Research Progress on the Application of Natural Medicines in Biomaterial Coatings
Abstract
:1. Introduction
2. Preparation Method of Coating
2.1. Physical Adsorption
2.2. Chemical Grafting
2.3. Layer-by-Layer Self-Assembly
2.4. Sol–Gel Method
2.5. Electrospinning
3. Natural Medicines and Biomaterials Form Coatings and Their Applications
3.1. Curcumin
3.2. Allicin
3.3. Berberine
3.4. Tea Polyphenols
3.5. Heparin
3.6. Propolis
3.7. Chitosan
3.8. Other Applications
4. Challenges and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Y.; Liu, T.; Wang, H.; Wang, Z.; Hou, L.; Jiang, J.; Xu, T. Applications of nanomaterial technology in biosensing. J. Sci. Adv. Mater. Devices 2024, 9, 100694. [Google Scholar] [CrossRef]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications—An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Ertas, Y.N.; Mahmoodi, M.; Shahabipour, F.; Jahed, V.; Diltemiz, S.E.; Tutar, R.; Ashammakhi, N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Mater. 2021, 4, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Xu, J.; Yang, Z.; Tong, R.; Dong, Z.; Wang, C.; Leong, K.W. Engineered biomaterials for cancer immunotherapy. MedComm 2020, 1, 35–46. [Google Scholar] [CrossRef]
- Xiao, M.; Tang, Q.; Zeng, S.; Yang, Q.; Yang, X.; Tong, X.; Zhu, G.; Lei, L.; Li, S. Emerging biomaterials for tumor immunotherapy. Biomater. Res. 2023, 27, 47. [Google Scholar] [CrossRef] [PubMed]
- Niziołek, K.; Słota, D.; Sobczak-Kupiec, A. Polysaccharide-Based Composite Systems in Bone Tissue Engineering: A Review. Materials 2024, 17, 4220. [Google Scholar] [CrossRef]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 253–285. [Google Scholar] [CrossRef]
- Sun, W.; Ye, B.; Chen, S.; Zeng, L.; Lu, H.; Wan, Y.; Gao, Q.; Chen, K.; Qu, Y.; Wu, B. Neuro–bone tissue engineering: Emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023, 11, 65. [Google Scholar] [CrossRef]
- Ansari, M. Bone tissue regeneration: Biology, strategies and interface studies. Prog. Biomater. 2019, 8, 223–237. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Z.; Liu, Y.; Yu, J.; Wang, X.; Tan, Z.; Ye, X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front. Cell Dev. Biol. 2021, 9, 665813. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Cui, X.; Qin, Z.; Su, C.; Zhang, G.; Tang, J.-N.; Li, J.-A.; Zhang, J.-Y. Three-dimensional bioprinting of artificial blood vessel: Process, bioinks, and challenges. Int. J. Bioprinting 2023, 9, 740. [Google Scholar] [CrossRef] [PubMed]
- Oveissi, F.; Naficy, S.; Lee, A.; Winlaw, D.; Dehghani, F. Materials and manufacturing perspectives in engineering heart valves: A review. Mater. Today Bio 2020, 5, 100038. [Google Scholar] [CrossRef] [PubMed]
- Cordoves, E.M.; Vunjak-Novakovic, G.; Kalfa, D.M. Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Tao, T.; Xu, H.; Chen, C.; Lee, I.S.; Chung, S.; Dong, Z.; Li, W.; Ma, L.; Bai, H. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View 2021, 2, 20200142. [Google Scholar] [CrossRef]
- Anaya-Alaminos, R.; Ibáñez-Flores, N.; Aznar-Peña, I.; González-Andrades, M. Antimicrobial biomaterials and their potential application in ophthalmology. J. Appl. Biomater. Funct. Mater. 2015, 13, 346–350. [Google Scholar] [CrossRef]
- Bapat, R.A.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Bapat, P.; Alexander, A.; Dubey, S.K.; Kesharwani, P. Recent advances of gold nanoparticles as biomaterial in dentistry. Int. J. Pharm. 2020, 586, 119596. [Google Scholar] [CrossRef]
- Robert, G.; Christian, K.; Anders, H.; Ralf, S.; Max, H.; Tessa, H. Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BioMed Res. Int. 2016, 2016, 3856262. [Google Scholar]
- Dai, W.; Yang, Y.; Yang, Y.; Liu, W. Material advancement in tissue-engineered nerve conduit. Nanotechnol. Rev. 2021, 10, 488–503. [Google Scholar] [CrossRef]
