The Effect of Restoration Thickness on the Fracture Resistance of 5 mol% Yttria-Containing Zirconia Crowns
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- 5Y-Z crowns as thin as 0.8 mm (regardless of the cement or surface treatment) have a similar fracture resistance to 0.5 mm thick 3Y-Z cemented with RMGIC. Despite this finding, manufacturers’ recommendations should be followed regarding the minimum restoration thickness.
- 5Y-Z crowns with 1.2 mm thickness that are bonded with resin cement have a similar fracture resistance to 1.0 mm thick 3Y-Z cemented with RMGIC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etman, M.K.; Woolford, M.; Dunne, S. Quantitative measurement of tooth and ceramic wear: In vivo study. Int. J. Prosthodont. 2008, 21, 245–252. [Google Scholar] [PubMed]
- Kon, M.; Ishikawa, K.; Kuwayam, N. Effects of zirconia addition on fracture toughness and bending strength of dental porcelains. Dent. Mater. J. 1990, 9, 181–192. [Google Scholar] [CrossRef]
- Kontonasaki, E.; Rigos, A.E.; Ilia, C.; Istantsos, T. Monolithic zirconia: An update to current knowledge. optical properties, wear, and clinical performance. Dent. J. 2019, 7, 90. [Google Scholar] [CrossRef]
- da Silva, A.O.; Fiorin, L.; Faria, A.C.L.; Ribeiro, R.F.; Rodrigues, R.C.S. Translucency and mechanical behavior of partially stabilized monolithic zirconia after staining, finishing procedures and artificial aging. Sci. Rep. 2022, 12, 16094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Qiu, H.Q.; Zhang, Y.Q.; Huang, W.W.; Chen, J.; Gao, L.; Omran, M.; Li, N.; Chen, G. Sintering properties of tetragonal zirconia nanopowder preparation of the NaCl+KCl binary system by the sol-gel-flux method. ACS Sustain. Chem. Eng. 2023, 11, 1067–1077. [Google Scholar] [CrossRef]
- Arellano Moncayo, A.M.; Peñate, L.; Arregui, M.; Giner-Tarrida, L.; Cedeño, R. State of the art of different zirconia materials and their indications according to evidence-based clinical performance: A narrative review. Dent. J. 2023, 11, 18. [Google Scholar] [CrossRef]
- Kim, H.K.; Yoo, K.W.; Kim, S.J.; Jung, C.H. Phase transformations and subsurface changes in three dental zirconia grades after sandblasting with various Al2O3 particle sizes. Materials 2021, 14, 5321. [Google Scholar] [CrossRef]
- Katana Zirconia Technical Guideline. Available online: https://kuraraydental.com/wp-content/uploads/sds/Guides/katana_zirconia_utml_stml_tg.pdf (accessed on 3 January 2024).
- Sun, T.; Zhou, S.; Lai, R.; Liu, R.; Ma, S.; Zhou, Z.; Longquan, S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J. Mech. Behav. Biomed. Mater. 2014, 35, 93–101. [Google Scholar] [CrossRef]
- Adabo, G.L.; Longhini, D.; Baldochi, M.R.; Bergamo, E.T.P.; Bonfante, E.A. Reliability and lifetime of lithium disilicate, 3Y-TZP, and 5Y-TZP zirconia crowns with different occlusal thicknesses. Clin. Oral Investig. 2023, 27, 3827–3838. [Google Scholar] [CrossRef]
- Alraheam, I.A.; Donovan, T.; Boushell, L.; Cook, R.; Ritter, A.V.; Sulaiman, T.A. Fracture load of two thicknesses of different zirconia types after fatiguing and thermocycling. J. Prosthet. Dent. 2020, 123, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Longhini, D.; Rocha, C.; de Oliveira, L.T.; Olenscki, N.G.; Bonfante, E.A.; Adabo, G.L. Mechanical behavior of ceramic monolithic systems with different thicknesses. Oper. Dent. 2019, 44, E244–E253. [Google Scholar] [CrossRef] [PubMed]
