The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization
Abstract
:1. Introduction
2. Methodology
2.1. Existing Bond Strength Equations
2.2. The Considered Machine Learning (ML) Algorithms
2.2.1. Support Vector Regression (SVR)
2.2.2. Random Forest (RF)
2.2.3. Extreme Gradient Boosting (XGBoost)
2.2.4. Bayesian Optimization (BO)
2.3. Evaluation Metrics
3. Model Development
3.1. Database for Beam Tests
3.2. Definitions for Input and Output Variables
3.3. Implementation Process
3.4. Data Normalization
3.5. K-Fold Validation
4. Results and Discussion
4.1. The Impact of Bayesian Optimization
4.2. Comparison with Empirical Models for Bond Strength
4.3. Model Interpretations
4.3.1. The Shapley Additive Explanation (SHAP) Theory
4.3.2. Model Interpretations for Bond Strength
4.4. Performance of Simplified Models (ML-3)
4.5. Limitations and Future Study
5. Conclusions
- (1)
- Empirical models have a low prediction accuracy for the experimental data collected, and the scatter between the prediction and measurement shows the inherent difficulty of conventional explicit approaches to bond strength estimation.
- (2)
- As a result of adequate training, BO-XGBoost proved to be the most effective prediction model in both training and test sets.
- (3)
- With the increase of each of these three input variables (, , ), the bond strength increases, while the has a negative impact on it.
- (4)
- It is unclear how () and () affect bond strength. It is possible that several factors are interconnected in predicted models, which should be explored further.
- (5)
- Both models have advantages, however, and should be utilized appropriately. A ML-6 model is more precise and conservative, but it requires six variables as inputs. Since ML-3 requires only three input variables, it is more convenient for designers to use it in practical situations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ACI 408 R-03: 2003; Bond and Development of Straight Reinforcing Bars Intension. ACI Committee: Montreal, QC, Canada, 2003.
- Lin, X.S.; Zhang, Y.X. Bond-slip behavior of FRP-reinforced beam concrete beams. Constr. Build. Mater. 2013, 44, 110–117. [Google Scholar] [CrossRef]
- Dancygier, A.N.; Katz, A.; Wexler, U. Bond between deformed reinforcement and normal and high-strength concrete with and without fibers. Mater. Struct. 2010, 43, 839–856. [Google Scholar] [CrossRef]
- Tirassa, M.; Ruiz, M.F.; Muttoni, A. An interlocking approach for the rebar-to-concrete contact in bond. Mag. Concr. Res. 2021, 73, 379–393. [Google Scholar] [CrossRef]
- Zhou, B.B.; Wu, R.Y.; Gu, L.M.; Liu, Y.Q.; Sheng, J.; Li, Y. Analytical model for evaluating bond strength of steel rebar in cracked concrete considering confinement effect. Eng. Fract. Mech. 2024, 306, 110243. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhao, X.M. Unified Bond Stress-Slip Model for Reinforced Concrete. J. Struct. Eng. 2013, 139, 1951–1962. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Kianoush, M.R. Development/splice length of reinforcing bars. ACI Struct. J. 2005, 102, 22–30. [Google Scholar] [CrossRef]
- Harajli, M.H.; Hout, M.; Jalkh, W. Local bond stress-slip behavior of reinforcing bars embedded in plain and fiber concrete. ACI Mater. J. 1995, 94, 343–354. [Google Scholar]
- Orangun, C.O.; Jirsa, J.O.; Breen, J.E. A Reevaulation of Test Data on Development Length and Splices. ACI J. Proc. 1977, 74, 114–122. [Google Scholar] [CrossRef]
- Torre-Casanova, A.; Jason, L.; Davenne, L.; Pinelli, X. Confinement effects on the steel-concrete bond strength and pull-out failure. Eng. Fract. Mech. 2013, 97, 92–104. [Google Scholar] [CrossRef]
- Irshidat, M.R. Bond strength evaluation between steel rebars and carbon nanotubes modified concrete. Case Stud. Constr. Mat. 2021, 14, e00477. [Google Scholar] [CrossRef]
- ACI 308-08: 2008; Building Code Requirements for Structural Concrete and Commentary. ACI Committee: Montreal, QC, Canada, 2008.
