Friction Characteristics of Low and High Strength Steels with Galvanized and Galvannealed Zinc Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Friction Test
2.3. Sliding Surface Analysis
3. Results
3.1. Effect of Strength and Coating Condition on Friction Coefficient
3.2. Characteristics of Frictional Behavior
3.3. Analysis of Asperity Flattening on Sliding Surface
4. Discussion
4.1. Effect of Coating and Base Metal Properties on Friction Behavior
4.2. Summary of Sliding Velocity and Contact Pressure on the Asperity Flattening
4.3. Summary of Asperity Flattening on Friction Coefficient
5. Conclusions
- (1)
- As the normalized contact pressure increased, the area of asperity flattening increased consistently regardless of the sliding velocity, substrate material, and coating condition. This is clearer and consistent in the case of GI-coated steels. At a normalized contact pressure of 0.37, the flattening area reached approximately 50% for TS340-GI and 47% for TS980-GI, confirming that higher pressure promotes surface deformation. In contrast, GA-coated steels exhibited lower asperity flattening under similar conditions, likely due to the higher strength of the coating. Meanwhile, the effect of sliding velocity on the asperity flattening was rather minor without a clear tendency.
- (2)
- However, for the GA-coated steels, the increase of the asperity flattening area was less than that of the GI-coated steels under a similar magnitude of normalized contact pressure. The difference in the effect of contact pressure on the asperity flattening can be related to the strength of the coating layer. The greater influence of contact pressure is attributed more to the softer GI-coating layer than the GA coating.
- (3)
- The friction coefficient can be highly related to the material strength and coating layer combination. For example, an abrupt drop in friction coefficient could be observed when the asperity flattening area exceeded a certain critical limit. The most significant reduction occurred at the highest normalized contact pressure of 0.37, where the friction coefficient dropped by over 30%. In comparison, GA-coated steels exhibited a more stable friction coefficient with less variation across different contact pressures and sliding velocities. The friction coefficient for GA-coated steels ranged between 0.125 and 0.177, while GI-coated steels showed a wider range between 0.059 and 0.18.
- (4)
- Therefore, in the presence of a lubrication system, it is plausible that a specific regime of contact condition may exhibit a considerable reduction of friction coefficient despite the enlarged occurrence of asperity flattening caused by sliding. This result indicates that the abruptly low friction coefficient, which may not be simply estimated from the conventionally utilized empirical formula based on the contact pressure, can exist in the industrial forming process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
GI | galvanized |
GA | galvannealed |
SEM | scanning electron microscopy |
EDS | energy dispersive spectroscopy |
NCP | normalized contact pressure |
EHL | elasto-hydrodynamic lubrication |
Appendix A
Sliding Velocity | Normalized Contact Pressure | Friction Mode | Wear (Fracture) | ||||
---|---|---|---|---|---|---|---|
Flattening (%) | Stick–Slip | Ploughing | Parallel Crack | Vertical Crack | Spalling | ||
(a) | |||||||
0.05 | 0.03 | 6.69 | medium | X | X | X | |
0.2 | 0.03 | 8.96 | medium | X | X | X | |
0.9 | 0.03 | 14.97 | small | X | X | X | |
0.05 | 0.1 | 31.52 | large | X | X | X | |
0.2 | 0.1 | 24.57 | large | X | X | X | |
0.9 | 0.1 | 23.28 | large | X | X | X | |
0.05 | 0.37 | 50.20 | small | X | X | X | |
0.2 | 0.37 | 42.41 | medium | X | X | X | |
0.9 | 0.37 | 26.64 | small | X | X | X | |
(b) | |||||||
0.05 | 0.03 | 24.23 | medium | O | X | X | |
0.2 | 0.03 | 28.11 | large | O | X | X | |
0.9 | 0.03 | 31.58 | medium | O | X | X | |
