F-value of this magnitude occurring solely due to noise is just 4.98%. The Predicted R2 value of 0.8990 is quite consistent with the Adjusted R2 value of 0. 8734, indicating a discrepancy of less than 0.2.
- εnf—with a Model F-value of 97.40 the model is statistically significant. The probability of an F-value of this magnitude, occurring solely due to noise, is just 0.01%; a p-value below 0.0500 implies that the model terms are statistically significant; ND, CSA, material, and the interaction between material and ND have major significance. A Lack of Fit F-value of 12.26 indicates that the Lack of Fit is statistically significant. The probability of a Lack of Fit F-value of this magnitude occurring solely due to noise is just 0.23%. The Predicted R2 value of 0.8804 shows a strong correlation with the Adjusted R2 value of 0. 8703.
3.1. UTS
3.1.1. Aluminium Alloy 2024-T3
3.1.2. Aluminium Alloys 6061-T4, 6061-T4 and -T6 Uncoated
+ 0.002552 × NDir2 + 0.002475 × CSA2,
3.1.3. Aluminium Alloys 7075-T0 and 7075-T6
3.2. Elongation at Break
3.2.1. Aluminium Alloy 2024-T3
3.2.2. Aluminium Alloys 6061-T4, 6061-T4 and -T6 Uncoated
+ 0.00012 × NDir2 − 0.000647 × CSA2.
3.2.3. Aluminium Alloys 7075-T0 and 7075-T6
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramalingam, B.; Manuel, V.H.; Elara, M.R.; Vengadesh, A.; Lakshmanan, A.K.; Ilyas, M.; James, T.J.Y. Visual Inspection of the Aircraft Surface Using a Teleoperated Reconfigurable Climbing Robot and Enhanced Deep Learning Technique. Int. J. Aerosp. Eng. 2019, 2019, 5137139. [Google Scholar] [CrossRef]
- ul Hassan, M.; Danish, F.; Bin Yousuf, W.; Khan, T.M.R. Comparison of Different Life Distribution Schemes for Prediction of Crack Propagation in an Aircraft Wing. Eng. Fail. Anal. 2019, 96, 241–254. [Google Scholar] [CrossRef]
- Jovančević, I.; Pham, H.-H.; Orteu, J.-J.; Gilblas, R.; Harvent, J.; Maurice, X.; Brèthes, L. 3D Point Cloud Analysis for Detection and Characterization of Defects on Airplane Exterior Surface. J. Nondestruct. Eval. 2017, 36, 74. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Tsourdos, A.; Lafiosca, P.; Plaster, R.; Plaster, A.; Droznika, M. Defects Recognition Algorithm Development from Visual UAV Inspections. Sensors 2022, 22, 4682. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Zhao, J.; Zhang, T.; Su, R.; Chen, Y.; Fu, S. Detection Method of Manufacturing Defects on Aircraft Surface Based on Fringe Projection. Optik 2020, 208, 164332. [Google Scholar] [CrossRef]
- Lafiosca, P.; Fan, I.-S.; Avdelidis, N.P. Automated Aircraft Dent Inspection via a Modified Fourier Transform Profilometry Algorithm. Sensors 2022, 22, 433. [Google Scholar] [CrossRef]
