Using Recycled Tetrapak and Doped Titanyl/Vanadyl Phthalocyanine to Make Solid-State Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. TiOPc and VOPc Doping
2.2. Fabrication of the Tetrapak/Carbon/Silver (TCS) Electrodes
2.3. Fabrication and Characterization of the Devices
3. Results and Discussion
3.1. Chemical and Structural Characterization
3.2. Mechanical and Optical Characterization
3.3. DFT Analysis
3.4. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, P.; He, X.; Jiang, H. Greater than 10 cm2 V−1 s−1: A breakthrough of organic semiconductors for field-effect transistors. InfoMat 2021, 3, 613–630. [Google Scholar] [CrossRef]
- Zou, S.-J.; Shen, Y.; Xie, F.-M.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Mater. Chem. Front. 2019, 4, 788–820. [Google Scholar] [CrossRef]
- Quinn, J.T.E.; Zhu, J.; Li, X.; Wang, J.; Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 2017, 5, 8654–8681. [Google Scholar] [CrossRef]
- Anuar, A.; Roslan, N.A.; Abdullah, S.M.; Bawazeer, T.M.; Alsoufi, M.S.; Alsenany, N.; Supangat, A. Improving the photo-current of poly(3-hexylthiophene): [6,6]-phenyl C71 butyric acid methyl-ester photodetector by incorporating the small molecules. Thin Solid Films 2020, 703, 137976. [Google Scholar] [CrossRef]
- Heremans, P.; Gelinck, G.H.; Müller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y. Polymer and organic nonvolatile memory devices. Chem. Mater. 2010, 23, 341–358. [Google Scholar] [CrossRef]
- Kumar, A.; Meunier-Prest, R.; Bouvet, M. Organic heterojunction devices based on phthalocyanines: A new approach to gas chemosensing. Sensors 2020, 20, 4700. [Google Scholar] [CrossRef]
- Williams, G.; Sutty, S.; Klenkler, R.; Aziz, H. Renewed interest in metal phthalocyanine donors for small molecule organic solar cells. Sol. Energy Mater. Sol. Cells 2014, 124, 217–226. [Google Scholar] [CrossRef]
- Kiran, M.R.; Ulla, H.; Satyanarayan, M.; Umesh, G. Optoelectronic properties of hybrid diodes based on vanadyl-phthalocyanine and zinc oxide. Superlattices Microstruct. 2017, 112, 654–664. [Google Scholar] [CrossRef]
- Kiran, M.R.; Ulla, H.; Satyanarayan, M.; Umesh, G. Optoelectronic properties of hybrid diodes based on vanadyl-phthalocyanine and zinc oxide nanorods thin films. Opt. Mater. 2019, 96, 109348. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Cao, L.; Liang, Q.; Lei, S. Nonvolatile memory device based on copper polyphthalocyanine thin films. ACS Omega 2019, 4, 10419–10423. [Google Scholar] [CrossRef]
- Aziz, F.; Ahmad, Z.; Abdullah, S.M.; Sulaiman, K.; Sayyad, M. Photovoltaic effect in single-junction organic solar cell fabricated using vanadyl phthalocyanine soluble derivative. Pigment. Resin Technol. 2015, 44, 26–32. [Google Scholar] [CrossRef]
- Ji, Z.; Shang, L.; Lu, C.; Wang, L.; Guo, J.; Wang, H.; Li, D.; Liu, M. Phototransistors and Photoswitches from an Ultraclosely pi-Stacked Organic Semiconductor. IEEE Electron. Device Lett. 2012, 33, 1619–1621. [Google Scholar] [CrossRef]