0.05 | 0.1 | 26.12 | small | O | X | X | |
0.2 | 0.1 | 45.86 | small | O | X | X | |
0.9 | 0.1 | 41.98 | small | O | X | X | |
0.05 | 0.27 | 46.72 | small | O | X | X | |
0.2 | 0.27 | 55.08 | small | O | X | X | |
0.9 | 0.27 | 51.39 | small | O | X | X | |
(c) | |||||||
0.05 | 0.03 | 7.43 | medium | △ | △ | X | |
0.2 | 0.03 | 8.15 | medium | O | O | X | |
0.9 | 0.03 | 8.55 | medium | O | O | O | |
0.05 | 0.1 | 27.65 | small | O | △ | O | |
0.2 | 0.1 | 18.82 | small | O | O | O | |
0.9 | 0.1 | 16.24 | small | O | O | O | |
0.05 | 0.37 | 35.69 | small | △ | O | O | |
0.2 | 0.37 | 38.06 | small | O | O | O | |
0.9 | 0.37 | 33.14 | small | O | O | O | |
(d) | |||||||
Sliding velocity | Normalized contact pressure | Friction mode | Wear (fracture) | ||||
Flattening (%) | Stick–slip | Parallel crack | Vertical crack | Spalling | |||
0.05 | 0.03 | 4.64 | small | X | O | X | |
0.2 | 0.03 | 9.37 | small | △ | O | X | |
0.9 | 0.03 | 13.7 | small | O | O | X | |
0.05 | 0.1 | 17.7 | small | △ | O | X | |
0.2 | 0.1 | 19.85 | small | O | O | O | |
0.9 | 0.1 | 15.75 | small | O | O | O | |
0.05 | 0.27 | 20.74 | small | O | O | O | |
0.2 | 0.27 | 26.07 | small | O | O | O | |
0.9 | 0.27 | 28.49 | small | O | O | O |
References
- Lee, M.G.; Kim, C.; Pavlina, E.J.; Barlat, F. Advances in sheet forming—Materials modeling, numerical simulation, and press technologies. J. Manuf. Sci. Eng. 2011, 133, 61001. [Google Scholar] [CrossRef]
- Yoon, M.S.; Seo, B.K.; Lim, C.S. Reverse compensation to prevent post-molding dimensional distortion of automobile parts manufactured using cf-smc. Int. J. Adv. Manuf. Technol. 2022, 123, 4181–4194. [Google Scholar] [CrossRef]
- Barlat, F.; Brem, J.C.; Yoon, J.W.; Chung, K.; Dick, R.E.; Lege, D.J.; Pourboghrat, F.; Choi, S.H.; Chu, E. Plane stress yield function for aluminum alloy sheets—Part 1: Theory. Int. J. Plast. 2003, 19, 1297–1319. [Google Scholar] [CrossRef]
- Song, Y.J.; Oh, I.S.; Hwang, S.H.; Choi, H.J.; Lee, M.G.; Kim, H.J. Numerically efficient sheet metal forming simulations in consideration of tool deformation. Int. J. Autom. Technol. 2021, 22, 69–79. [Google Scholar] [CrossRef]
- Yoon, M.S.; Kang, G.H. Effect of dynamic friction and static friction in finite element analysis of carbon fiber preform. Polym. Compos. 2023, 44, 2396–2404. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Basak, S.; Choi, H.J.; Panda, S.K.; Lee, M.G. Influence of evolution in anisotropy during strain path change on failure limits of sheet metals. Met. Mater. Int. 2021, 27, 3225–3237. [Google Scholar] [CrossRef]
- Lee, J.W.; Bong, H.J.; Kim, D.Y.; Lee, Y.S.; Choi, Y.M.; Lee, M.G. Mechanical properties and formability of heat-treated 7000-series high-strength aluminum alloy: Experiments and finite element modeling. Met. Mater. Int. 2020, 26, 682–694. [Google Scholar] [CrossRef]
- Song, J.; Lan, J.; Zhu, L.; Jiang, Z.; Zhang, Z.; Han, J.; Ma, C. Finite element simulation and microstructural analysis of roll forming for dp590 high-strength dual-phase steel wheel rims. Materials 2024, 17, 3795. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. A Lond. 1966, 295, 300–319. [Google Scholar] [CrossRef]
- Han, S.S. Contact pressure effect on frictional behavior of sheet steel for automotive stamping. Trans. Mater. Process 2011, 20, 99–103. [Google Scholar] [CrossRef]
- Jang, G.H.; Cho, K.H.; Park, S.B.; Lee, W.G.; Hong, U.S.; Jang, H. Tribological properties of c/c-sic composites for brake discs. Met. Mater. Int. 2010, 16, 61–66. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Barlak, M.; Zielińska-Szwajka, J. Effect of countersample coatings on the friction behaviour of dc01 steel sheets in bending-under-tension friction tests. Materials 2024, 17, 3631. [Google Scholar] [CrossRef] [PubMed]
- Kasar, A.K.; Jose, S.A.; D’Souza, B.; Menezes, P.L. Fabrication and tribological performance of self-lubricating porous materials and composites: A review. Materials 2024, 17, 3448. [Google Scholar] [CrossRef] [PubMed]
