Fatigue and Impact Properties of Kenaf/Glass-Reinforced Hybrid Pultruded Composites for Structural Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Kenaf
2.1.2. E-Glass
2.1.3. Unsaturated Polyester Resin
2.1.4. Surfacing Veil
2.2. Pultruded Profile Fabrication
2.3. Experimental Testing
2.3.1. Tensile Test
2.3.2. Fatigue Test
2.3.3. Izod Test
2.3.4. Density Test
2.3.5. Specific Strength, Cost, and Weight Analysis
3. Results and Discussion
3.1. Static Properties
3.2. Fatigue Analysis
3.3. Impact Analysis
3.4. Density Analysis
3.5. Specific Strength, Cost, and Weight Analysis
4. Conclusions
- The fatigue analysis results reveal that among the investigated pultruded composites, the pultruded WG/UG alternate demonstrates the highest fatigue resistance, followed by the pultruded WK/UG alternate and pultruded 3WK/UG/3WK specimens. However, when the stress level reaches 60% of the ultimate tensile strength (UTS), all the data points are situated within the high-cycle fatigue region. This suggests that the kenaf/glass hybrid pultruded profiles have potential for long-term reliability in low to moderate load structural applications involving cyclic loading.
- The pultruded WG/UG alternate also exhibits the highest fatigue sensitivity, followed by the pultruded WK/UG alternate and pultruded 3WK/UG/3WK specimens, implying that an increase in the kenaf-to-glass ratio leads to reduced fatigue resistance and sensitivity. The low fatigue sensitivity observed in kenaf/glass hybrid composites signifies the presence of damping properties within these materials, which contributes to the overall reliability, safety, and cost-effectiveness of structural profiles.
- Interestingly, Izod impact analysis illustrates that the impact strength of pultruded WK/UG alternate hybrid composites aligns closely with that of pultruded WG/UG alternate composites. However, a further elevation in the kenaf to glass fibre ratio in pultruded 3WK/UG/3WK alternate hybrids results in a decline in impact strength. The findings suggest that the pultruded WK/UG alternate profile is able to withstand impact forces without undergoing brittle fractures, which ensures safety and structural integrity.
- Hybrid specimens, such as pultruded 3WK/UG/3WK, marks a significant reduction in weight and cost followed by the pultruded WK/UG alternate when compared to the pultruded WG/UG alternate. Moreover, an almost similar specific strength has been recorded by the pultruded WK/UG alternate when compared to the pultruded WG/UG alternate. The comprehensive assessment of specific strength, weight, and cost underscores the advantageous potential of incorporating plant fibres in pultruded profiles, contributing to the creation of lightweight structural components while simultaneously reducing raw material costs.
- Among the hybrid samples investigated, the pultruded WK/UG alternate demonstrated good fatigue and impact properties, proving possibilities in moderate load structural applications. Meanwhile, the pultruded 3WK/UG/3WK exhibited noteworthy advantages in weight and cost reduction, rendering it a suitable choice for low-load structural applications. These findings collectively emphasise the intricate interplay between plant-glass fibre composition, hybridisation, and resultant mechanical properties. Such insights are invaluable for the strategic design and optimisation of plant fibres in pultruded composites for diverse structural applications offering sustainable and cost-effective advantages.