- Eurocode 2: 2004; Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings. British Standard Institution: London, UK, 2004.
- Mahjoubi, S.; Meng, W.N.; Bao, Y. Logic-guided neural network for predicting steel-concrete interfacial behaviors. Expert Syst. Appl. 2022, 198, 116820. [Google Scholar] [CrossRef]
- Zheng, S.; Hu, T.Y.; Yu, Y. Interpretable Machine Learning-Based Prediction Model for Concrete Cover Separation of FRP-Strengthened RC Beams. Materials 2024, 17, 1957. [Google Scholar] [CrossRef]
- Wang, R.Q.; Huo, Y.P.; Wang, T.; Hou, P.; Gong, Z.; Li, G.D.; Li, C.Y. Machine Learning Method to Explore the Correlation between Fly Ash Content and Chloride Resistance. Materials 2024, 17, 1192. [Google Scholar] [CrossRef]
- Haruna, S.I.; Ibrahim, Y.E.; Hassan, I.H.; Al-shawafi, A.; Zhu, H. Bond Strength Assessment of Normal Strength Concrete-Ultra-High-Performance Fiber Reinforced Concrete Using Repeated Drop-Weight Impact Test: Experimental and Machine Learning Technique. Materials 2024, 17, 3032. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.X.; Li, C.Q.; Qiu, Y.G.; Huang, S.; Zhou, J. Metaheuristic Optimization of Random Forest for Predicting Punch Shear Strength of FRP-Reinforced Concrete Beams. Materials 2024, 16, 4034. [Google Scholar] [CrossRef]
- Abbas, Y.M.; Khan, M.I. Strength of SFRC: Database Compilation, Predictive Analysis, and Empirical Verification. Materials 2023, 16, 7178. [Google Scholar] [CrossRef]
- Dahou, Z.; Sbartaï, Z.M.; Castel, A.; Ghomari, F. Artificial neural network model for steel-concrete bond prediction. Eng. Struct. 2009, 31, 1724–1733. [Google Scholar] [CrossRef]
- Makni, M.; Daoud, A.; Karray, M.A.; Lorrain, M. Artificial neural network for the prediction of the steel-concrete bond behaviour. Eur. J. Environ. Civ. Eng. 2014, 18, 862–881. [Google Scholar] [CrossRef]
- Wang, Y.; Geem, Z.W.; Nagai, K. Bond Strength Assessment of Concrete-Corroded Rebar Interface Using Artificial Neutral Network. Appl. Sci. 2020, 10, 4724. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Peyma, A.B.; Mousavi, S.R.; Moodi, Y. Predicting the Ultimate and Relative Bond Strength of Corroded Bars and Surrounding Concrete by Considering the Effect of Transverse Rebar Using Machine Learning. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 193–219. [Google Scholar] [CrossRef]
- Krishnaveni, S.; Rajendran, S. A state of the art on characterization and application of artificial neural networks on bond strength between steel rebar and concrete. Constr. Build. Mater. 2022, 354, 129124. [Google Scholar] [CrossRef]
- Jeong, H.; Ji, S.; Kim, J.H.; Choi, S.H.; Heo, I.; Kim, K.S. Development of Mapping Function to Estimate Bond-Slip and Bond Strength of RC Beams Using Genetic Programming. Int. J. Concr. Struct. 2022, 16, 49. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Xiong, M.L.; Wang, H.W.; Che, C.C.; Lin, R.G. Toward safer aviation: Application of GA-XGBoost-SHAP for incident cognition and model explainability. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2023. [Google Scholar] [CrossRef]
- Ma, C.L.; Wang, S.X.; Zhao, J.P.; Xiao, X.F.; Xie, C.X.; Feng, X.L. Prediction of shear strength of RC deep beams based on interpretable machine learning. Constr. Build. Mater. 2023, 387, 131640. [Google Scholar] [CrossRef]
- Mangalathu, S.; Karthikeyan, K.; Feng, D.C.; Jeon, J.S. Machine-learning interpretability techniques for seismic performance assessment of infrastructure systems. Eng. Struct. 2021, 250, 112883. [Google Scholar] [CrossRef]
- Lyngdoh, G.A.; Zaki, M.; Krishnan, N.M.A.; Das, S. Prediction of concrete strengths enabled by missing data imputation and interpretable machine learning. Cem. Concr. Compos. 2022, 128, 104414. [Google Scholar] [CrossRef]
- Darwin, D.; Zuo, J.; Tholen, M.L.; Idun, E.K. Development length criteria for conventional and high relative rib area reinforcing bars. ACI Struct. J. 1996, 93, 347–359. [Google Scholar]
- AS 3600: 2009; Concrete Structures. Standards Australia Committee BD-002: Sydney, Australia, 2009.
