In-Situ Construction of Fe-Doped NiOOH on the 3D Ni(OH)2 Hierarchical Nanosheet Array for Efficient Electrocatalytic Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ni(OH)2/Ni
2.3. Preparation of FeNi-PBA@Ni(OH)2/Ni
2.4. Preparation of FeNi@NiA
2.5. Electrochemical Characterizations
2.6. Structural Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.; Chen, Y.; Wang, Y.; Zhao, L.; Zhao, X.; Du, J.; Wu, H.; Chen, A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. Nanomicro Lett. 2024, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Gu, W.; Hu, Q.; Wang, J.; Teng, F.; Strbac, G. Cost and low-carbon competitiveness of electrolytic hydrogen in China. Energy Environ. Sci. 2021, 14, 4868–4881. [Google Scholar] [CrossRef]
- Xia, G.; Habibullah; Xie, Q.; Huang, Q.; Ye, M.; Gong, B.; Du, R.; Wang, Y.; Yan, Y.; Chen, Y.; et al. Recent progress in carbonaceous materials for the hydrogen cycle: Electrolytic water splitting, hydrogen storage and fuel cells. Chem. Eng. J. 2024, 495, 153405. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef]
- Over, H. Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting. ACS Catal. 2021, 11, 8848–8871. [Google Scholar] [CrossRef]
- Zhang, H.; Hagen, D.J.; Li, X.; Graff, A.; Heyroth, F.; Fuhrmann, B.; Kostanovskiy, I.; Schweizer, S.L.; Caddeo, F.; Maijenburg, A.W.; et al. Atomic Layer Deposition of Cobalt Phosphide for Efficient Water Splitting. Chem. Int. Ed. 2020, 59, 17172–17176. [Google Scholar] [CrossRef]
- Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264. [Google Scholar] [CrossRef]
- Jeong, H.; Jang, H.; Kim, Y.H.; Kim, M.; Kang, Y.; Myung, J.h. Surface exsolved NiFeOx nanocatalyst for enhanced alkaline oxygen evolution catalysis. Appl. Surf. Sci. 2024, 662, 160134. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Z.; Jiang, Z.-J. Plasma-Assisted Formation of Oxygen Defective NiCoO/NiCoN Heterostructure with Improved ORR/OER Activities for Highly Durable All-Solid-State Zinc-Air Batteries. Adv. Funct. Mater. 2023, 33, 2302883. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.; Lin, H.; Wang, G.; Zhao, K.; Cai, R.; Tao, K.; Zhang, C.; Sun, M.; Hu, J.; et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606. [Google Scholar] [CrossRef]
- Wan, C.; Jin, J.; Wei, X.; Chen, S.; Zhang, Y.; Zhu, T.; Qu, H. Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction. J. Mater. Sci. Technol. 2022, 124, 102–108. [Google Scholar] [CrossRef]
- Gong, L.; Yang, H.; Douka, A.I.; Yan, Y.; Xia, B.Y. Recent Progress on NiFe-Based Electrocatalysts for Alkaline Oxygen Evolution. Adv. Sustain. Syst. 2021, 5, 2000136. [Google Scholar] [CrossRef]
- Kim, B.-J.; Fabbri, E.; Abbott, D.F.; Cheng, X.; Clark, A.H.; Nachtegaal, M.; Borlaf, M.; Castelli, I.E.; Graule, T.; Schmidt, T.J. Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2019, 141, 5231–5240. [Google Scholar] [CrossRef]
- Rajan, A.G.; Martirez, J.M.P.; Carter, E.A. Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials. J. Am. Chem. Soc. 2020, 142, 3600–3612. [Google Scholar] [CrossRef]
- Mou, Q.; Xu, Z.; Zuo, W.; Shi, T.; Li, E.; Cheng, G.; Liu, X.; Zheng, H.; Li, H.; Zhao, P. Metal-organic-framework embellished through ion etching method for highly enhanced electrochemical oxygen evolution reaction catalysis. Mater. Chem. Front. 2022, 6, 2750–2759. [Google Scholar] [CrossRef]
- Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B.-J.; Durst, J.; Bozza, F.; Graule, T.; Schaublin, R.; Wiles, L.; et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G.I.N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.Z.; Tung, C.-H.; et al. Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. Adv. Energy Mater. 2018, 8, 1703585. [Google Scholar] [CrossRef]
- Tang, M.; He, Y.-M.; Ali, A.; Zhu, J.L.; Shen, P.K.; Ouyang, Y.-F. In-situ generate robust Fe-Ni derived nano-catalyst featuring surface reconstruction for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 28303–28312. [Google Scholar] [CrossRef]
- He, Z.-D.; Tesch, R.; Eslamibidgoli, M.J.; Eikerling, M.H.; Kowalski, P.M. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts. Nat. Commun. 2023, 14, 3498. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, X.; Sun, G.; Tang, Y.; Tan, S.; He, Q.; Zhang, J.; Xiong, T.; Diao, C.; Yu, Z.; et al. Optimization of oxygen evolution activity by tuning e*g band broadening in nickel oxyhydroxide. Energy Environ. Sci. 2023, 16, 641–652. [Google Scholar] [CrossRef]
- Guo, K.; Jia, J.; Lu, X.; Wang, S.; Wang, H.; Wu, H.; Xu, C. F-doped NiOOH derived from progressive reconstruction for efficient and durable water oxidation. Inorg. Chem. Front. 2024, 11, 1479–1491. [Google Scholar] [CrossRef]
- Yin, Z.H.; Huang, Y.; Song, K.; Li, T.T.; Cui, J.-Y.; Meng, C.; Zhang, H.; Wang, J.J. Ir Single Atoms Boost Metal-Oxygen Covalency on Selenide-Derived NiOOH for Direct Intramolecular Oxygen Coupling. J. Am. Chem. Soc. 2024, 146, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yang, Y.; Wu, W.; Chen, S.; Wang, Z.; Zhu, Y.; Cheng, N. Reconstructed β-NiOOH enabling highly efficient and ultrastable oxygen evolution at large current density. Chem. Eng. J. 2024, 480, 148100. [Google Scholar] [CrossRef]
- Shi, P.; Cheng, X.; Lyu, S. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH) 2 nanosheets. Chin. Chem. Lett. 2021, 32, 1210–1214. [Google Scholar] [CrossRef]
- Peng, Y.; Hajiyani, H.; Pentcheva, R. Influence of Fe and Ni Doping on the OER Performance at the Co3O4(001) Surface: Insights from DFT+U Calculations. ACS Catal. 2021, 11, 5601–5613. [Google Scholar] [CrossRef]
- Ye, Q.; Liu, J.; Lin, L.; Sun, M.; Wang, Y.; Cheng, Y. Fe and P dual-doped nickel carbonate hydroxide/carbon nanotube hybrid electrocatalysts for an efficient oxygen evolution reaction. Nanoscale 2022, 14, 6648–6655. [Google Scholar] [CrossRef]
- Wei, Y.; Yi, L.; Wang, R.; Li, J.; Li, D.; Li, T.; Sun, W.; Hu, W. A Unique Etching-Doping Route to Fe/Mo Co-Doped Ni Oxyhydroxide Catalyst for Enhanced Oxygen Evolution Reaction. Small 2023, 19, 2301267. [Google Scholar] [CrossRef]
- Trzesniewski, B.J.; Diaz-Morales, O.; Vermaas, D.A.; Longo, A.; Bras, W.; Koper, M.T.M.; Smith, W.A. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. J. Am. Chem. Soc. 2015, 137, 15112–15121. [Google Scholar] [CrossRef]
- Browne, M.P.; Vasconcelos, J.M.; Coelho, J.; O’Brien, M.; Rovetta, A.A.; McCarthy, E.K.; Nolan, H.; Duesberg, G.S.; Nicolosi, V.; Colavita, P.E.; et al. Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustain. Energ Fuels 2017, 1, 207–216. [Google Scholar] [CrossRef]