- Carvalho, C.R.; Oliveira, J.M.; Reis, R.L. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front. Bioeng. Biotechnol. 2019, 7, 337. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, X.; Li, L.; Hu, J.; Peng, Z. Unmasking the delamination mechanisms of a defective coating under the co-existence of alternating stress and corrosion. Prog. Org. Coat. 2023, 180, 107560. [Google Scholar] [CrossRef]
- Williams, G.; Kousis, C.; McMurray, N.; Keil, P. A mechanistic investigation of corrosion-driven organic coating failure on magnesium and its alloys. npj Mater. Degrad. 2019, 3, 41. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Madkour, M. Potential use of smart coatings for corrosion protection of metals and alloys: A review. J. Mol. Liq. 2018, 253, 11–22. [Google Scholar] [CrossRef]
- Nathanael, A.J.; Oh, T.H. Biopolymer coatings for biomedical applications. Polymers 2020, 12, 3061. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Mohan, S. Application of process analytical technology for pharmaceutical coating: Challenges, pitfalls, and trends. AAPS PharmSciTech 2020, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Felton, L.A.; Porter, S.C. An update on pharmaceutical film coating for drug delivery. Expert Opin. Drug Deliv. 2013, 10, 421–435. [Google Scholar] [CrossRef]
- Zheng, T.-X.; Li, W.; Gu, Y.-Y.; Zhao, D.; Qi, M.-C. Classification and research progress of implant surface antimicrobial techniques. J. Dent. Sci. 2022, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Du, H.; Liu, D.; Ma, Z. The role of natural products in chronic inflammation. Front. Pharmacol. 2022, 13, 901538. [Google Scholar] [CrossRef]
- Cao, F.; Gui, S.-Y.; Gao, X.; Zhang, W.; Fu, Z.-Y.; Tao, L.-M.; Jiang, Z.-X.; Chen, X.; Qian, H.; Wang, X. Research progress of natural product-based nanomaterials for the treatment of inflammation-related diseases. Mater. Des. 2022, 218, 110686. [Google Scholar] [CrossRef]
- Mehta, J.; Rayalam, S.; Wang, X. Cytoprotective effects of natural compounds against oxidative stress. Antioxidants 2018, 7, 147. [Google Scholar] [CrossRef]
- Luo, M.; Zheng, Y.; Tang, S.; Gu, L.; Zhu, Y.; Ying, R.; Liu, Y.; Ma, J.; Guo, R.; Gao, P. Radical oxygen species: An important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front Pharmacol. 2023, 14, 1166178. [Google Scholar] [CrossRef]
- Meier, B.P.; Lappas, C.M. The influence of safety, efficacy, and medical condition severity on natural versus synthetic drug preference. Med. Decis. Mak. 2016, 36, 1011–1019. [Google Scholar] [CrossRef]
- Li, M.; Jiang, M.; Gao, Y.; Zheng, Y.; Liu, Z.; Zhou, C.; Huang, T.; Gu, X.; Li, A.; Fang, J. Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact. Mater. 2022, 11, 140–153. [Google Scholar] [CrossRef]
- Alavi, S.E.; Panah, N.; Page, F.; Gholami, M.; Dastfal, A.; Sharma, L.A.; Shahmabadi, H.E. Hydrogel-based therapeutic coatings for dental implants. Eur. Polym. J. 2022, 181, 111652. [Google Scholar] [CrossRef]
- Elkhoury, K.; Morsink, M.; Sanchez-Gonzalez, L.; Kahn, C.; Tamayol, A.; Arab-Tehrany, E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact. Mater. 2021, 6, 3904–3923. [Google Scholar] [CrossRef]
- Kim, J.-N.; Lee, J.; Lee, H.; Oh, I.-K. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 2021, 82, 105705. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Lopusiewicz, L.; Biswas, D.; Chandel, V.; Rhim, J.-W. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int. J. Biol. Macromol. 2023, 239, 124248. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Qian, Y.; Zhao, L. Antibacterial coatings on orthopedic implants. Mater. Today Bio 2023, 19, 100586. [Google Scholar] [CrossRef]