- Yang, S.; Hu, W.; Zhan, Z.; Li, J.; Bai, C.; Yang, Q.; Meng, Q. Fatigue Tests and a Damage Mechanics-Based Fatigue Model on a Cast Al-Si-Mg Aluminum Alloy with Scratches. Int. J. Fatigue 2022, 165, 107198. [Google Scholar] [CrossRef]
- Shen, Z.; Su, Y.; Deng, J.; Huang, Z. Investigation of High-Cycle Fatigue Property and Fatigue Crack Propagation Behavior of a Die-Forged 2014 Aluminum Alloy Aircraft Wheel. Int. J. Fatigue 2024, 184, 108309. [Google Scholar] [CrossRef]
- Zhao, B.; Xie, L.; Wang, L.; Hu, Z.; Zhou, S.; Bai, X. A New Multiaxial Fatigue Life Prediction Model for Aircraft Aluminum Alloy. Int. J. Fatigue 2021, 143, 105993. [Google Scholar] [CrossRef]
- Bin Younis, H.; Kamal, K.; Sheikh, M.F.; Hamza, A. Prediction of Fatigue Crack Growth Rate in Aircraft Aluminum Alloys Using Optimized Neural Networks. Theor. Appl. Fract. Mech. 2022, 117, 103196. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Zhan, Z.; Hu, W.; Meng, Q. Fatigue Life Prediction for 2060 Aluminium–Lithium Alloy with Impact Damage. Aerospace 2024, 11, 536. [Google Scholar] [CrossRef]
- Teng, Y.; Xie, L.; Zhang, H. Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050. Materials 2022, 15, 7555. [Google Scholar] [CrossRef] [PubMed]
- Reyno, T.; Marsden, C.; Wowk, D. Surface Damage Evaluation of Honeycomb Sandwich Aircraft Panels Using 3D Scanning Technology. NDT E Int. 2018, 97, 11–19. [Google Scholar] [CrossRef]
- Infante-García, D.; Qian, G.; Miguélez, H.; Giner, E. Analysis of the Effect of Out-of-Phase Biaxial Fatigue Loads on Crack Paths in Cruciform Specimens Using XFEM. Int. J. Fatigue 2019, 123, 87–95. [Google Scholar] [CrossRef]
- Grbović, A.; Kastratović, G.; Sedmak, A.; Balać, I.; Popović, M.D. Fatigue Crack Paths in Light Aircraft Wing Spars. Int. J. Fatigue 2019, 123, 96–104. [Google Scholar] [CrossRef]
- Varga, M.; Leroch, S.; Gross, T.; Rojacz, H.; Eder, S.J.; Grillenberger, M.; Ripoll, M.R. Scratching Aluminium Alloys—Modelling and Experimental Assessment of Damage as Function of the Strain Rate. Wear 2021, 476, 203670. [Google Scholar] [CrossRef]
Aluminium Alloy | Youngs Modulus (GPa) | Yield 0.2% (MPa) | Ultimate Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|
2024-T3 | 73.1 | 291 | 450 | 16 |
6061-T4 | 68.9 | 165 | 255 | 25 |
6061-T4 uncoated | 68.9 | 138 | 247 | 22 |
6061-T6 uncoated | 68.9 | 281 | 310 | 12.8 |
7075-T0 | 71.7 | 131 | 260 | 15 |
7075-T6 | 70 | 487 | 530 | 14 |
Data Type | Factor Type | Factor Description | Levels |
---|---|---|---|
Input | Numeric, discrete factor | Specimen thickness T (mm) | 1, 1.2, 1.27, 1.6, 1.8, 2 |