- While hybrid specimens exhibit notable strengths, their limitations are evident, particularly in outdoor applications. Plant fibres, constituting a significant component of the hybrid, are inherently sensitive to moisture, biodegradation, and UV exposure, and they pose challenges in terms of fire resistance. To overcome these constraints and broaden the spectrum of potential applications, future research should prioritize the development of advanced coatings and hygrothermal research to elevate applications of plant fibres in outdoor structural applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minchenkov, K.; Gusev, S.; Sulimov, A.; Sergeichev, I.; Safonov, A. Experimental and Numerical Analyses of the Thermoplastic Pultrusion of Large Structural Profiles. Mater. Des. 2023, 232, 112149. [Google Scholar] [CrossRef]
- Volk, M.; Yuksel, O.; Baran, I.; Hattel, J.H.; Spangenberg, J.; Sandberg, M. Cost-Efficient, Automated, and Sustainable Composite Profile Manufacture: A Review of the State of the Art, Innovations, and Future of Pultrusion Technologies. Compos. B Eng. 2022, 246, 110135. [Google Scholar] [CrossRef]
- Esfandiari, P.; Silva, J.F.; Novo, P.J.; Nunes, J.P.; Marques, A.T. Production and Processing of Pre-Impregnated Thermoplastic Tapes by Pultrusion and Compression Moulding. J. Compos. Mater. 2022, 56, 1667–1676. [Google Scholar] [CrossRef]
- Sandberg, M.; Yuksel, O.; Baran, I.; Hattel, J.H.; Spangenberg, J. Numerical and Experimental Analysis of Resin-Flow, Heat-Transfer, and Cure in a Resin-Injection Pultrusion Process. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106231. [Google Scholar] [CrossRef]
- Correia, J.R. Pultrusion of Advanced Composites. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Woodhead Publishing: Sawston, UK, 2023; pp. 137–177. [Google Scholar] [CrossRef]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Pultruded Materials and Structures: A Review. J. Compos. Mater. 2020, 54, 4081–4117. [Google Scholar] [CrossRef]
- Barkanov, E.; Akishin, P.; Namsone, E.; Auzins, J.; Morozovs, A. Optimization of Pultrusion Processes for an Industrial Application. Mech. Compos. Mater. 2021, 56, 697–712. [Google Scholar] [CrossRef]
- Chethan, N.; Nagesh, S.N.; Sunith Babu, L. Mechanical Behaviour of Kenaf-Jute-E-Glass Reinforced Hybrid Polymer Composites. Mater Today Proc. 2021, 46, 4454–4459. [Google Scholar] [CrossRef]
- Baeza, C.; Jesús, P.; Franco, H.; Cortés, P.; Bele, E.; Agaliotis, E.M.; Gemi, L.; Madenci, E.; Özkılıç, Y.O.; Yazman, S.; et al. Effect of Fiber Wrapping on Bending Behavior of Reinforced Concrete Filled Pultruded GFRP Composite Hybrid Beams. Polymers 2022, 14, 3740. [Google Scholar] [CrossRef]
- Vayabari, D.A.G.; Ilham, Z.; Md Saad, N.; Usuldin, S.R.A.; Norhisham, D.A.; Abd Rahim, M.H.; Wan-Mohtar, W.A.A.Q.I. Cultivation Strategies of Kenaf (Hibiscus cannabinus L.) as a Future Approach in Malaysian Agriculture Industry. Horticulturae 2023, 9, 925. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Rafii, M.Y.; Misran, A.B.; Berahim, Z.; Ahmad, Z.; Khan, M.M.H.; Oladosu, Y. Heterosis and Combining Ability Estimate on Yield and Yield-Related Traits in a Half Diallel Crosses of Kenaf (Hibiscus cannabinus L.) in Malaysia. J. Nat. Fibers 2023, 20, 2192541. [Google Scholar] [CrossRef]