- Bolay, C.; Essig, P.; Kaminsky, C.; Hol, J.; Naegele, P.; Schmidt, R. Friction modelling in sheet metal forming simulations for aluminium body parts at Daimler AG. IOP Conf. Ser. Mater. Sci. Eng. 2019, 651, 012104. [Google Scholar] [CrossRef]
- Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J.H.; Chezan, T.; Carleer, B.; van den Boogaard, A.H. Friction and lubrication modeling in sheet metal forming simulations of a Volvo XC90 inner door. IOP Conf. Ser. Mater. Sci. Eng. 2016, 159, 012021. [Google Scholar] [CrossRef]
- Lee, K.J.; Moon, C.M.; Lee, M.G. A review on friction and lubrication in automotive metal forming: Experiment and modeling. Int. J. Autom. Technol. 2021, 22, 1743–1761. [Google Scholar] [CrossRef]
- Lee, J.Y.; Barlat, F.; Lee, M.G. Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets. Int. J. Plast. 2015, 71, 113–135. [Google Scholar] [CrossRef]
- Bay, N.; Wanheim, T. Real area of contact and friction stress at high pressure sliding contact. Wear 1976, 38, 201–209. [Google Scholar] [CrossRef]
- Bang, J.H.; Park, N.S.; Song, J.H.; Kim, H.G.; Bae, G.H.; Lee, M.G. Tool wear prediction in the forming of automotive dp980 steel sheet using statistical sensitivity analysis and accelerated u-bending based wear test. Metals 2021, 11, 306. [Google Scholar] [CrossRef]
- Kim, C.M.; Lee, J.U.; Barlat, F.; Lee, M.G. Frictional behaviors of a mild steel and a Trip780 steel under a wide range of contact stress and sliding speed. J. Tribol. 2014, 136, 21606. [Google Scholar] [CrossRef]
- Azushima, A.; Kudo, H. Direct observation of contact behaviour to interpret the pressure dependence of the coefficient of friction in sheet metal forming. CIRP Ann. 1995, 44, 209–212. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Qu, P.; Li, S.; Jiang, Z. Multiscale interface stress characterisation in cold rolling. Met. Mater. Int. 2021, 27, 1997–2013. [Google Scholar] [CrossRef]
- Kim, N.J.; Keum, Y.T. Experimental determination of friction characteristics for advanced high strength steel sheets. Trans. Mater. Process 2013, 22, 223–228. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Physics of High Pressure; Macmillan Press: New York, NY, USA, 1949. [Google Scholar]
- Bednar, M.; Cai, B.; Kuhlmann-Wilsdorf, D. Pressure and structure dependence of solid lubricant. Lubr. Eng. 1993, 49, 741–749. [Google Scholar]
- Suh, N.P.; Sin, H.C. The genesis of friction. Wear 1981, 69, 91–114. [Google Scholar] [CrossRef]
- Bowden, F.P.; Tabor, D. Mechanism of metallic friction. Nature 1942, 150, 197–199. [Google Scholar] [CrossRef]
- Bowden, F.P.; Tabor, D. The Friction and Lubrication of Solids; Oxford University Press: Oxford, UK, 1950; ISBN 9780198507772. [Google Scholar]
- Orowan, E. The calculation of roll pressure in hot and cold flat rolling. Proc. Inst. Mech. Eng. 1943, 150, 140–167. [Google Scholar] [CrossRef]
- Garza, L.G.; Van Tyne, C.J. Friction and formability of galvannealed interstitial free sheet steel. J. Mater. Process. Technol. 2007, 187, 164–168. [Google Scholar] [CrossRef]
- Jang, Y. The Tribology and Formability of Zinc Coated Steel Sheets Subjected to Different Strain States. Bachelor’s Thesis, Case Western Reserve University, Cleveland, OH, USA, 2010. [Google Scholar]
- Ghosh, A.K. A method for determining the coefficient of friction in punch stretching of sheet metals. Int. J. Mech. Sci. 1977, 19, 457–470. [Google Scholar] [CrossRef]
- Ghosh, A.K. The effect of lateral drawing- in on stretch formability. Met. Eng. Quart. 1975, 15, 53–64. [Google Scholar]
- Ghosh, A.K.; Hecker, S. Failure in thin sheets stretched over rigid punches. Met. Trans. A 1975, 6, 1065–1074. [Google Scholar] [CrossRef]
- ISO 6502-2; Rubber—Measurement of Vulcanization Characteristics Using Curemeters Part 2: Oscillating Disc Curemeter. ISO: Geneva, Switzerland, 2018.