- Kalashnyk, N.; Rochford, L.A.; Li, D.; Smogunov, A.; Dappe, Y.J.; Jones, T.S.; Guillemot, L. Unraveling giant Cu(110) surface restructuring induced by a non-planar phthalocyanine. Nano Res. 2017, 11, 2605–2611. [Google Scholar] [CrossRef]
- Basova, T.V.; Kiselev, V.G.; Klyamer, D.D.; Hassan, A. Thin films of chlorosubstituted vanadyl phthalocyanine: Charge transport properties and optical spectroscopy study of structure. J. Mater. Sci. Mater. Electron. 2018, 29, 16791–16798. [Google Scholar] [CrossRef]
- Ziolo, R.F.; Griffiths, C.H.; Troup, J.M. Crystal structure of vanadyl phthalocyanine, phase II. J. Chem. Soc. Dalton Trans. 1980, 2300–2302. [Google Scholar] [CrossRef]
- Bao, Z.; Lovinger, A.J.; Brown, J. New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 1998, 120, 207–208. [Google Scholar] [CrossRef]
- Li, L.; Tang, Q.; Li, H.; Hu, W. molecular orientation and interface compatibility for high performance organic thin film transistor based on vanadyl phthalocyanine. J. Phys. Chem. B 2008, 112, 10405–10410. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, C.; Qiao, X.; Tian, H.; Geng, Y.; Yan, D. Tunable Field-Effect Mobility Utilizing Mixed Crystals of Organic Molecules. Adv. Mater. 2011, 23, 3455–3459. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Zhu, F.; Pan, F.; Yan, D. Electrical instability in vanadyl-phthalocyanine thin-film transistors. Appl. Phys. Lett. 2008, 93, 173303. [Google Scholar] [CrossRef]
- Figueroa-González, E.; Oliva, A.; Rodriguez-Gonzalez, V.; Gomez-Solis, C.; Garcia, C.; Oliva, J. Using recycled tetrapak and Ag/BaMoO4 nanoparticles to make efficient and flexible solid state supercapacitors. J. Energy Storage 2021, 47, 103544. [Google Scholar] [CrossRef]
- Catania, F.; Oliveira, H.d.S.; Lugoda, P.; Cantarella, G.; Münzenrieder, N. Thin-film electronics on active substrates: Review of materials, technologies and applications. J. Phys. D Appl. Phys. 2022, 55, 323002. [Google Scholar] [CrossRef]
- Irimia-Vladu, M.; Troshin, P.A.; Reisinger, M.; Shmygleva, L.; Kanbur, Y.; Schwabegger, G.; Bodea, M.; Schwödiauer, R.; Mumyatov, A.; Fergus, J.W.; et al. Edible Electronics: Biocompatible and Biodegradable Materials for Organic Field-Effect Transistors. Adv. Funct. Mater. 2010, 20, 4017. [Google Scholar] [CrossRef]
- Ko, J.; Nguyen, L.T.H.; Surendran, A.; Tan, B.Y.; Ng, K.W.; Leong, W.L. Human hair keratin for biocompatible flexible and transient electronic devices. ACS Appl. Mater. Interfaces 2017, 9, 43004–43012. [Google Scholar] [CrossRef] [PubMed]
- Irimia-Vladu, M.; Troshin, P.A.; Reisinger, M.; Schwabegger, G.; Ullah, M.; Schwoediauer, R.; Mumyatov, A.; Bodea, M.; Fergus, J.W.; Razumov, V.F.; et al. Environmentally sustainable organic field effect transistors. Org. Electron. 2010, 11, 1974–1990. [Google Scholar] [CrossRef]
- Liu, X.; Shi, M.; Luo, Y.; Zhou, L.; Loh, Z.R.; Oon, Z.J.; Lian, X.; Wan, X.; Chong, F.B.L.; Tong, Y. Degradable and dissolvable thin-film materials for the applications of new-generation environmental-friendly electronic devices. Appl. Sci. 2020, 10, 1320. [Google Scholar] [CrossRef]