- Deepa, C.; Rajeshkumar, L.; Ramesh, M. Thermal Properties of Kenaf Fiber-Based Hybrid Composites. In Natural Fiber-Reinforced Composites: Thermal Properties and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2021; pp. 167–182. [Google Scholar] [CrossRef]
- Prem Kumar, R.; Muthukrishnan, M.; Felix Sahayaraj, A. Effect of Hybridization on Natural Fiber Reinforced Polymer Composite Materials—A Review. Polym. Compos. 2023, 44, 4459–4479. [Google Scholar] [CrossRef]
- Muralidharan, N.D.; Subramanian, J.; Rajamanickam, S.K.; Gopalan, V. An Experimental Investigation of Flame Retardancy and Thermal Stability of Treated and Untreated Kenaf Fiber Reinforced Epoxy Composites. J. Polym. Eng. 2023, 43, 865–874. [Google Scholar] [CrossRef]
- Zakaria, N.A.; Ishak, M.R.; Mustapha, F.; Yidris, N. Tensile Properties of a Hybrid Kenaf-Glass Fibre Composite Shaft. Mater. Today Proc. 2023, 74, 492–498. [Google Scholar] [CrossRef]
- Fernandes, O.; Dutta, J.; Pai, Y. Effect of Various Factors and Hygrothermal Ageing Environment on the Low Velocity Impact Response of Fibre Reinforced Polymer Composites—A Comprehensive Review. Cogent Eng. 2023, 10, 2247228. [Google Scholar] [CrossRef]
- Grzejda, R.; Warzecha, M.; Urbanowicz, K. Determination of the Preload of Bolts for Structural Health Monitoring of a Multi-Bolted Joint: FEM Approach. Lubricants 2022, 10, 75. [Google Scholar] [CrossRef]
- Bhowmik, S.; Kumar, S.; Mahakur, V.K. Various Factors Affecting the Fatigue Performance of Natural Fiber-Reinforced Polymer Composites: A Systematic Review. Iran. Polym. J. 2023, 1–23, 1735–5265. [Google Scholar] [CrossRef]
- Wang, Z.; Xian, G. Impact Performances of Fiber Reinforced Polymer Composites and Cables: A Review. Compos. Struct. 2023, 319, 117128. [Google Scholar] [CrossRef]
- Asumani, O.; Paskaramoorthy, R. Fatigue and Impact Strengths of Kenaf Fibre Reinforced Polypropylene Composites: Effects of Fibre Treatments. Adv. Compos. Mater. 2020, 30, 103–115. [Google Scholar] [CrossRef]
- Feng, N.L.; DharMalingam, S.; Zakaria, K.A.; Selamat, M.Z. Investigation on the Fatigue Life Characteristic of Kenaf/Glass Woven-Ply Reinforced Metal Sandwich Materials. J. Sandw. Struct. Mater. 2017, 21, 2440–2455. [Google Scholar] [CrossRef]
- Miah, M.S.; Yu, J.; Yang, Y.; Memon, H.; Rashid, M.A. Durability and Notch Sensitivity Analysis of Environmental Ageing Induced Glass Fibre Mat and Kenaf Fibre Mat-Reinforced Composites. J. Ind. Text. 2021, 51, 24–47. [Google Scholar] [CrossRef]
- Supian, A.B.M.; Sapuan, S.M.; Jawaid, M.; Zuhri, M.Y.M.; Ilyas, R.A.; Syamsir, A. Crashworthiness Response of Filament Wound Kenaf/Glass Fibre-Reinforced Epoxy Composite Tubes with Influence of Stacking Sequence under Intermediate-Velocity Impact Load. Fibers Polym. 2022, 23, 222–233. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Arukalam, I.O.; Romli, A.Z. Effect of Varying Processing Temperatures on the Mechanical and Microstructural Properties of Kenaf Fibre-ABS Composites for Moderate Temperature Applications. Polym. Renew. Resour. 2022, 13, 154–169. [Google Scholar] [CrossRef]