- Tabor, D. The Hardness of Metals; Oxford Clarendon Press: London, UK, 1951. [Google Scholar]
- Boyer, H.E.; Gall, T.L. Metals Handbook Desk Edition, 2nd ed.; ASM International: Metals Park, OH, USA, 1985; pp. 1–60. [Google Scholar]
- ISO 27831-1; Metallic Coatings and Other Inorganic Coatings—Cleaning and Preparation of Metal Surfaces—Part 1: Ferrous Metals and Alloys. ISO: Geneva, Switzerland, 2008.
- ISO 22462; Metallic and Other Inorganic Coatings-Test Method for the Friction Coefficient Measurement of Chemical Conversion Coatings. ISO: Geneva, Switzerland, 2020.
- Ishiwatari, A.; Urabe, M.; Inazumi, T. Press Forming Analysis Contributing to the Expansion of High Strength Steel Sheet Applications; JFE Technical Report No. 18; JFE: Shirur, India, April 2013. [Google Scholar]
- Shisode, M.P.; Hazrati, J.; Mishra, T.; Rooij, M.B.; Boogaard, A.H. Semi-analytical contact model to determine the flattening behavior of coated sheets under normal load. Tribol. Int. 2020, 146, 106182. [Google Scholar] [CrossRef]
- Moore, D.F. Chapter 13 automotive application. In Principles and Applications of Tribology; Oxford Pergamon Press: Dublin, Ireland, 1975. [Google Scholar] [CrossRef]
- Belak, J.F. Nanotribology. MRS Bull. 1993, 18, 15–19. [Google Scholar] [CrossRef]
- Halling, J. Principles of Tribology; Red Globe Press: London, UK, 1978. [Google Scholar] [CrossRef]
- Holmberg, K.; Matthews, A. Coatings Tribology Properties, Mechanisms, Techniques and Applications in Surface Engineering; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Suh, N.P. The delamination theory of wear. Wear 1973, 25, 111–124. [Google Scholar] [CrossRef]
- Suh, N.P. An overview of the delamination theory of wear. Wear 1977, 44, 1–16. [Google Scholar] [CrossRef]
- Arnell, R.D. The mechanics of the tribology of thin film systems. Surf. Coat. Technol. 1990, 43–44, 674–687. [Google Scholar] [CrossRef]
- Larsson, M.; Hedenqvist, P.; Hogmark, S. Deflection measurements as method to determine residual stress in thin hard coatings on tool materials. Surf. Eng. 1996, 12, 43–48. [Google Scholar] [CrossRef]
- Mansour, H.A.; Arnell, R.D.; Salama, M.A.; Mustfa, A.A.F. Finite elements studies of coated surfaces under normal and tangential loads. In Proceedings of the 6th International Conference on Ion Plasma Assisted Techniques, Brighton, UK, 27–29 May 1987; pp. 179–183. [Google Scholar]
- Cowan, R.S.; Winer, W.O. Application of the thermomechanical wear transition model to layered media. Tribol. Ser. 1993, 25, 631–639. [Google Scholar] [CrossRef]
- Djabella, H.; Arnell, R.D. Finite element analysis of the contact stresses in elastic coating/substrate under normal and tangential load. Thin Solid Films 1993, 223, 87–97. [Google Scholar] [CrossRef]
- Wang, A.E.; Gil, P.S.; Holonga, M.; Yavuz, Z.; Baytekin, H.T.; Sankaran, R.M.; Lacks, D.J. Dependence of triboelectric charging behavior on material microstructure. Phys. Rev. Mater. 2017, 1, 35605. [Google Scholar] [CrossRef]
- Yu, J.X.; Qian, L.M.; Yu, B.J.; Zhou, Z.R. Nanofretting behaviors of monocrystalline silicon (100) against diamond tips in atmosphere and vacuum. Wear 2009, 267, 322–329. [Google Scholar] [CrossRef]