- He, W.; Ren, G.; Li, Y.; Jia, D.; Li, S.; Cheng, J.; Liu, C.; Hao, Q.; Zhang, J.; Liu, H. Amorphous nickel-iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catal. Sci. Technol. 2020, 10, 1708–1713. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, L.; Zhang, M.; Ma, L.; Gong, Y. A nanoflower composite catalyst in situ grown on conductive iron foam: Revealing the enhancement of OER activity by cooperating of amorphous Ni based nanosheets with spinel NiFe2O4. Appl. Surf. Sci. 2022, 589, 152957. [Google Scholar] [CrossRef]
- Klaus, S.; Cai, Y.; Louie, M.W.; Trotochaud, L.; Bell, A.T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. J. Phys. Chem. C 2015, 119, 7243–7254. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, P.; Li, P.; Tang, M.; Yin, H.; Wang, D. A highly efficient and durable self-standing iron-cobalt-nickel trimetallic phosphide electrode for oxygen evolution reaction. J. Alloys Compd. 2023, 960, 170493. [Google Scholar] [CrossRef]
- Park, J.H.; Kwon, H.J.; Lee, D.Y.; Suh, S.J. Effect of Ni Sulfate Residue on Oxygen Evolution Reaction (OER) in Porous NiFe@NiFe Layered Double Hydroxide. Small 2024, 20, 2400046. [Google Scholar] [CrossRef]
- He, L.; Cai, Z.; Zheng, D.; Ouyang, L.; He, X.; Chen, J.; Li, Y.; Guo, X.; Liu, Q.; Li, L.; et al. Three-dimensional porous NiCoP foam enabled high-performance overall seawater splitting at high current density. J. Mater. Chem. A 2024, 12, 2680–2684. [Google Scholar] [CrossRef]
- Kou, T.; Wang, S.; Hauser, J.L.; Chen, M.; Oliver, S.R.J.; Ye, Y.; Guo, J.; Li, Y. Ni Foam-Supported Fe-Doped β-Ni(OH)2 Nanosheets Show Ultralow Overpotential for Oxygen Evolution Reaction. ACS Energy Lett. 2019, 4, 622–628. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ercius, P.; Gautam, A.R.S.; Cabana, J.; Dahmen, U. Electron Tomography Analysis of Reaction Path during Formation of Nanoporous NiO by Solid State Decomposition. Growth Des. 2014, 14, 2453–2459. [Google Scholar] [CrossRef]
- Gao, T.; Jelle, B.P. Paraotwayite-type α-Ni(OH)2 Nanowires: Structural, Optical, and Electrochemical Properties. J. Phys. Chem. C 2013, 117, 17294–17302. [Google Scholar] [CrossRef]
- Zhou, W.; Yao, M.; Guo, L.; Li, Y.; Li, J.; Yang, S. Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons of β-Ni(OH)2 and NiO from Nanoplate Building Blocks. J. Am. Chem. Soc. 2009, 131, 2959–2964. [Google Scholar] [CrossRef]
- Feng, Y.; Han, H.; Kim, K.M.; Dutta, S.; Song, T. Self-templated Prussian blue analogue for efficient and robust electrochemical water oxidation. J. Catal. 2019, 369, 168–174. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, I.U.; Huo, S.; Zhao, Y.; Liang, B.; Li, K.; Wang, H. In-situ integration of nickel-iron Prussian blue analog heterostructure on Ni foam by chemical corrosion and partial conversion for oxygen evolution reaction. Electrochim. Acta 2020, 363, 137211. [Google Scholar] [CrossRef]
- Xu, X.; Wang, T.; Su, L.; Zhang, Y.; Dong, L.; Miao, X. In Situ Synthesis of Superhydrophilic Amorphous NiFe Prussian Blue Analogues for the Oxygen Evolution Reaction at a High Current Density. ACS Sustain. Chem. Eng. 2021, 9, 5693–5704. [Google Scholar] [CrossRef]