- Mirjalili, A.; Dong, B.; Pena, P.; Ozkan, C.S.; Ozkan, M. Upcycling of polyethylene terephthalate plastic waste to microporous carbon structure for energy storage. Energy Storage 2020, 2, e201. [Google Scholar] [CrossRef]
- Teng, L.; Ye, S.; Handschuh-Wang, S.; Zhou, X.; Gan, T.; Zhou, X. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 2019, 29, 1808739. [Google Scholar] [CrossRef]
- Lee, G.; Kang, S.; Won, S.M.; Gutruf, P.; Jeong, Y.R.; Koo, J.; Lee, S.; Rogers, J.A.; Ha, J.S. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater. 2017, 7, 1700157. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, D.; Tao, H.; Kim, T.; Kim, S.; Yu, K.J.; Panilaitis, B.; Jeong, J.; Song, J.; Omenetto, F.G.; et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Funct. Mater. 2013, 23, 4087–4093. [Google Scholar] [CrossRef]
- Lei, T.; Guan, M.; Liu, J.; Lin, H.-C.; Pfattner, R.; Shaw, L.; McGuire, A.F.; Huang, T.-C.; Shao, L.; Cheng, K.-T.; et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl. Acad. Sci. USA 2017, 114, 5107–5112. [Google Scholar] [CrossRef]
- Platnieks, O.; Barkane, A.; Ijudina, N.; Gaidukova, G.; Thakur, V.K.; Gaidukovs, S. Sustainable tetra pak recycled cellulose/Poly(Butylene succinate) based woody-like composites for a circular economy. J. Clean. Prod. 2020, 270, 122321. [Google Scholar] [CrossRef]
- Adinaveen, T.; Vijaya, J.J.; Sivakumar, R.; Kennedy, L.J. Structural and electrochemical investigation of waste newspa-per-based electrodes for supercapacitor applications. Mater. Sci.-Pol. 2016, 34, 302–314. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.A.; Hamdalla, T.A.; Darwish, A.A.A.; Alzahrani, A.O.M.; El-Zaidia, E.F.M.; Alamrani, N.A.; Elblbesy, M.A.; Yahia, I.S. Preparation, Raman spectroscopy, surface morphology and optical properties of TiPcCl2 nanostructured films: Thickness effect. Opt. Quantum Electron. 2021, 53, 514. [Google Scholar] [CrossRef]
- Song, C.; Li, Y.; Gao, C.; Zhang, H.; Chuai, Y.; Song, D. An OTFT based on titanium phthalocyanine dichloride: A new p-type organic semiconductor. Mater. Lett. 2020, 270, 127666. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Wang, Y.; Niu, L. Titanyl phthalocyanine and its soluble derivatives: Highly efficient photosensitizers for singlet oxygen production. J. Photochem. Photobiol. A Chem. 2010, 209, 232–237. [Google Scholar] [CrossRef]
- Del Caño, T.; Parra, V.; Rodríguez-Méndez, M.; Aroca, R.; De Saja, J. Characterization of evaporated trivalent and tetravalent phthalocyanines thin films: Different degree of organization. Appl. Surf. Sci. 2005, 246, 327–333. [Google Scholar] [CrossRef]
- Ouyang, J.; Chu, C.; Chen, F.; Xu, Q.; Yang, Y. High-conductivity poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 2005, 15, 203–208. [Google Scholar] [CrossRef]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef]
- Hassan, A.K.; Gould, R.D. Structural studies of thermally evaporated thin films of copper phthalocyanine. Phys. Status Solidi (A) 1992, 132, 91–101. [Google Scholar] [CrossRef]