- Bowden, F.P.; Leben, L. The nature of sliding and the analysis of friction. Nature 1938, 141, 691–692. [Google Scholar] [CrossRef]
- Blau, P.J. Friction Science and Technology; CRC Press: Boca Raton, FL, USA, 2009; p. 148, Tables 4–7; ISBN 978-14200-5404-0. [Google Scholar]
- Hansen, J.; Björling, M.; Larsson, R. A new film parameter for rough surface EHL contacts with anisotropic and isotropic structures. Tribol. Lett. 2021, 69, 37. [Google Scholar] [CrossRef]
- Dowson, D. A comparative study of the performance of metallic and ceramic femoral head components in total replacement hip joints. Wear 1995, 190, 171–183. [Google Scholar] [CrossRef]
- Spikes, H.A. Mixed lubrication—An overview. Lubr. Sci. 1997, 9, 221–253. [Google Scholar] [CrossRef]
- Wang, Y.; Azam, A.; Zhang, G.; Dorgham, A.; Liu, Y.; Wilson, M.; Neville, A. Understanding the mechanism of load-carrying capacity between parallel rough surfaces through a deterministic mixed lubrication model. Lubricants 2022, 10, 12. [Google Scholar] [CrossRef]
- Fowles, P.E. The application of elastohydrodynamic lubrication theory to individual asperity-asperity collisions. ASME J. Lubr. Tech. 1969, 91, 464–475. [Google Scholar] [CrossRef]
- Chang, L.; Webster, M.N. A study of elastohydrodynamic lubrication of rough surfaces. ASME J. Tribol. 1991, 113, 110–115. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, H.; Tieu, A.K. Roughness and lubricant effect on 3d atomic asperity contact. Tribol. Lett. 2014, 53, 215–223. [Google Scholar] [CrossRef]
Specimen | Tensile Strength (TS), MPa | Hardness, HV | Roughness, μm | |||
---|---|---|---|---|---|---|
Base Metals | Coatings | Coatings | Ra | Rz | Rsk | |
TS 340-GI | 340 | 34 ± 5 | 102 ± 16 | 0.92 | 5.32 | −0.39 |
TS 340-GA | 340 | 89 ± 14 | 266 ± 43 | 1.16 | 8.34 | −0.63 |
TS 980-GI | 980 | 34 ± 5 | 102 ± 16 | 0.85 | 6.90 | −0.74 |
TS 980-GA | 980 | 89 ± 14 | 266 ± 43 | 1.18 | 8.65 | 0.00 |
TS 340 | TS 980 | ||
---|---|---|---|
Contact Pressure, MPa | Normalized Contact Pressure | Contact Pressure, MPa | Normalized Contact Pressure |
10 | 0.03 | 33 | 0.03 |
33 | 0.10 | 100 | 0.10 |
130 | 0.37 | 267 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-Y.; Yoon, S.-C.; Jin, B.-K.; Jeon, J.-H.; Hyun, J.-S.; Lee, M.-G. Friction Characteristics of Low and High Strength Steels with Galvanized and Galvannealed Zinc Coatings. Materials 2024, 17, 5031. https://doi.org/10.3390/ma17205031
Kim J-Y, Yoon S-C, Jin B-K, Jeon J-H, Hyun J-S, Lee M-G. Friction Characteristics of Low and High Strength Steels with Galvanized and Galvannealed Zinc Coatings. Materials. 2024; 17(20):5031. https://doi.org/10.3390/ma17205031
Chicago/Turabian StyleKim, Ji-Young, Seung-Chae Yoon, Byeong-Keuk Jin, Jin-Hwa Jeon, Joo-Sik Hyun, and Myoung-Gyu Lee. 2024. "Friction Characteristics of Low and High Strength Steels with Galvanized and Galvannealed Zinc Coatings" Materials 17, no. 20: 5031. https://doi.org/10.3390/ma17205031
APA StyleKim, J. -Y., Yoon, S. -C., Jin, B. -K., Jeon, J. -H., Hyun, J. -S., & Lee, M. -G. (2024). Friction Characteristics of Low and High Strength Steels with Galvanized and Galvannealed Zinc Coatings. Materials, 17(20), 5031. https://doi.org/10.3390/ma17205031