- Al-Waily, M.; Mechi, S.A. Fatigue Characterizations Modifying for Below Knee Prosthesis Composite Materials by Using Natural Knitted Kenaf Reinforcement Fibers. Int. J. Energy Environ. 2021, 12, 2076–2909. [Google Scholar]
- Xian, G.; Guo, R.; Li, C. Combined Effects of Sustained Bending Loading, Water Immersion and Fiber Hybrid Mode on the Mechanical Properties of Carbon/Glass Fiber Reinforced Polymer Composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, C.; Hong, B. Effect of Fiber Hybrid Mode on the Tension–Tension Fatigue Performance for the Pultruded Carbon/Glass Fiber Reinforced Polymer Composite Rod. Eng. Fract. Mech. 2022, 260, 108208. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, Z.; Chen, H.; Wang, S.; Gutiérrez, A. Research on the Lightweight Design of GFRP Fabric Pultrusion Panels for Railway Vehicle. Compos. Struct. 2022, 286, 115221. [Google Scholar] [CrossRef]
- Duchet-Rumeau, J.; Gérard, J.-F.; Barkanov, E.; Akishin, P.; Namsone-Sile, E. Effectiveness and Productivity Improvement of Conventional Pultrusion Processes. Polymers 2022, 14, 841. [Google Scholar] [CrossRef]
- Alsinani, N.; Laberge Lebel, L. Effect of High Pulling Speeds on the Morphologies of Pultrudates in a Thermoplastic Pultrusion Process. J. Thermoplast. Compos. Mater. 2022, 36, 3566–3584. [Google Scholar] [CrossRef]
- Strauss, S.; Wilhelm, F.; Senz, A.; Engelen, H.; Boysen, S.; Rilli, N.; Celik, A.; Ratka, M.; Bonten, C. Experimental and Simulative Analysis of the Pressure Development in a Closed Injection Pultrusion Process with Multiple Chamber Geometries. Polymers 2023, 15, 1544. [Google Scholar] [CrossRef]
- Setyanto, D.; Antonio, Y.A.; Darmawan, M.; Ubaidillah, U. A Novel Z Profile of Pultruded Glass-Fibre-Reinforced Polymer Beams for Purlins. Sustainability 2022, 14, 5862. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Fang, H.; Qian, C.; Wu, P. Experimental Investigation and Prediction for Bending Creep of Glass Fiber-Reinforced Polymer Pultruded Tube. Buildings 2023, 13, 2714. [Google Scholar] [CrossRef]
- Khalilabad, H.; Ruiz Emparanza, E.; De Caso, A.; Roghani, F.; Khodadadi, H.; Nanni, N.; Khalilabad, E.H.; Ruiz Emparanza, A.; De Caso, F.; Roghani, H.; et al. Characterization Specifications for FRP Pultruded Materials: From Constituents to Pultruded Profiles. Fibers 2023, 11, 93. [Google Scholar] [CrossRef]
- Badaruzzaman, W.H.W.; Dabbagh, N.M.R.; Salleh, K.M.; Saharuddin, E.N.; Radzi, N.F.M.; Azham, M.A.A.; Sani, S.F.A.; Zakaria, S. Mechanical Properties and Water Absorption Capacity of Hybrid GFRP Composites. Polymers 2022, 14, 1394. [Google Scholar] [CrossRef] [PubMed]
- Ramraji, K.; Rajkumar, K.; Harikrishna, K.L.; Sarmaji Kumar, P. Mechanical and Dynamic Mechanical Analysis of Calcium Carbonate Filler Interleaved with Basalt Polymeric Laminates. Mater. Today Proc. 2022, 62, 1342–1346. [Google Scholar] [CrossRef]
- Hazwani, M.; Abdul Majid, M.S.; Azaman, M.D.; Ridzuan, M.J.M.; Cheng, E.M. Mechanical Properties and Flammability of Pineapple Leaf Fiber (PALF) Reinforced Polymer Composite with Hybridized Fire Retardants. Mater. Today Proc. 2023, 2214–7853. [Google Scholar] [CrossRef]
- Gupta, A.; Vaishya, R.; Khan, K.L.A.; Walia, R.S.; Singh, H. Multi-Response Optimization of Hybrid Filler Composition for Pultruded Jute Fiber Reinforced Polymer Composite. Mater. Res. Express 2019, 6, 115324. [Google Scholar] [CrossRef]