Notch direction (°) | 0, 45, 90 | ||
Cross-section area CSA (mm2) | Complete description in Table 3 | ||
Categoric, nominal factor | Specimen material | 2024-T3, 6061-T4, 6061-T4 uncoated, 6061-T6 uncoated, 7075-T0, 7075-T6 | |
Output | Response, analysed as polynomial | UTSn (MPa), UTSnf (MPa) | - |
εn (%), εnf (%) | - |
Aluminium Alloy | Notch Direction (°) | Cross-Section Area (mm2) | UTSn (MPa) | εn (%) | UTSnf (MPa) | εnf (%) |
---|---|---|---|---|---|---|
2024-T3 | 0 | 12.49 | 435.50 | 9.14 | 358.89 | 7.81 |
12.36 | 426.16 | 8.92 | 355.02 | 7.74 | ||
24.96 | 459.73 | 10.31 | 400.99 | 8.84 | ||
19.98 | 443.72 | 9.55 | 374.98 | 8.13 | ||
19.98 | 448.03 | 9.68 | 379.46 | 8.14 | ||
22.03 | 454.95 | 9.95 | 392.41 | 8.56 | ||
45 | 12.49 | 418.66 | 6.21 | 318.42 | 4.65 | |
14.93 | 424.71 | 6.79 | 316.76 | 4.98 | ||
24.18 | 426.52 | 7.01 | 325.62 | 5.40 | ||
24.18 | 427.52 | 7.26 | 346.36 | 5.74 | ||
90 | 14.01 | 411.95 | 2.14 | 322.52 | 1.88 | |
13.13 | 406.89 | 1.81 | 299.93 | 1.49 | ||
21.77 | 422.48 | 3.11 | 321.08 | 2.45 | ||
16.88 | 412.13 | 2.51 | 323.83 | 2.13 | ||
17.41 | 419.45 | 2.82 | 332.34 | 2.34 | ||
6061-T4 | 0 | 19.63 | 269.12 | 10.38 | 212.61 | 8.62 |
15.64 | 244.44 | 9.94 | 202.88 | 8.65 | ||
15.86 | 248.72 | 9.95 | 206.44 | 8.65 | ||
15.86 | 256.16 | 9.93 | 217.73 | 8.44 | ||
45 | 19.97 | 232.87 | 6.98 | 188.63 | 5.79 | |
19.87 | 227.83 | 6.60 | 184.54 | 5.48 | ||
19.48 | 224.98 | 6.34 | 184.48 | 5.14 | ||
15.55 | 203.26 | 3.80 | 166.68 | 3.23 | ||
90 | 18.66 | 217.63 | 3.87 | 178.45 | 3.25 | |
7.94 | 195.61 | 0.67 | 176.05 | 0.64 | ||
6061-T4 uncoated | 0 | 24.96 | 239.18 | 9.93 | 181.77 | 7.75 |
45 | 24.18 | 232.13 | 7.36 | 171.78 | 6.07 | |
90 | 23.40 | 228.43 | 3.16 | 181.32 | 1.50 | |
21.73 | 223.22 | 2.64 | 171.88 | 1.08 | ||
12.50 | 220.27 | 1.00 | 156.04 | 0.53 | ||
6061-T6 uncoated | 0 | 19.98 | 305.88 | 7.85 | 250.82 | 6.43 |
19.63 | 298.12 | 7.49 | 244.46 | 6.22 | ||
19.98 | 314.22 | 7.98 | 248.23 | 6.62 | ||
45 | 19.48 | 293.67 | 4.52 | 237.87 | 3.79 | |
90 | 10.00 | 267.44 | 0.76 | 240.70 | 0.69 | |
7075-T0 | 0 | 19.98 | 257.11 | 9.81 | 210.83 | 8.04 |
19.91 | 253.07 | 9.37 | 202.46 | 7.68 | ||
45 | 19.87 | 234.46 | 6.19 | 192.88 | 5.14 | |
19.97 | 244.87 | 6.66 | 193.45 | 5.46 | ||
12.45 | 221.27 | 4.76 | 180.29 | 4.24 | ||
90 | 17.13 | 221.07 | 2.79 | 199.91 | 2.00 | |
10.79 | 215.79 | 1.94 | 196.37 | 1.77 | ||
11.71 | 219.07 | 1.87 | 194.97 | 1.66 | ||
6.25 | 208.57 | 0.89 | 186.14 | 0.86 | ||
9.38 | 212.00 | 1.56 | 192.92 | 1.44 | ||
7075-T6 | 0 | 22.38 | 526.02 | 7.53 | 401.78 | 5.70 |
24.96 | 528.12 | 7.06 | 399.37 | 5.89 | ||