- Machry, R.V.; Cadore-Rodrigues, A.C.; Borges, A.L.S.; Pereira, G.K.R.; Kleverlaan, C.J.; Venturini, A.B.; Valandro, L.F. Fatigue resistance of simplified CAD-CAM restorations: Foundation material and ceramic thickness effects on the fatigue behavior of partially- and fully-stabilized zirconia. Dent. Mater. 2021, 37, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.; Valandro, L.F.; Feitosa, S.A.; Kleverlaan, C.J.; Feilzer, A.J.; de Jager, N.; Bottino, M.A. Adhesive cementation promotes higher fatigue resistance to zirconia crowns. Oper. Dent. 2017, 42, 215–224. [Google Scholar] [CrossRef]
- Indergård, J.A.; Skjold, A.; Schriwer, C.; Øilo, M. Effect of cementation techniques on fracture load of monolithic zirconia crowns. Biomater. Investig. Dent. 2021, 8, 160–169. [Google Scholar] [CrossRef]
- Lawson, N.C.; Jurado, C.A.; Huang, C.T.; Morris, G.P.; Burgess, J.O.; Liu, P.R.; Kinderknecht, K.E.; Lin, C.P.; Givan, D.A. Effect of surface treatment and cement on fracture load of traditional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns. J. Prosthodont. 2019, 28, 659–665. [Google Scholar] [CrossRef]
- Lawson, N.C.; Litaker, M.S.; Ferracane, J.L.; Gordan, V.V.; Atlas, A.M.; Rios, T.; Gilbert, G.H.; McCracken, M.S.; National Dental Practice-Based Research Network Collaborative Group. Choice of cement for single-unit crowns: Findings from The National Dental Practice-Based Research Network. J. Am. Dent. Assoc. 2019, 150, 522–530. [Google Scholar] [CrossRef]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of bonding effectiveness to zirconia ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef]
- Alammar, A.; Blatz, M.B. The resin bond to high-translucent zirconia-A systematic review. J. Esthet. Restor. Dent. 2022, 34, 117–135. [Google Scholar] [CrossRef]
- Darkoue, Y.A.; Burgess, J.O.; Lawson, N.; McLaren, E.; Lemons, J.E.; Morris, G.P.; Givan, D.A.; Fu, C.C. Effects of particle abrasion media and pressure on flexural strength and bond strength of zirconia. Oper. Dent. 2023, 48, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Kulunk, S.; Kulunk, T.; Ural, C.; Kurt, M.; Baba, S. Effect of air abrasion particles on the bond strength of adhesive resin cement to zirconia core. Acta Odontol. Scand. 2011, 69, 88–94. [Google Scholar] [CrossRef]
- Yoshida, K. Influence of alumina air-abrasion for highly translucent partially stabilized zirconia on flexural strength, surface properties, and bond strength of resin cement. J. Appl. Oral Sci. 2020, 28, e20190371. [Google Scholar] [CrossRef]
- Hergeröder, C.; Wille, S.; Kern, M. Comparison of testing designs for flexural strength of 3Y-TZP and 5Y-PSZ Considering different surface treatment. Materials 2022, 15, 3915. [Google Scholar] [CrossRef]
- AlMutairi, R.; AlNahedh, H.; Maawadh, A.; Elhejazi, A. Effects of different air particle abrasion protocols on the biaxial flexural strength and fractography of high/ultra-translucent zirconia. Materials 2021, 15, 244. [Google Scholar] [CrossRef]
- Blatz, M.B.; Chiche, G.; Holst, S.; Sadan, A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int. 2007, 38, 745–753. [Google Scholar] [PubMed]
- Lawson, N.C.; Khajotia, S.; Bedran-Russo, A.K.; Frazier, K.; Park, J.; Leme-Kraus, A.; Urquhart, O.; Council on Scientific Affairs. Bonding crowns and bridges with resin cement: An American Dental Association Clinical Evaluators Panel survey. J. Am. Dent. Assoc. 2020, 151, 796–797.e2. [Google Scholar] [CrossRef] [PubMed]
- 3M RelyX Simple Steps Cement Guide for Labs. Available online: https://multimedia.3m.com/mws/media/1304258O/3m-relyx-simple-steps-cement-guide-for-labs.pdf (accessed on 3 January 2024).
- ISO 6872:2015; Dentistry—Ceramic Materials. International Organization for Standardization. European Committee for Standardizatio: Geneva, Switzerland, 2015.