- Hadi, M.N.S. Bond of High Strength Concrete with High Strength Reinforcing Steel. Open Civ. Eng. J. 2008, 26, 143–147. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Ghanizadeh, A.R.; Amlashi, A.T.; Dessouky, S. A novel hybrid adaptive boosting approach for evaluating properties of sustainable materials: A case of concrete containing waste foundry sand. J. Build. Eng. 2023, 72, 106595. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Xu, X. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2023. [Google Scholar] [CrossRef]
- Mockus, J.; Tiesis, V.; Zilinskas, A. The application of Bayesian methods for seeking the extremum. Towards Global Optim. 2023, 2, 117–129. [Google Scholar]
- Jones, D.R. A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 2023, 21, 345–383. [Google Scholar] [CrossRef]
- Liang, R.; Huang, Y. Development length and bond behavior of lap-spliced reinforcement in Ultra-high performance concrete beams. Eng. Struct. 2023, 291, 116354. [Google Scholar] [CrossRef]
- Cairns, J. Bond and anchorage of embedded steel reinforcement in fib Model Code 2010. Struct. Concr. 2015, 16, 45–55. [Google Scholar] [CrossRef]
- Tastani, S.P.; Brokalaki, E.; Pantazopoulou, S.J. State of Bond along Lap Splices. J. Struct. Eng. 2015, 141, 04015007. [Google Scholar] [CrossRef]
- Hou, L.J.; Xu, P.; Zang, Y.P.; Ouyang, F.; Chen, D.; Zhong, L. Bond behavior between reinforcement and ultra-high toughness cementitious composite in flexural members. Eng. Struct. 2020, 210, 110357. [Google Scholar] [CrossRef]
- Lin, H.W.; Zhao, Y.X. Effects of confinements on the bond strength between concrete and corroded steel bars. Constr. Build. Mater. 2016, 118, 127–138. [Google Scholar] [CrossRef]
- Seis, M.; Beycioglu, A. Bond performance of basalt fiber-reinforced polymer bars in conventional Portland cement concrete: A relative comparison with steel rebar using the hinged beam approach. Sci. Eng. Compos. Mater. 2017, 24, 909–918. [Google Scholar] [CrossRef]
- Bandelt, M.J.; Billington, S.L. Bond behavior of steel reinforcement in high-performance fiber-reinforced cementitious composite flexural members. Mater. Struct. 2016, 49, 71–86. [Google Scholar] [CrossRef]
- Petean, A.I.; Sabau, M.; Onet, T. Bond-Slip behavior of self-compacting concrete. Bul. Institutului Politeh. Din Lasi Sect. Constr. Arhit. 2013, 59, 139–146. [Google Scholar]
- Desnerck, P.; De Schutter, G.; Taerwe, L. Bond behaviour of reinforcing bars in self-compacting concrete: Experimental determination by using beam tests. Mater. Struct. 2010, 43, 53–62. [Google Scholar] [CrossRef]
- De Almeida, F.M.A.; El Debs, M.K.; El Debs, A.L.H.C. Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests. Mater. Struct. 2008, 41, 1073–1089. [Google Scholar] [CrossRef]
- Hamad, B.S.; Machaka, M.F. Effect of transverse reinforcement on bond strength of reinforcing bars in silica fume concrete. Mater. Struct. 1999, 32, 468–476. [Google Scholar] [CrossRef]
- Azizinamini, A.; Pavel, R.; Hatfield, E.; Ghosh, S.K. Behavior of lap-spliced reinforcing bars embedded in high-strength concrete. ACI Struct. J. 1999, 96, 826–835. [Google Scholar]