- Cazzola, M.; Ferraris, S.; Boschetto, F.; Rondinella, A.; Marin, E.; Zhu, W.; Pezzotti, G.; Verne, E.; Spriano, S. Green Tea Polyphenols Coupled with a Bioactive Titanium Alloy Surface: In Vitro Characterization of Osteoinductive Behavior through a KUSA A1 Cell Study. Int. J. Mol. Sci. 2018, 19, 2255. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Ghosh, A.; Bhattacharya, T.; Ghosh, S.; Dey, S.; Chattopadhyay, D. Ameliorative effects of clindamycin-nanoceria conjugate: A ROS responsive smart drug delivery system for diabetic wound healing study. J. Trace Elem. Med. Biol. 2023, 75, 127107. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, F.; Ayu, E.S.; Hidayat, H.; Musawwa, M.M.; Swastika, P.E.; Dwandaru, W.S.B. Synthesis of polyacrylamide/graphene oxide/clove essential oil composite via physical adsorption method for potential antibacterial packaging applications. Nano-Struct. Nano-Objects 2022, 32, 100908. [Google Scholar] [CrossRef]
- Liu, S.-S.; Chen, J.; Lin, X.-D.; Liu, H.-J.; Zeng, D.-D. Construction and Antibacterial Application of Drug-loading Chitosan/Silk Nanofiber Multilayer Film. Acta Polym. Sin. 2022, 53, 1459–1465. [Google Scholar]
- Shahzadi, L.; Bashir, M.; Tehseen, S.; Zehra, M.; Mehmood, A.; Chaudhry, A.A.; ur Rehman, I.; Yar, M. Thyroxine impregnated chitosan-based dressings stimulate angiogenesis and support fast wounds healing in rats: Potential clinical candidates. Int. J. Biol. Macromol. 2020, 160, 296–306. [Google Scholar] [CrossRef]
- Nijhuis, A.W.; van den Beucken, J.J.; Boerman, O.C.; Jansen, J.A.; Leeuwenburgh, S.C. 1-Step versus 2-step immobilization of alkaline phosphatase and bone morphogenetic protein-2 onto implant surfaces using polydopamine. Tissue Eng. Part C Methods 2013, 19, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Masters, K.S. Covalent Growth Factor Immobilization Strategies for Tissue Repair and Regeneration. Macromol. Biosci. 2011, 11, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Ruan, R.; Wang, W.; Gao, A.; Xu, L. Electrochemical grafting of poly(glycidyl methacrylate) on a carbon-fibre surface. Rsc Adv. 2020, 10, 10599–10605. [Google Scholar] [CrossRef]
- Liang, G.; Yao, F.; Qi, Y.; Gong, R.; Li, R.; Liu, B.; Zhao, Y.; Lian, C.; Li, L.; Dong, X.; et al. Improvement of Mechanical Properties and Solvent Resistance of Polyurethane Coating by Chemical Grafting of Graphene Oxide. Polymers 2023, 15, 882. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, B.; Hussain, Z.; Wang, W.; Chang, N. Chemically graft aminated GO onto dehydro-fluorinated PVDF for preparation of homogenous DF-PVDF/GO-NH2 ultrafiltration membrane with high permeability and antifouling performance. Surf. Interfaces 2022, 33, 102255. [Google Scholar] [CrossRef]
- Nitta, S.; Taniguchi, S.; Iwamoto, H. Preparation of hydrogel using catechin-grafted chitosan and carboxymethyl cellulose. Macromol. Res. 2024, 32, 703–715. [Google Scholar] [CrossRef]
- Nie, C.; Shen, T.; Hu, W.; Ma, Q.; Zhang, J.; Hu, S.; Tian, H.; Wu, H.; Luo, X.; Wang, J. Characterization and antibacterial properties of epsilon-poly-L-lysine grafted multi-functional cellulose beads. Carbohydr. Polym. 2021, 262, 117902. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Wu, X.; Geng, M.; Teng, F. Layer-by-layer self-assembled liposomes prepared using sodium alginate and chitosan: Insights into vesicle characteristics and physicochemical stability. Food Hydrocoll. 2024, 149, 109606. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Jiang, X.; He, L.; Fu, L.; Zhao, Y.; Wang, Y.; Mo, H.; Shen, J. Multistructured vascular patches constructed via layer-by-layer self-assembly of heparin and chitosan for vascular tissue engineering applications. Chem. Eng. J. 2019, 370, 1057–1067. [Google Scholar] [CrossRef]
- Viola, V.; D’Angelo, A.; Piccirillo, A.M.; Catauro, M. Si/Polymer/Natural Drug Materials Prepared by Sol–Gel Route: Study of Release and Antibacterial Activity. Macromol. Symp. 2024, 413, 2300251. [Google Scholar] [CrossRef]
- Catauro, M.; Ciprioti, S.V. Characterization of Hybrid Materials Prepared by Sol-Gel Method for Biomedical Implementations. A Critical Review. Materials 2021, 14, 1788. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, structures, and materials. Macromol 2024, 4, 58–103. [Google Scholar] [CrossRef]