- Ma, F.; Wu, Q.; Liu, M.; Zheng, L.; Tong, F.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y.; et al. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 5142–5152. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, F.; Qin, X.; Yang, K.; Wu, W. A general strategy for Ni0–NiOOH hybrid catalyst of high hydrogen evolution activity. Int. J. Hydrogen Energy 2024, 68, 491–498. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, X.; Li, W.; Ma, Z.; Wang, X. Electrochemical-induced surface reconstruction to NiFe-LDHs-based heterostructure as novel positive electrode for supercapacitors with enhanced performance in neutral electrolyte. Chem. Eng. J. 2022, 449, 137886. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure. Chem. Eng. J. 2022, 439, 135634. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Interfacial Scaffolding Preparation of Hierarchical PBA-Based Derivative Electrocatalysts for Efficient Water Splitting. Adv. Energy Mater. 2019, 9, 1802939. [Google Scholar] [CrossRef]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.-J.; Sokaras, D.; Weng, T.C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef]
- Corrigan, D.A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. J. Electrochem. Soc. 1987, 134, 377. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, H.; Li, M.; Li, X.; Wang, J.; Zhu, X.; Yang, W. Atomic-scale topochemical preparation of crystalline Fe3+-doped β-Ni(OH)2 for an ultrahigh-rate oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 7753–7758. [Google Scholar] [CrossRef]
- Swierk, J.R.; Klaus, S.; Trotochaud, L.; Bell, A.T.; Tilley, T.D. Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts. J. Phys. Chem. C 2015, 119, 19022–19029. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482. [Google Scholar] [CrossRef]
- Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477. [Google Scholar] [CrossRef]
- Gao, X.; Long, X.; Yu, H.; Pan, X.; Yi, Z. Ni Nanoparticles Decorated NiFe Layered Double Hydroxide as Bifunctional Electrochemical Catalyst. J. Electrochem. Soc. 2017, 164, H307–H310. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, C.; Wang, H.F.; Zhang, Q.; Yang, C.; Wei, F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. J. Mater. Chem. A 2015, 3, 24540–24546. [Google Scholar] [CrossRef]
- Batchellor, A.S.; Boettcher, S.W. Pulse-Electrodeposited Ni-Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings. ACS Catal. 2015, 5, 6680–6689. [Google Scholar] [CrossRef]
- Yu, M.; Moon, G.; Bill, E.; Tueysuez, H. Optimizing Ni-Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Appl. Energy Mater. 2019, 2, 1199–1209. [Google Scholar] [CrossRef]
- Babar, P.T.; Lokhande, A.C.; Gang, M.G.; Pawar, B.S.; Pawar, S.M.; Kim, J.H. Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application. J. Ind. Eng. Chem. 2018, 60, 493–497. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chuang, C.H.; Hsiao, L.Y.; Yeh, M.-H.; Ho, K.C. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 42634–42643. [Google Scholar] [CrossRef]
- Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Lett. 2015, 15, 1421–1427. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Fei, T.; Mao, C.; Song, Y.; Zhou, Y.; Dong, G. NiCoP/NF 1D/2D Biomimetic Architecture for Markedly Enhanced Overall Water Splitting. ChemElectroChem 2021, 8, 3064–3072. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; et al. Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. Angew. Chem. Int. Ed. 2016, 55, 6290–6294. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-P.; Zheng, L.R.; Liu, S.J.; Ouyang, T.; Ye, S.; Liu, Z.Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin. Chem. Lett. 2022, 33, 4761–4765. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, Y.; Yang, Z.; Wang, J.; Pan, H.; Xu, Z.; Liu, Y. Crossed NiCo2S4 Nanowires Supported on Nickel Foam as a Bifunctional Catalyst for Efficient Overall Water Splitting. ChemistrySelect 2019, 4, 1180–1187. [Google Scholar] [CrossRef]