- Zuo, J. Bond Strength of High Relative Rib Area Reinforcing Bars. Doctoral Dissertation, University of Kansas Center for Research, Lawrence, KS, USA, 1998. [Google Scholar]
- Darwin, D.; Tholen, M.L.; Idun, E.K.; Zuo, J. Splice strength of high relative rib area reinforcing bars. ACI Struct. J. 1996, 93, 95–107. [Google Scholar]
- Hester, C.J.; Salamizavaregh, S.; Darwin, D.; Mc Cabe, S.L. Bond of epoxy-coated reinforcement: Splices. ACI Struct. J. 1993, 90, 89–102. [Google Scholar]
- Choi, O.C.; Hadjeghaffari, H.; Darwin, D.; Mccabe, S.L. Bond of epoxy-coated reinforcement-bar parameters. ACI Mater. J. 1991, 88, 207–217. [Google Scholar]
- Azizinamini, A.; Chisala, M.; Ghosh, S.K. Tension development length of reinforcing bars embedded in high-strength concrete. Eng. Struct. 1995, 17, 512–522. [Google Scholar] [CrossRef]
- Kucharska, M.; Jaskowska-Lemanska, J. Properties of a bond between the steel reinforcement and the new generation concretes-a review. Conf. Ser. Mater. Sci. Eng. 2019, 603, 42057. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Espinosa-Leal, L. Prediction of chloride resistance level of concrete using machine learning for durability and service life assessment of building structures. J. Build. Eng. 2022, 60, 105146. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, Y. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Constr. Build. Mater. 2022, 330, 127298. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wu, T.; Wei, H. Bond-slip properties between lightweight aggregate concrete and rebar. Constr. Build. Mater. 2020, 255, 119355. [Google Scholar] [CrossRef]
- Teresa, M.; Barbosa, G.; Sanchez Filho, S. Investigation of bond stress in pull out specimens with high strength concrete. Glob. J. Res. Eng. Struct. Eng. 2013, 13, 55–64. [Google Scholar]
- Siempu, R.; Pancharathi, R.K. A study on the parameters influencing flexural bond stress in reinforced concrete. Structures 2018, 16, 198–207. [Google Scholar] [CrossRef]
Authors | Equations |
---|---|
Orangun et al. [9] | |
Darwin et al. [31] | |
Haidi [33] | |
ACI 408R-03 [1] | |
AS 3600 [32] |
Notation | Unit | Variables | Types | |
---|---|---|---|---|
ML-6 | ML-3 | |||
- | Square root of the compressive strength of concrete | Input | Input | |
MPa | Yield strength of the reinforcing bars | Input | Input | |
mm | Diameter of the rebars | Input | Input | |
- | Concrete cover to rebar diameter ratio | Input | - | |
- | Development length to rebar diameter ratio | Input | - | |
- | Height of specimen to rebar diameter ratio | Input | - | |
MPa | Bond stress | Output | Output |
Algorithm | Initial Basic Parameters | After Bayesian Optimization |
---|---|---|
SVR | C = 1; gamma = 1; kernel’linear’; degree = 3; coef0 = 0; tolerance = 1 × 10−3; C = 1; epsilon = 0.1; shrinking = True. | C = 11; gamma = 2; kernel’linear’; degree = 3; coef0 = 0; tolerance = 1 × 10−3; C = 1; epsilon = 0.1; shrinking = True. |