- Vedernikov, A.; Nasonov, Y.; Korotkov, R.; Gusev, S.; Akhatov, I.; Safonov, A. Effects of Additives on the Cure Kinetics of Vinyl Ester Pultrusion Resins. J. Compos. Mater. 2021, 55, 2921–2937. [Google Scholar] [CrossRef]
- Sharba, M.J.; Leman, Z.; Sultan, M.T.H.; Ishak, M.R.; Hanim, M.A.A. Partial Replacement of Glass Fiber by Woven Kenaf in Hybrid Composites and Its Effect on Monotonic and Fatigue Properties. Bioresources 2016, 11, 2665–2683. [Google Scholar] [CrossRef]
- Liang, S.; Gning, P.B.; Guillaumat, L. A Comparative Study of Fatigue Behaviour of Flax/Epoxy and Glass/Epoxy Composites. Compos. Sci. Technol. 2012, 72, 535–543. [Google Scholar] [CrossRef]
- Hassan, F.; Zulkifli, R.; Ghazali, M.J.; Azhari, C.H. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 315–321. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic Mechanical Behaviour of Kenaf Cellulosic Fibre Biocomposites: A Comprehensive Review on Chemical Treatments. Cellulose 2021, 28, 2675–2695. [Google Scholar] [CrossRef]
- Sivakumar, D.; Ng, L.F.; Lau, S.M.; Lim, K.T. Fatigue Life Behaviour of Glass/Kenaf Woven-Ply Polymer Hybrid Biocomposites. J. Polym. Environ. 2018, 26, 499–507. [Google Scholar] [CrossRef]
- Hadiji, H.; Assarar, M.; Zouari, W.; Pierre, F.; Behlouli, K.; Zouari, B.; Ayad, R. Damping Analysis of Nonwoven Natural Fibre-Reinforced Polypropylene Composites Used in Automotive Interior Parts. Polym. Test. 2020, 89, 106692. [Google Scholar] [CrossRef]
- Diharjo, K.; Susilo, D.D.; Sudargo, P.H.; Kaleg, S. Vibration-Damping Factor of Glass/Kenaf/Polyester Hybrid Composite. Key Eng. Mater. 2018, 772, 38–42. [Google Scholar] [CrossRef]
- Ramraji, K.; Rajkumar, K.; Subbiah, M.; Balachandar, K.; Sarmaji Kumar, P. Stacking Layer Effect on Mechanical and Vibration Behaviour of Woven Glass Intertwined with Kenaf Fiber Polymeric Composites. Mater. Today Proc. 2022, 62, 1356–1360. [Google Scholar] [CrossRef]
- Sharba, M.J.; Leman, Z.; Sultan, M.T.H.; Ishak, M.R.; Hanim, M.A.A. Monotonic and Fatigue Properties of Kenaf /Glass Hybrid Composites under Fully Reversed Cyclic Loading. IOP Conf. Ser. Mater. Sci. Eng. 2015, 100, 012055. [Google Scholar] [CrossRef]
- Sharba, M.J.; Leman, Z.; Sultan, M.T.H.; Ishak, M.R.; Azmah Hanim, M.A. Effects of Kenaf Fiber Orientation on Mechanical Properties and Fatigue Life of Glass/Kenaf Hybrid Composites. Bioresources 2016, 11, 1448–1465. [Google Scholar] [CrossRef]
- Arora, S.; Chitkara, R.; Dhangar, A.S.; Dubey, D.; Kumar, R.; Gupta, A. A Review of Fatigue Behavior of FRP Composites. Mater. Today Proc. 2022, 64, 1272–1275. [Google Scholar] [CrossRef]
- Noël, M. Probabilistic Fatigue Life Modelling of FRP Composites for Construction. Constr. Build. Mater. 2019, 206, 279–286. [Google Scholar] [CrossRef]
- Gao, Q.; Xin, H.; Correia, J.A.F.O.; Mosallam, A.S.; Berto, F. Probabilistic Fatigue Life Analysis Considering Mean Stress Effects of Fiber Reinforced Polymer (FRP) Composites. Int. J. Fatigue 2022, 162, 106951. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, D.J.; Lim, C.S.; Seo, B.K.; DeVries, K.L.; Park, J.M. Interfacial Adhesion Evaluation via Wettability for Fiber Reinforced Polymer Composites: A Review. Compos. Interfaces 2023, 30, 283–299. [Google Scholar] [CrossRef]
