Investigation on the Performances of Esterified Waste Cooking Oil Rejuvenator and Recycled Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Base Asphalt
2.1.2. Waste Cooking Oil
2.2. Test Methods
2.2.1. Pre-Treatment of WCO
2.2.2. Preparation of Aged Asphalt
2.2.3. Preparation of Recycled Asphalt
2.2.4. Determination of the Acid Value of WCO
2.2.5. Viscosity Measurement of WCO
2.2.6. Thermal Decomposition Test
2.2.7. Rheological Properties Test of Asphalt
2.2.8. Microstructure Testing of Asphalt
3. Results
3.1. Anti-Aging Properties of WCO Regenerations with Different Degrees of Esterification
3.1.1. Effect of Thermo-Oxidative Aging on Regenerants’ Acid Value
3.1.2. Effect of Thermo-Oxidative Aging on Regenerants’ Rate of Mass Loss
3.1.3. Effect of Thermo-Oxidative Aging on Regenerants’ Viscosity
3.2. Pyrolysis Characteristics of WCO Regenerants with Different Degrees of Esterification
3.3. Performance Analysis of WCO Recycled Asphalt with Different Acid Values
3.3.1. High-Temperature Stability
3.3.2. Low-Temperature Crack Resistance
3.3.3. Fatigue Property
3.3.4. Thermo-Oxidative Aging Resistance
3.4. Microstructural and Mechanistic Analysis of Recycled Asphalt
3.4.1. Analysis of WCO Recycled Asphalt’s Functional Group Changes and Antioxidant Properties
3.4.2. Laws of Molecular Evolution during Aging of Base Asphalt and Recycled Asphalt
4. Conclusions
- (1)
- After 2, 4, 6, and 8 h of thermal oxidation aging, the mass, viscosity, and acid value changes of D-WCO were all smaller than those of O-WCO, and no thermal decomposition happened below 350 °C. This suggests that glycerol esterification can effectively improve WCO rejuvenators’ resistance to thermal–oxidative aging and improve the stability of their performance.
- (2)
- The rheological performance test results indicate that D-RA is characterized by the lowest temperature sensitivity, a higher content of light components, superior high-temperature stability, and low-temperature crack resistance.
- (3)
- Strong evidence for improving the durability of the recycled asphalt pavement is provided by the esterification treatment, which makes sure that the small molecular components added to the aged asphalt during the incorporation of WCO are more stable. This reduces the volatilization and oxidation during the thermal oxidation aging of the recycled asphalt.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Sun, L.; Xu, J.; Li, M.; Xing, C.; Zhang, Y. Effect of RAP’s Preheating Temperature on the Secondary Aging and Performance of Recycled Asphalt Mixtures Containing High RAP Content. Constr. Build. Mater. 2024, 411, 134719. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Yang, F.; Cheng, M.; Wang, Y.; Amirkhanian, S.; Wu, S.; Wei, M.; Xie, J. Multi-Scale Performance Evaluation and Correlation Analysis of Blended Asphalt and Recycled Asphalt Mixtures Incorporating High RAP Content. J. Clean. Prod. 2021, 317, 128278. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, F.; Huang, B.; Titi, H.; Polaczyk, P.; Ma, Y.; Wang, Y.; Cheng, Z. Full-Scale Accelerated Testing of Geogrid-Reinforced Inverted Pavements. Geotext. Geomembr. 2024, 52, 511–525. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% Recycled Hot Mix Asphalt: A Review and Analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Nosetti, A.; Pérez-Madrigal, D.; Pérez-Jiménez, F.; Martínez, A.H. Effect of the Recycling Process and Binder Type on Bituminous Mixtures with 100% Reclaimed Asphalt Pavement. Constr. Build. Mater. 2018, 167, 440–448. [Google Scholar] [CrossRef]