15.64 | 519.02 | 5.83 | 446.36 | 4.96 | ||
45 | 15.85 | 508.77 | 4.21 | 422.28 | 3.58 | |
19.97 | 510.76 | 4.38 | 422.39 | 3.59 | ||
22.34 | 513.81 | 4.65 | 434.50 | 3.68 | ||
22.34 | 514.91 | 4.70 | 435.78 | 3.76 | ||
12.49 | 502.16 | 3.79 | 381.85 | 2.45 | ||
24.18 | 516.23 | 5.13 | 445.34 | 3.95 | ||
12.49 | 503.66 | 3.85 | 378.26 | 2.62 | ||
90 | 10.00 | 481.88 | 1.11 | 362.87 | 1.01 | |
17.13 | 478.49 | 3.00 | 387.58 | 2.49 | ||
10.94 | 485.88 | 1.31 | 350.57 | 1.18 | ||
21.88 | 508.06 | 2.65 | 386.12 | 2.10 | ||
13.89 | 506.74 | 2.29 | 381.93 | 2.04 |
Fit Statistics | UTSn | εn | UTSnf | εnf |
---|---|---|---|---|
Model | Quadratic | 2FI | Quadratic | Quadratic |
Model p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Box–Cox transformation | λ = 1, none | λ = 1, none | λ = −0.5, inverse sqrt | λ = 1, none |
Fit Statistics | UTSn | εn | UTSnf | εnf |
---|---|---|---|---|
R2 | 0.9277 | 0.9115 | 0.8990 | 0.8804 |
Adjusted R2 | 0.9266 | 0.8934 | 0.8734 | 0.8703 |
Predicted R2 | 0.8743 | 0.8108 | 0.8966 | 0.8904 |
Adequate Precision | 82.8293 | 85.3889 | 142.2185 | 91.4676 |
Aluminium Alloy | UTSinitial (MPa) | UTSn_avg | UTSnf_avg | εinitial (%) | εn_avg | εnf_avg | ||||
---|---|---|---|---|---|---|---|---|---|---|
MPa | % diff. | MPa | % diff. | % | % diff. | % | % diff. | |||
2024-T3 | 450 | 427.87 | 5.17 | 341.23 | 31.87 | 16.00 | 6.30 | 154.15 | 5.15 | 210.63 |
6061-T4 | 255 | 227.82 | 11.92 | 189.41 | 34.62 | 25.00 | 6.08 | 310.94 | 5.14 | 385.64 |
6061-T4 uncoated | 247 | 231.76 | 6.57 | 174.43 | 41.60 | 22.00 | 6.52 | 237.40 | 4.95 | 344.52 |
6061-T6 uncoated | 310 | 289.06 | 7.24 | 242.13 | 28.02 | 12.80 | 4.35 | 194.25 | 3.63 | 251.91 |
7075-T0 | 260 | 234.64 | 10.80 | 196.52 | 32.29 | 15.00 | 5.76 | 160.68 | 4.78 | 213.58 |
7075-T6 | 530 | 508.87 | 4.15 | 402.28 | 31.74 | 14.00 | 4.42 | 216.57 | 3.55 | 294.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zichil, V.; Grigoras, C.C.; Ciubotariu, V.A. Notches and Fatigue on Aircraft-Grade Aluminium Alloys. Materials 2024, 17, 4639. https://doi.org/10.3390/ma17184639
Zichil V, Grigoras CC, Ciubotariu VA. Notches and Fatigue on Aircraft-Grade Aluminium Alloys. Materials. 2024; 17(18):4639. https://doi.org/10.3390/ma17184639
Chicago/Turabian StyleZichil, Valentin, Cosmin Constantin Grigoras, and Vlad Andrei Ciubotariu. 2024. "Notches and Fatigue on Aircraft-Grade Aluminium Alloys" Materials 17, no. 18: 4639. https://doi.org/10.3390/ma17184639
APA StyleZichil, V., Grigoras, C. C., & Ciubotariu, V. A. (2024). Notches and Fatigue on Aircraft-Grade Aluminium Alloys. Materials, 17(18), 4639. https://doi.org/10.3390/ma17184639