- Khan, A.; Sapuan, S.M.; Siddiqui, V.U.; Zainudin, E.S.; Zuhri, M.Y.M.; Harussani, M.M. A Review of Recent Developments in Kenaf Fiber/Polylactic Acid Composites Research. Int. J. Biol. Macromol. 2023, 253, 127119. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Das, D.; Nayak, R.K.; Khandai, S.; Kumar, R.; Routara, B.C. Effect of Silanizion on Mechanical and Tribological Properties of Kenaf-Carbon and Kenaf-Glass Hybrid Polymer Composites. Mater. Today Proc. 2020, 26, 2094–2098. [Google Scholar] [CrossRef]
- Saroj, S.; Nayak, R.K. Improvement of Mechanical and Wear Resistance of Natural Fiber Reinforced Polymer Composites Through Synthetic Fiber (Glass/Carbon) Hybridization. Trans. Indian Inst. Met. 2021, 74, 2651–2658. [Google Scholar] [CrossRef]
- Ghani, M.U.; Siddique, A.; Abraha, K.G.; Yao, L.; Li, W.; Khan, M.Q.; Kim, I.S. Performance Evaluation of Jute/Glass-Fiber-Reinforced Polybutylene Succinate (PBS) Hybrid Composites with Different Layering Configurations. Materials 2022, 15, 1055. [Google Scholar] [CrossRef] [PubMed]
- Sadighi, M.; Alderliesten, R. Impact Fatigue, Multiple and Repeated Low-Velocity Impacts on FRP Composites: A Review. Compos. Struct. 2022, 297, 115962. [Google Scholar] [CrossRef]
- Yusoff, R.B.; Takagi, H.; Nakagaito, A.N. A Comparative Study of Polylactic Acid (PLA)-Based Unidirectional Green Hybrid Composites Reinforced with Natural Fibers Such as Kenaf, Bamboo and Coir. Hybrid Adv. 2023, 3, 100073. [Google Scholar] [CrossRef]
- Zhang, J.; Khatibi, A.A.; Castanet, E.; Baum, T.; Komeily-Nia, Z.; Vroman, P.; Wang, X. Effect of Natural Fibre Reinforcement on the Sound and Vibration Damping Properties of Bio-Composites Compression Moulded by Nonwoven Mats. Compos. Commun. 2019, 13, 12–17. [Google Scholar] [CrossRef]
- Sathish, S.; Karthi, N.; Prabhu, L.; Gokulkumar, S.; Balaji, D.; Vigneshkumar, N.; Ajeem Farhan, T.S.; Akilkumar, A.; Dinesh, V.P. A Review of Natural Fiber Composites: Extraction Methods, Chemical Treatments and Applications. Mater. Today Proc. 2021, 45, 8017–8023. [Google Scholar] [CrossRef]
- Rasheed, R.; Anwar, I.; Tahir, F.; Rizwan, A.; Javed, H.; Sharif, F. Techno-Economic and Environmental Sustainability Analysis of Filament-Winding versus Pultrusion Based Glass-Fiber Composite Technologies. Environ. Sci. Pollut. Res. 2023, 30, 36276–36293. [Google Scholar] [CrossRef]
Industries | Applications |
---|---|
Aerospace and Defence | Aircraft components, such as structural beams, floors, and panels. Interior components, such as overhead bins, seating structures, and cabin partitions. Military vehicle components, such as chassis elements, weapon mounts, and armour supports. |
Automotive | Chassis components, such as frame rails, cross members, and subframes. Interior panels, such as door panels, dashboard supports, and seat structures. |
Construction | Bridge components, such as beams, decks, and railings. Building facades, such as cladding, sunshades, and louvres. Railing systems, such as stairs, balconies, and elevated platforms. |