- Fakhri, M.; Saberi, K.F. The Effect of Waste Rubber Particles and Silica Fume on the Mechanical Properties of Roller Compacted Concrete Pavement. J. Clean. Prod. 2016, 129, 521–530. [Google Scholar] [CrossRef]
- Fakhri, M.; Amoosoltani, E.; Aliha, M.R.M. Crack Behavior Analysis of Roller Compacted Concrete Mixtures Containing Reclaimed Asphalt Pavement and Crumb Rubber. Eng. Fract. Mech. 2017, 180, 43–59. [Google Scholar] [CrossRef]
- Anthonissen, J.; Van Den Bergh, W.; Braet, J. Review and Environmental Impact Assessment of Green Technologies for Base Courses in Bituminous Pavements. Environ. Impact Assess. Rev. 2016, 60, 139–147. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Q. Life-Cycle Assessment of Sustainable Pavement Based on the Coordinated Application of Recycled Asphalt Pavement and Solid Waste: Environment and Economy. J. Clean. Prod. 2024, 434, 140203. [Google Scholar] [CrossRef]
- Li, D.; Leng, Z.; Yao, L.; Cao, R.; Zou, F.; Li, G.; Wang, H.; Wang, H. Mechanical, Economic, and Environmental Assessment of Recycling Reclaimed Asphalt Rubber Pavement Using Different Rejuvenation Schemes. Resour. Conserv. Recycl. 2024, 204, 107534. [Google Scholar] [CrossRef]
- Zaumanis, M.; Poulikakos, L.; Arraigada, M.; Kunz, B.; Schellenberg, U.; Gassmann, C. Asphalt Recycling in Polymer Modified Pavement: A Test Section and Recommendations. Constr. Build. Mater. 2023, 409, 134005. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, X.; Leng, Z. Sustainable Microwave-Heating Healing Asphalt Concrete Fabricated with Waste Microwave-Sensitive Fillers. J. Clean. Prod. 2024, 434, 140343. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B. Review of Very High-Content Reclaimed Asphalt Use in Plant-Produced Pavements: State of the Art. Int. J. Pavement Eng. 2015, 16, 39–55. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% Hot Mix Asphalt Recycling: Challenges and Benefits. Transp. Res. Procedia 2016, 14, 3493–3502. [Google Scholar] [CrossRef]
- Lin, M.; Shuai, J.; Li, P.; Kang, X.; Lei, Y. Analysis of Rheological Properties and Micro-Mechanism of Aged and Reclaimed Asphalt Based on Multi-Scales. Constr. Build. Mater. 2022, 321, 126290. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Wang, W.; Zhao, G.; Guo, P.; Ma, Q. Effect of Waste Engine Oil and Waste Cooking Oil on Performance Improvement of Aged Asphalt. Appl. Sci. 2019, 9, 1767. [Google Scholar] [CrossRef]
- Zadshir, M.; Oldham, D.J.; Hosseinnezhad, S.; Fini, E.H. Investigating Bio-Rejuvenation Mechanisms in Asphalt Binder via Laboratory Experiments and Molecular Dynamics Simulation. Constr. Build. Mater. 2018, 190, 392–402. [Google Scholar] [CrossRef]
- Zhou, C.L.; Zheng, C.C.; Cheng, D.X. Evaluation of Environmental Pollution from Asphalt Recycling Technology. AMR 2014, 898, 482–485. [Google Scholar] [CrossRef]
- Zargar, M.; Ahmadinia, E.; Asli, H.; Karim, M.R. Investigation of the Possibility of Using Waste Cooking Oil as a Rejuvenating Agent for Aged Bitumen. J. Hazard. Mater. 2012, 233, 254–258. [Google Scholar] [CrossRef]
- Asli, H.; Ahmadinia, E.; Zargar, M.; Karim, M.R. Investigation on Physical Properties of Waste Cooking Oil—Rejuvenated Bitumen Binder. Constr. Build. Mater. 2012, 37, 398–405. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Zhang, X.; Wu, S.; Zhou, X.; Jiang, Q. Effect of Chemical Component Characteristics of Waste Cooking Oil on Physicochemical Properties of Aging Asphalt. Constr. Build. Mater. 2022, 344, 128236. [Google Scholar] [CrossRef]
- Behnood, A. Application of Rejuvenators to Improve the Rheological and Mechanical Properties of Asphalt Binders and Mixtures: A Review. J. Clean. Prod. 2019, 231, 171–182. [Google Scholar] [CrossRef]