- Szybowicz, M.; Bała, W.; Fabisiak, K.; Paprocki, K.; Drozdowski, M. The molecular structure ordering and orientation of the metallophthalocyanine CoPc, ZnPc, CuPc, and MgPc thin layers deposited on silicon substrate, as studied by micro-Raman spectroscopy. J. Mater. Sci. 2011, 46, 6589–6595. [Google Scholar] [CrossRef]
- Klyamer, D.D.; Basova, T.V. Effect of the structural features of metal phthalocyanine films on their electrophysical properties. J. Struct. Chem. 2022, 63, 997–1018. [Google Scholar] [CrossRef]
- Touka, N.; Benelmadjat, H.; Boudine, B.; Halimi, O.; Sebais, M. Copper phthalocyanine nanocrystals embedded into polymer host: Preparation and structural characterization. J. Assoc. Arab. Univ. Basic Appl. Sci. 2013, 13, 52–56. [Google Scholar] [CrossRef]
- Madhuri, K.P.; John, N.S.; Angappane, S.; Santra, P.K.; Bertram, F. Influence of iodine doping on the structure, morphology, and physical properties of manganese phthalocyanine thin films. J. Phys. Chem. C 2018, 122, 28075–28084. [Google Scholar] [CrossRef]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, M.R.; Ali, S.H.M.; Sabri, M.F.M. Fabrication and photovoltaic properties of organic solar cell based on zinc phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef]
- Klyamer, D.; Sukhikh, A.; Nikolaeva, N.; Morozova, N.; Basova, T. Vanadyl Phthalocyanine Films and Their Hybrid Structures with Pd Nanoparticles: Structure and Sensing Properties. Sensors 2020, 20, 1893. [Google Scholar] [CrossRef]
- Aziz, F.; Sulaiman, K.; Al-Rawi, W.K.; Ahmad, Z.; Sayyad, M.; Karimov, K.S.; Wei, L.; Tahir, M. Enhancement of electrical properties of vanadyl phthalocyanine derivative by PCBM. Pigment. Resin Technol. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Wee, G.; Mak, W.F.; Phonthammachai, N.; Kiebele, A.; Reddy, M.V.; Chowdari, B.V.R.; Gruner, G.; Srinivasan, M.; Mhaisalkar, S.G. Particle size effect of silver nanoparticles decorated single walled carbon nanotube electrode for supercapacitors. J. Electrochem. Soc. 2010, 157, A179–A184. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Xu, J.; Xiang, Z.; Mo, L. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 2017, 7, 33486–33493. [Google Scholar] [CrossRef]
- Zou, T.; Wang, X.; Ju, H.; Zhao, L.; Guo, T.; Wu, W.; Wang, H. Controllable molecular packing motif and overlap type in organic nanomaterials for advanced optical properties. Crystals 2018, 8, 22. [Google Scholar] [CrossRef]
- Özçeşmeci, I.; Sorar, I. Synthesis and some optical results of long chain substituted phthalocyanines. Turk. J. Chem. 2018, 42, 21–28. [Google Scholar] [CrossRef]
- Sukhikh, A.; Klyamer, D.; Bonegardt, D.; Basova, T. Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. Int. J. Mol. Sci. 2023, 24, 2034. [Google Scholar] [CrossRef] [PubMed]
- Konarev, D.V.; Nakano, Y.; Khasanov, S.S.; Kuzmin, A.V.; Ishikawa, M.; Otsuka, A.; Yamochi, H.; Saito, G.; Lyubovskaya, R.N. Magnetic and Optical Properties of Layered (Me4P+)[MIVO(Pc•3–)]•–(TPC)0.5·C6H4Cl2 Salts (M = Ti and V) Composed of π-Stacking Dimers of Titanyl and Vanadyl Phthalocyanine Radical Anions. Cryst. Growth Des. 2017, 17, 753–762. [Google Scholar] [CrossRef]