Marine | Boat and shipbuilding components, such as hull reinforcements, deck supports, bulkheads, and superstructure elements. Decking and Flooring, such as non-slip decking and flooring solutions for marine vessels, docks, and decks. |
Properties | Kenaf | E-Glass | Unsaturated Polyester Resin (UPR) |
---|---|---|---|
Tensile strength (MPa) | 400–930 | 2000–3500 | 40–90 |
Tensile modulus (GPa) | 53 | 70 | 3.3 |
Elongation (%) | 2.7 | 2.8 | 2 |
Density (g/cm3) | 1.2 | 2.5 | 1.2 |
Linear density (tex) | 400–500 | 2400 | - |
Filament diameter (µm) | 60–80 | 24 | - |
Weight of woven mat (g/m2) | 375 | 450 | - |
Samples | Stacking Sequence | Fibre Weight Percentage (wt.%) | |
---|---|---|---|
Kenaf Content | Glass Content | ||
Pultruded WK/UG alternate | WK/UG/WK/UG/WK/UG/WK | 45 | 55 |
Pultruded 3WK/UG/3WK | WK/WK/WK/UG/WK/WK/WK | 81.7 | 18.3 |
Pultruded WG/UG alternate | WG/UG/WG/UG/WG/UG/WG | 0 | 100 |
Type of Composites | Ultimate Tensile Strength (UTS), MPa | Coefficient of Variation, % | Percentage of Applied Load with Respect to UTS, % | Maximum Stress (Qmax), MPa | Minimum Stress (Qmin), MPa |
---|---|---|---|---|---|
Pultruded WK/UG alternate | 410.6 | 2.54 | 80 | 328.48 | 32.85 |
70 | 287.42 | 28.74 | |||
60 | 246.36 | 24.64 | |||
50 | 205.3 | 20.53 | |||
Pultruded 3WK/UG/3WK | 185.13 | 5.17 | 80 | 148.10 | 14.81 |
70 | 129.59 | 12.96 | |||
60 | 111.08 | 11.11 | |||
50 | 92.57 | 9.26 | |||
Pultruded WG/UG alternate | 458.28 | 2.77 | 80 | 366.62 | 36.66 |
70 | 320.8 | 32.08 | |||
60 | 274.97 | 27.5 | |||
50 | 229.14 | 22.91 |
Stress Intensity | 50% | 60% | 70% | 80% |
---|---|---|---|---|
Pultruded WK/UG alternate | ||||
Pultruded 3WK/UG/3WK | ||||
Pultruded WG/UG alternate |
Reinforcing Fibres | Cost per kg in Ringgit Malaysia (RM) | Cost Per kg in US Dollar (USD) |
---|---|---|
Glass fibre direct roving | 3.50 | 0.75 |
Woven glass fibre mat | 5.20 | 1.12 |
Woven kenaf fibre mat | 2.50 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakrishnan, T.S.; Sultan, M.T.H.; Shahar, F.S.; Basri, A.A.; Shah, A.U.M.; Sebaey, T.A.; Łukaszewicz, A.; Józwik, J.; Grzejda, R. Fatigue and Impact Properties of Kenaf/Glass-Reinforced Hybrid Pultruded Composites for Structural Applications. Materials 2024, 17, 302. https://doi.org/10.3390/ma17020302
Balakrishnan TS, Sultan MTH, Shahar FS, Basri AA, Shah AUM, Sebaey TA, Łukaszewicz A, Józwik J, Grzejda R. Fatigue and Impact Properties of Kenaf/Glass-Reinforced Hybrid Pultruded Composites for Structural Applications. Materials. 2024; 17(2):302. https://doi.org/10.3390/ma17020302
Chicago/Turabian StyleBalakrishnan, Thinesh Sharma, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar, Adi Azriff Basri, Ain Umaira Md Shah, Tamer Ali Sebaey, Andrzej Łukaszewicz, Jerzy Józwik, and Rafał Grzejda. 2024. "Fatigue and Impact Properties of Kenaf/Glass-Reinforced Hybrid Pultruded Composites for Structural Applications" Materials 17, no. 2: 302. https://doi.org/10.3390/ma17020302
APA StyleBalakrishnan, T. S., Sultan, M. T. H., Shahar, F. S., Basri, A. A., Shah, A. U. M., Sebaey, T. A., Łukaszewicz, A., Józwik, J., & Grzejda, R. (2024). Fatigue and Impact Properties of Kenaf/Glass-Reinforced Hybrid Pultruded Composites for Structural Applications. Materials, 17(2), 302. https://doi.org/10.3390/ma17020302