- Ma, J.; Hu, M.; Sun, D.; Lu, T.; Sun, G.; Ling, S.; Xu, L. Understanding the Role of Waste Cooking Oil Residue during the Preparation of Rubber Asphalt. Resour. Conserv. Recycl. 2021, 167, 105235. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.; Pang, Q.; Sun, G.; Hu, M.; Lu, T. Potential of Recycled Concrete Aggregate Pretreated with Waste Cooking Oil Residue for Hot Mix Asphalt. J. Clean. Prod. 2019, 221, 469–479. [Google Scholar] [CrossRef]
- Yan, K.; Liu, W.; You, L.; Ou, J.; Zhang, M. Evaluation of Waste Cooling Oil and European Rock Asphalt Modified Asphalt with Laboratory Tests and Economic Cost Comparison. J. Clean. Prod. 2021, 310, 127364. [Google Scholar] [CrossRef]
- Yan, S.; Dong, Q.; Chen, X.; Zhou, C.; Dong, S.; Gu, X. Application of Waste Oil in Asphalt Rejuvenation and Modification: A Comprehensive Review. Constr. Build. Mater. 2022, 340, 127784. [Google Scholar] [CrossRef]
- El-Shorbagy, A.M.; El-Badawy, S.M.; Gabr, A.R. Investigation of Waste Oils as Rejuvenators of Aged Bitumen for Sustainable Pavement. Constr. Build. Mater. 2019, 220, 228–237. [Google Scholar] [CrossRef]
- Cao, X.; Cao, X.; Tang, B.; Wang, Y.; Li, X. Investigation on Possibility of Waste Vegetable Oil Rejuvenating Aged Asphalt. Appl. Sci. 2018, 8, 765. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, M.; Han, X.; Wang, R.; Yu, J.; Xu, X.; Xue, L. Influence of Characteristics of Recycling Agent on the Early and Long-Term Performance of Regenerated SBS Modified Bitumen. Constr. Build. Mater. 2020, 237, 117631. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; You, Z.; Jiang, X.; Yang, X. Optimization of Bio-Asphalt Using Bio-Oil and Distilled Water. J. Clean. Prod. 2017, 165, 281–289. [Google Scholar] [CrossRef]
- ASTM D5; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D113; Standard Test Method for Ductility of Asphalt Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D4402; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D92; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D1298; Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D445; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM D974; Standard Test Method for Acid and Base Number by Color-Indicator Titration. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D5558; Standard Test Method for Determination of the Saponification Value of Fats and Oils. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D2872; Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D6521; Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). ASTM International: West Conshohocken, PA, USA, 2022.
- Fang, Y.; Zhang, Z.; Yang, J.; Li, X. Comprehensive Review on the Application of Bio-Rejuvenator in the Regeneration of Waste Asphalt Materials. Constr. Build. Mater. 2021, 295, 123631. [Google Scholar] [CrossRef]
- Li, K.; Chen, J.; Nie, X. Synthesis of Biodiesel from Waste Oil by Glycerol Pre-Esterification. Energy Rep. 2023, 10, 3223–3228. [Google Scholar] [CrossRef]
- Fan, Y.; Li, L.; Tippayawong, N.; Xia, S.; Cao, F.; Yang, X.; Zheng, A.; Zhao, Z.; Li, H. Quantitative Structure-Reactivity Relationships for Pyrolysis and Gasification of Torrefied Xylan. Energy 2019, 188, 116119. [Google Scholar] [CrossRef]
- Asadi, B.; Tabatabaee, N.; Hajj, R. Use of Linear Amplitude Sweep Test as a Damage Tolerance or Fracture Test to Determine the Optimum Content of Asphalt Rejuvenator. Constr. Build. Mater. 2021, 300, 123983. [Google Scholar] [CrossRef]
- Samieadel, A.; Islam Rajib, A.; Phani Raj Dandamudi, K.; Deng, S.; Fini, E.H. Improving Recycled Asphalt Using Sustainable Hybrid Rejuvenators with Enhanced Intercalation into Oxidized Asphaltenes Nanoaggregates. Constr. Build. Mater. 2020, 262, 120090. [Google Scholar] [CrossRef]