- Ridhi, R.; Neeru; Gautam, S.; Saini, G.; Tripathi, S.; Rawat, J.; Jha, P. Study of the effect of orbital on interaction behaviour of SWCNT- metal phthalocyanines composites with ammonia gas. Sens. Actuators B Chem. 2021, 337, 129767. [Google Scholar] [CrossRef]
- Bonegardt, D.V.; Klyamer, D.D.; Atilla, D.; Gürek, A.G.; Basova, T.V. Thin films of poly(oxyethylene)-substituted phthalocyaninato zinc(II) and oxotitanium(IV) complexes: Synthesis, structure and sensor response to ammonia. J. Mater. Sci. Mater. Electron. 2021, 32, 5955–5964. [Google Scholar] [CrossRef]
- Kadish, K.M.; Smith, K.M.; Guilard, R. The Porphyrin Handbook; Elsevier BV: Amsterdam, The Netherlands, 2003; pp. 201–232. [Google Scholar]
- Atilla, D.; Gürek, A.G.; Basova, T.V.; Kiselev, V.G.; Hassan, A.; Sheludyakova, L.A.; Ahsen, V. The synthesis and characterization of novel mesomorphic octa- and tetra-alkylthio-substituted lead phthalocyanines and their films. Dye. Pigment. 2011, 88, 280–289. [Google Scholar] [CrossRef]
- El-Saady, A.A.; Roushdy, N.; Farag, A.A.M.; El-Nahass, M.M.; Basset, D.M.A. Exploring the molecular spectroscopic and electronic characterization of nanocrystalline Metal-free phthalocyanine: A DFT investigation. Opt. Quantum Electron. 2023, 55, 662. [Google Scholar] [CrossRef]
- Vergara, M.E.S.; Heredia, L.F.V.; Hamui, L. Influence of the Coordinated Ligand on the Optical and Electrical Properties in Titanium Phthalocyanine-Based Active Films for Photovoltaics. Materials 2023, 16, 551. [Google Scholar] [CrossRef]
- Bandas, C.; Popescu, M.I.; Orha, C.; Nicolaescu, M.; Pop, A.; Lazau, C. Development of Hybrid Electrodes Based on a Ti/TiO2 Mesoporous/Reduced Graphene Oxide Structure for Enhanced Electrochemical Applications. Coatings 2023, 13, 1359. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2017; Available online: https://gaussian.com/ (accessed on 7 September 2023).
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Basiuk, E.V.; Basiuk, V.A.; Toscano, R.A.; Gómez-Lara, J. A 1:1:2 complex between 1,4,8,11-tetraazacyclotetradecane (cyclam), anthraflavic acid, and water. J. Chem. Crystallogr. 2000, 30, 339–343. [Google Scholar] [CrossRef]
- Vergara, M.E.S.; Hamui, L.; Hernandez, M.F.B.; Rios, C.; Salcedo, R. Combined experimental and theoretical study of conjugated ferrocene semiconductors and the effect of doping on their opto-electrical and structural properties. J. Mol. Struct. 2022, 1262, 132998. [Google Scholar] [CrossRef]
- Palke, W.E. Double bonds are bent equivalent hybrid (banana) bonds. J. Am. Chem. Soc. 1986, 108, 6543–6544. [Google Scholar] [CrossRef]
- Ruzin, A. Edge effect in ohmic contacts on high-resistivity semiconductors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 806, 356–359. [Google Scholar] [CrossRef]
- Tove, P.A. Methods of avoiding edge effects on semiconductor diodes. J. Phys. D Appl. Phys. 1982, 15, 517–536. [Google Scholar] [CrossRef]