RF | n of estimators = 30; max depth = 3; criterion = ’squared error’; min samples split = 2; min samples leaf = 1; random state = 1 | n of estimators = 52; max depth = 10; criterion = ’squared error’; min samples split = 2; min samples leaf = 1; random state = 1. |
XGBoost | n estimators = 30; learning rate = 0.1; max depth = 3; objective = ’linear’; booster = ’gbtree’; min child weight = 1; subsample = 1; colsample bytree = 1; alpha = 0; lambda = 1. | n estimators = 99; learning rate = 0.1121; max depth = 4; objective = ’linear’; booster = ’gbtree’; min child weight = 1; subsample = 1; colsample bytree = 1; alpha = 0; lambda = 1. |
Proposed Models | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
R2 | MAE (MPa) | RMSE (MPa) | R2 | MAE (MPa) | RMSE (MPa) | |
SVR | 0.54 | 1.203 | 2.073 | 0.44 | 1.755 | 3.189 |
RF | 0.85 | 0.882 | 1.191 | 0.79 | 1.231 | 1.949 |
XGBoost | 0.90 | 0.710 | 0.977 | 0.81 | 1.160 | 1.865 |
BO-SVR | 0.61 | 1.132 | 1.896 | 0.52 | 1.715 | 2.960 |
BO-RF | 0.96 | 0.367 | 0.595 | 0.85 | 0.947 | 1.621 |
BO-XGBoost | 0.97 | 0.364 | 0.550 | 0.87 | 0.897 | 1.516 |
Model | ) | ) | MAE (MPa) | RMSE (MPa) | |
---|---|---|---|---|---|
Orangun [9] | 1.128 | 0.502 | 0.62 | 1.742 | 2.896 |
Darwin [31] | 1.125 | 0.403 | 0.72 | 1.506 | 2.573 |
Haidi [33] | 0.517 | 0.633 | 0.59 | 7.068 | 7.858 |
ACI 408R-03 [1] | 0.971 | 0.402 | 0.84 | 1.654 | 2.538 |
AS 3600 [32] | 1.694 | 0.902 | 0.60 | 2.400 | 4.158 |
BO-SVR | 1.161 | 1.268 | 0.60 | 1.249 | 2.109 |
BO-RF | 0.993 | 0.109 | 0.94 | 0.483 | 0.800 |
BO-XGBoost | 0.994 | 0.109 | 0.95 | 0.470 | 0.743 |
Proposed Models | Value of Hyperparameters |
---|---|
BO-SVR | C = 15; gamma = 13; kernel’linear’; degree = 3; coef0 = 0; tolerance = 1 × 10−3; C = 1; epsilon = 0.1; shrinking = True. |
BO-RF | n of estimators = 105; max depth = 6; criterion = ’squared error’; min samples split = 2; min samples leaf = 1; random state = 1. |
BO-XGBoost | n estimators = 32; learning rate = 0.2034; max depth = 3; objective = ’linear’; booster = ’gbtree’; min child weight = 1; subsample = 1; colsample bytree = 1; alpha = 0; lambda = 1. |
Proposed Models | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
R2 | MAE (MPa) | RMSE (MPa) | R2 | MAE (MPa) | RMSE (MPa) | |
BO-SVR | 0.25 | 1.695 | 2.644 | 0.15 | 2.296 | 3.941 |
BO-RF | 0.86 | 0.852 | 1.113 | 0.70 | 1.450 | 2.347 |
BO-XGBoost | 0.85 | 0.910 | 1.196 | 0.74 | 1.412 | 1.516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Xie, N.; Shen, D. The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization. Materials 2024, 17, 4641. https://doi.org/10.3390/ma17184641
Yan H, Xie N, Shen D. The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization. Materials. 2024; 17(18):4641. https://doi.org/10.3390/ma17184641
Chicago/Turabian StyleYan, Huajun, Nan Xie, and Dandan Shen. 2024. "The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization" Materials 17, no. 18: 4641. https://doi.org/10.3390/ma17184641
APA StyleYan, H., Xie, N., & Shen, D. (2024). The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization. Materials, 17(18), 4641. https://doi.org/10.3390/ma17184641