- Pahlavan, F.; Hung, A.; Fini, E.H. Evolution of Molecular Packing and Rheology in Asphalt Binder during Rejuvenation. Fuel 2018, 222, 457–464. [Google Scholar] [CrossRef]
- Fini, E.; Rajib, A.I.; Oldham, D.; Samieadel, A.; Hosseinnezhad, S. Role of Chemical Composition of Recycling Agents in Their Interactions with Oxidized Asphaltene Molecules. J. Mater. Civ. Eng. 2020, 32, 04020268. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Z.; Zhang, X. Construction of Complex Shear Modulus and Phase Angle Master Curves for Aging Asphalt Binders. Int. J. Pavement Eng. 2022, 23, 536–544. [Google Scholar] [CrossRef]
- Bocci, E.; Prosperi, E.; Mair, V.; Bocci, M. Ageing and Cooling of Hot-Mix-Asphalt during Hauling and Paving—A Laboratory and Site Study. Sustainability 2020, 12, 8612. [Google Scholar] [CrossRef]
- Ye, W.; Jiang, W.; Li, P.; Yuan, D.; Shan, J.; Xiao, J. Analysis of Mechanism and Time-Temperature Equivalent Effects of Asphalt Binder in Short-Term Aging. Constr. Build. Mater. 2019, 215, 823–838. [Google Scholar] [CrossRef]
Technical Indexes | Results | Test Methods |
---|---|---|
Penetration at 25 °C (0.1 mm) | 65 | ASTM D5 [31] |
Softening point (°C) | 50.0 | ASTM D36 [32] |
Ductility at 15 °C (cm) | >100 | ASTM D113 [33] |
Viscosity at 135 °C (Pa·s) | 611.9 | ASTM D4402 [34] |
Flash point (°C) | 290 | ASTM D92 [35] |
Technical Indexes | Results | Test Methods |
---|---|---|
Density at 15 °C (g/cm3) | 0.91 | ASTM D1298 [36] |
Viscosity at 60 °C (mPa·s) | 19 | ASTM D445 [37] |
Acid value (mgKOH/g) | 65.28 | ASTM D974 [38] |
Iodine value (g/100 g) | 131.13 | ASTM D5558 [39] |
Color | blackish brown | - |
Type of Asphalt | Penetration (25 °C, 100 g, 5 s)/(0.1 mm) | Softening Point (Ring and Ball Method)/°C | Ductility (15 °C, 5 cm/min)/cm | Viscosity (mPa·s) |
---|---|---|---|---|
VA | 57.5 | 50 | >100 | 611.9 |
SA | 49.4 | 55 | 7 | 826.4 |
LA | 21.4 | 63 | 3.2 | 1130 |
Name of Rejuvenator | Acid Value of WCO (mg KOH/g) | Name of Recycled Asphalt |
---|---|---|
O-WCO | 60 ± 2 | O-RA |
M-WCO | 30 ± 2 | M-RA |
D-WCO | 4 ± 2 | D-RA |
Sample Name | Reaction Model | Simultaneous Equations | Correlation Coefficient | E | A | ΔH | ΔG | ΔS |
---|---|---|---|---|---|---|---|---|
D-WCO | D1 | y = −3455.9x – 4.9965 | 0.9611 | 28,732 | 234 | 25,432 | 108,906 | −210 |
O-WCO | F1 | y = −601.9x – 12.071 | 0.9907 | 5004 | 0.0344 | 1577 | 118,599 | −283 |
Molecular Mass | Mn (g/mol) | Mw (g/mol) | PDI (Mw/Mn) | ||||||
---|---|---|---|---|---|---|---|---|---|
Aging degree | Unaged | RTFO | PAV | Unaged | RTFO | PAV | Unaged | RTFO | PAV |
Base asphalt | 822 | 880 | 894 | 1704 | 2230 | 2570 | 2.07 | 2.48 | 2.59 |
Recycled asphalt | 864 | 980 | 991 | 2111 | 2463 | 2647 | 2.44 | 2.51 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ye, Q.; Fan, L.; Xie, C.; Liu, H. Investigation on the Performances of Esterified Waste Cooking Oil Rejuvenator and Recycled Asphalt. Materials 2024, 17, 4725. https://doi.org/10.3390/ma17194725
Wang J, Ye Q, Fan L, Xie C, Liu H. Investigation on the Performances of Esterified Waste Cooking Oil Rejuvenator and Recycled Asphalt. Materials. 2024; 17(19):4725. https://doi.org/10.3390/ma17194725
Chicago/Turabian StyleWang, Junhui, Qunshan Ye, Lingyi Fan, Cheng Xie, and Haobin Liu. 2024. "Investigation on the Performances of Esterified Waste Cooking Oil Rejuvenator and Recycled Asphalt" Materials 17, no. 19: 4725. https://doi.org/10.3390/ma17194725
APA StyleWang, J., Ye, Q., Fan, L., Xie, C., & Liu, H. (2024). Investigation on the Performances of Esterified Waste Cooking Oil Rejuvenator and Recycled Asphalt. Materials, 17(19), 4725. https://doi.org/10.3390/ma17194725