- Tove, P.; Hyder, S.; Susila, G. Diode characteristics and edge effects of metal-semiconductor diodes. Solid-State Electron. 1973, 16, 513–521. [Google Scholar] [CrossRef]
- Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1996. [Google Scholar]
- Boylestad, R.L.; Nashelsky, L. Electronic Devices and Circuit Theory; Pearson Education: London, UK, 2018. [Google Scholar]
Sample | Ra * (nm) | RMS * (nm) | Thickness * (μm) | σ (MPa) | HK |
---|---|---|---|---|---|
TiOPc-Anthraflavine on silicon-n | 4.122 | 5.229 | 6.5 | 8.81 | 4.81 |
VOPc-Anthraflavine on silicon-n | 10.21 | 16.27 | 6.1 | 8.42 | 5.01 |
TiOPc-Anthraflavine on TCS | 121.1 | 151.1 | 6.2 | 7.91 | 11.31 |
VOPc-Anthraflavine on TCS | 99.3 | 124.2 | 6.7 | 8.58 | 11.34 |
Sample | Fundamental Gap for Direct Transitions (eV) | Fundamental Gap for Indirect Transitions (eV) | Onset Gap for Direct Transitions (eV) | Onset Gap for Indirect Transitions (eV) |
---|---|---|---|---|
TiOPc-Anthraflavine | 1.98 | 1.81 | 1.57 | 1.46 |
VOPc-Anthraflavine | 2.39 | 2.29 | 1.81 | 1.80 |
Doped Semiconductor | HOMO (eV) | LUMO (eV) | GAP (eV) |
---|---|---|---|
VOPc-Anthraflavine | −5.52 | −4.22 | 1.3 |
TiOPc-Anthraflavine | −5.41 | −3.21 | 2.2 |
Light | Sample | ||
---|---|---|---|
VOPc-Anthraflavine on FTO | TiOPc-Anthraflavine on TCS | VOPc-Anthraflavine on TCS | |
Natural | 0.75 V | 0.55 V | 0.85 V |
Darkness | 0.88 V | 0.5 V | 0.85 V |
White | 1.17 V | 0.5 V | 0.5 V |
UV | 1.3 V | 0.5 V | 0.7 V |
Blue | 1.2 V | 0.35 V | 0.55 V |
Green | 1.23 V | 0.4 V | 0.4 V |
Yellow | 1.25 V | 0.45 V | 0.35 V |
Orange | 1.26 V | 0.4 V | 0.4 V |
Red | 1.29 V | 0.5 V | 0.8 V |
Light | TiOPc-Anthraflavine on FTO | |
---|---|---|
Natural | 1.6193 | 0.0114 |
Darkness | 1.7601 | 0.0114 |
White | 2.8563 | 0.0042 |
UV | 1.8700 | 0.0098 |
Blue | 1.7473 | 0.0111 |
Green | 1.6628 | 0.0109 |
Yellow | 1.8589 | 0.0096 |
Orange | 1.8055 | 0.0101 |
Red | 1.7227 | 0.0109 |
Average | 1.9 | 0.0099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Vergara, M.E.; Toledo Dircio, E.; Cantera Cantera, L.A.; Bazán-Diaz, L.; Salcedo, R. Using Recycled Tetrapak and Doped Titanyl/Vanadyl Phthalocyanine to Make Solid-State Devices. Materials 2024, 17, 309. https://doi.org/10.3390/ma17020309
Sánchez Vergara ME, Toledo Dircio E, Cantera Cantera LA, Bazán-Diaz L, Salcedo R. Using Recycled Tetrapak and Doped Titanyl/Vanadyl Phthalocyanine to Make Solid-State Devices. Materials. 2024; 17(2):309. https://doi.org/10.3390/ma17020309
Chicago/Turabian StyleSánchez Vergara, María Elena, Emiliano Toledo Dircio, Luis Alberto Cantera Cantera, Lourdes Bazán-Diaz, and Roberto Salcedo. 2024. "Using Recycled Tetrapak and Doped Titanyl/Vanadyl Phthalocyanine to Make Solid-State Devices" Materials 17, no. 2: 309. https://doi.org/10.3390/ma17020309
APA StyleSánchez Vergara, M. E., Toledo Dircio, E., Cantera Cantera, L. A., Bazán-Diaz, L., & Salcedo, R. (2024). Using Recycled Tetrapak and Doped Titanyl/Vanadyl Phthalocyanine to Make Solid-State Devices. Materials, 17(2), 309. https://doi.org/10.3390/ma17020309