- Xu, Y.; Han, J.; Lin, H.; An, L. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics. Regen. Biomater. 2015, 2, 239–244. [Google Scholar] [CrossRef]
- Schriwer, C.; Skjold, A.; Gjerdet, N.R.; Øilo, M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent. Mater. 2017, 33, 1012–1020. [Google Scholar] [CrossRef]
- Kelly, J.R. Clinically relevant approach to failure testing of all-ceramic restorations. J. Prosthet. Dent. 1999, 81, 652–661. [Google Scholar] [CrossRef]
- Spintzyk, S.; Geis-Gerstorfer, J.; Bourauel, C.; Keilig, L.; Lohbauer, U.; Brune, A.; Greuling, A.; Arnold, C.; Rues, S.; Adjiski, R.; et al. Biaxial flexural strength of zirconia: A round robin test with 12 laboratories. Dent. Mater. 2021, 37, 284–295. [Google Scholar] [CrossRef]
- Yucel, M.T.; Yondem, I.; Aykent, F.; Eraslan, O. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin. Oral Investig. 2012, 16, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Rohr, N.; Märtin, S.; Fischer, J. Correlations between fracture load of zirconia implant supported single crowns and mechanical properties of restorative material and cement. Dent. Mater. J. 2018, 37, 222–228. [Google Scholar] [CrossRef]
- Chen, Y.; Maghami, E.; Bai, X.; Huang, C.; Pow, E.H.N.; Tsoi, J.K.H. Which dentine analogue material can replace human dentine for crown fatigue test? Dent. Mater. 2023, 39, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Asakura, M.; Ando, A.; Kumano, H.; Ban, S.; Kawai, T.; Takebe, J. Fracture strength testing of crowns made of CAD/CAM composite resins. J. Prosthodont. Res. 2018, 62, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.V.; Sayed Ahmed, A.; Alford, A.; Pitttman, K.; Thomas, V.; Lawson, N.C. Characterization of materials used for 3D printing dental crowns and hybrid prostheses. J. Esthet. Restor. Dent. 2023, in press. [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Comba, A.; Baldi, A.; Carossa, M.; Michelotto Tempesta, R.; Garino, E.; Llubani, X.; Rozzi, D.; Mikonis, J.; Paolone, G.; Scotti, N. Post-fatigue fracture resistance of lithium disilicate and polymer-infiltrated ceramic network indirect restorations over endodontically-treated molars with different preparation designs: An in-vitro study. Polymers 2022, 14, 5084. [Google Scholar] [CrossRef]
Material | Manufacturer | Composition |
---|---|---|
Katana UTML | Kuraray Noritake | 5Y-Z |
Katana HT | Kuraray Noritake | 3Y-Z |
Rely X Luting Cement | 3M | RMGIC |
Panavia SA Cement Universal | Kuraray Noritake | Resin cement |
Zirconia | Thickness (mm) | Particle Abrasion | Cement | Crown Fracture Force (N) |
---|---|---|---|---|
3Y-Z | 0.5 | Yes | RMGI | 639.30 ± 111.77 |
1.0 | Yes | RMGI | 1378.10 ± 143.22 | |
5Y-Z | 0.8 | No | RMGI | 522.67 ± 108.57 * |
Yes | RMGI | 516.86 ± 63.32 * | ||
Yes | Resin | 635.89 ± 78.00 * | ||
1.0 | No | RMGI | 865.30 ± 116.39 * | |
Yes | RMGI | 663.78 ± 106.80 * | ||
Yes | Resin | 980.10 ± 123.50 * | ||
1.2 | No | RMGI | 1002.56 ± 149.58 * | |
Yes | RMGI | 696.30 ± 165.72 * | ||
Yes | Resin | 1272.44 ± 97.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.-H.; Elamin, E.; Sayed Ahmed, A.; Givan, D.A.; Fu, C.-C.; Lawson, N.C. The Effect of Restoration Thickness on the Fracture Resistance of 5 mol% Yttria-Containing Zirconia Crowns. Materials 2024, 17, 365. https://doi.org/10.3390/ma17020365
Chen P-H, Elamin E, Sayed Ahmed A, Givan DA, Fu C-C, Lawson NC. The Effect of Restoration Thickness on the Fracture Resistance of 5 mol% Yttria-Containing Zirconia Crowns. Materials. 2024; 17(2):365. https://doi.org/10.3390/ma17020365
Chicago/Turabian StyleChen, Po-Hsu, Esra Elamin, Akram Sayed Ahmed, Daniel A. Givan, Chin-Chuan Fu, and Nathaniel C. Lawson. 2024. "The Effect of Restoration Thickness on the Fracture Resistance of 5 mol% Yttria-Containing Zirconia Crowns" Materials 17, no. 2: 365. https://doi.org/10.3390/ma17020365
APA StyleChen, P. -H., Elamin, E., Sayed Ahmed, A., Givan, D. A., Fu, C. -C., & Lawson, N. C. (2024). The Effect of Restoration Thickness on the Fracture Resistance of 5 mol% Yttria-Containing Zirconia Crowns. Materials, 17(2), 365. https://doi.org/10.3390/ma17020365