- Han, G.-Q.; Li, X.; Liu, Y.R.; Dong, B.; Hu, W.-H.; Shang, X.; Zhao, X.; Chai, Y.M.; Liu, Y.Q.; Liu, C.G. Controllable synthesis of three dimensional electrodeposited Co-P nanosphere arrays as efficient electrocatalysts for overall water splitting. RSC Adv. 2016, 6, 52761–52771. [Google Scholar] [CrossRef]
- Zhang, B.; Qiu, S.; Xing, Y.; Zhao, G.; Liao, W.; Mu, L.; Zhao, N. Introduction of Cationic Vacancies into NiFe LDH by In Situ Etching To Improve Overall Water Splitting Performance. Langmuir 2023, 39, 18152–18160. [Google Scholar] [CrossRef]
- Liu, B.; Li, S.; Wang, T.; Yang, Y.; Wang, L.; Zhang, X.; Liu, Z.; Niu, L. Construction of CoFe bimetallic phosphide microflowers electrocatalyst for highly efficient overall water splitting. Catal. Commun. 2023, 175, 106607. [Google Scholar] [CrossRef]
- Zai, S.F.; Zhou, Y.T.; Yang, C.C.; Jiang, Q. Al, Fe-Codoped CoP nanoparticles anchored on reduced graphene oxide as bifunctional catalysts to enhance overall water splitting. Chem. Eng. J. 2021, 421, 127856. [Google Scholar] [CrossRef]
- Ji, D.; Peng, S.; Fan, L.; Li, L.; Qin, X.; Ramakrishna, S. Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 23898–23908. [Google Scholar] [CrossRef]
- Guo, P.; Wu, R.; Fei, B.; Liu, J.; Liu, D.; Yan, X.; Pan, H. Multifunctional bayberry-like composites consisting of CoFe encapsulated by carbon nanotubes for overall water splitting and zinc-air batteries. J. Mater. Chem. A 2021, 9, 21741–21749. [Google Scholar] [CrossRef]
- Maheskumar, V.; Saravanakumar, K.; Yea, Y.; Yoon, Y.; Park, C.M. Construction of heterostructure interface with FeNi2S4 and CoFe nanowires as an efficient bifunctional electrocatalyst for overall water splitting and urea electrolysis. Int. J. Hydrogen Energy 2023, 48, 5080–5094. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, M.; Wang, Q.; Cao, Y.; Gao, J.; Wang, Z.; Gao, M.; Duan, G.; Cao, F. In-Situ Construction of Fe-Doped NiOOH on the 3D Ni(OH)2 Hierarchical Nanosheet Array for Efficient Electrocatalytic Oxygen Evolution Reaction. Materials 2024, 17, 4670. https://doi.org/10.3390/ma17184670
Li M, Wang M, Wang Q, Cao Y, Gao J, Wang Z, Gao M, Duan G, Cao F. In-Situ Construction of Fe-Doped NiOOH on the 3D Ni(OH)2 Hierarchical Nanosheet Array for Efficient Electrocatalytic Oxygen Evolution Reaction. Materials. 2024; 17(18):4670. https://doi.org/10.3390/ma17184670
Chicago/Turabian StyleLi, Mengyang, Mingran Wang, Qianwei Wang, Yang Cao, Jie Gao, Zhicheng Wang, Meiqi Gao, Guosheng Duan, and Feng Cao. 2024. "In-Situ Construction of Fe-Doped NiOOH on the 3D Ni(OH)2 Hierarchical Nanosheet Array for Efficient Electrocatalytic Oxygen Evolution Reaction" Materials 17, no. 18: 4670. https://doi.org/10.3390/ma17184670
APA StyleLi, M., Wang, M., Wang, Q., Cao, Y., Gao, J., Wang, Z., Gao, M., Duan, G., & Cao, F. (2024). In-Situ Construction of Fe-Doped NiOOH on the 3D Ni(OH)2 Hierarchical Nanosheet Array for Efficient Electrocatalytic Oxygen Evolution Reaction. Materials, 17(18), 4670. https://doi.org/10.3390/ma17184670