- Duygulu, N.E.; Ciftci, F.; Ustundag, C.B. Electrospun drug blended poly(lactic acid) (PLA) nanofibers and their antimicrobial activities. J. Polym. Res. 2020, 27, 232. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Cao, X.; Liu, Q.; Wang, H.; Kong, B. Preparation and functional properties of poly(vinyl alcohol)/ethyl cellulose/tea polyphenol electrospun nanofibrous films for active packaging material. Food Control 2021, 130, 108331. [Google Scholar] [CrossRef]
- Slowing, K.; Gomez, F.; Delgado, M.; Fernandez de la Rosa, R.; Hernandez-Martin, N.; Pozo, M.A.; Garcia-Garcia, L. PET Imaging and Neurohistochemistry Reveal that Curcumin Attenuates Brain Hypometabolism and Hippocampal Damage Induced by Status Epilepticus in Rats. Planta Med. 2023, 89, 364–376. [Google Scholar] [CrossRef]
- Ponsiree, J.; Piyapan, S.; Hasriadi; Chawanphat, M.; Worathat, T.; Pasarapa, T.; Opa, V.; Pornchai, R. Physicochemical investigation of a novel curcumin diethyl γ-aminobutyrate, a carbamate ester prodrug of curcumin with enhanced anti-neuroinflammatory activity. PLoS ONE 2022, 17, e0265689. [Google Scholar]
- Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem.-Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef]
- Al-Thubaiti, E.H. Antibacterial and antioxidant activities of curcumin/Zn metal complex with its chemical characterization and spectroscopic studies. Heliyon 2023, 9, e17468. [Google Scholar] [CrossRef]
- Urosevic, M.; Nikolic, L.; Gajic, I.; Nikolic, V.; Dinic, A.; Miljkovic, V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Kandaswamy, K.; Panda, S.P.; Subramanian, R.; Khan, H.; Shaik, M.R.; Hussain, S.A.; Guru, A.; Arockiaraj, J. Synergistic berberine chloride and Curcumin-Loaded nanofiber therapies against Methicillin-Resistant Staphylococcus aureus Infection: Augmented immune and inflammatory responses in zebrafish wound healing. Int. Immunopharmacol. 2024, 140, 112856. [Google Scholar] [CrossRef]
- Wasim, M.; Shi, F.; Liu, J.; Zhu, K.; Liu, J.; Yan, T. Synthesis of a novel multifunctional montmorillonite/L-malic-acid/curcumin/bacterial cellulose hybrid nanofilm with excellent heat insulation, antibacterial activity and cytocompatibility. Colloid Polym. Sci. 2023, 301, 893–908. [Google Scholar] [CrossRef]
- Sharifi, S.; Khosroshahi, A.Z.; Dizaj, S.M.; Rezaei, Y. Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite-Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial. Biomimetics 2022, 7, 4. [Google Scholar] [CrossRef]
- Lee, W.H.; Rohanizadeh, R.; Loo, C.Y. In situ functionalizing calcium phosphate biomaterials with curcumin for the prevention of bacterial biofilm infections. Colloids Surf. B Biointerfaces 2021, 206, 111938. [Google Scholar] [CrossRef]
- Hussein, Y.; Loutfy, S.A.; Kamoun, E.A.; El-Moslamy, S.H.; Radwan, E.M.; Elbehairi, S.E.I. Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: Preparation and in vitro bioevaluation. Int. J. Biol. Macromol. 2021, 170, 107–122. [Google Scholar] [CrossRef]
- Virk, R.S.; Rehman, M.A.U.; Munawar, M.A.; Schubert, D.W.; Goldmann, W.H.; Dusza, J.; Boccaccini, A.R. Curcumin-Containing Orthopedic Implant Coatings Deposited on Poly-Ether-Ether-Ketone/Bioactive Glass/Hexagonal Boron Nitride Layers by Electrophoretic Deposition. Coatings 2019, 9, 572. [Google Scholar] [CrossRef]
- Li, P.-C.; Chen, S.-C.; Hsueh, Y.-J.; Shen, Y.-C.; Tsai, M.-Y.; Hsu, L.-W.; Yeh, C.-K.; Chen, H.-C.; Huang, C.-C. Gelatin scaffold with multifunctional curcumin-loaded lipid-PLGA hybrid microparticles for regenerating corneal endothelium. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 120, 111753. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Gao, Z.; Xia, N.; Wu, C.; Liu, C.; Tian, H.; Mei, X. Curcumin-Loaded Macrophage-Derived Exosomes Effectively Improve Wound Healing. Mol. Pharm. 2023, 20, 4453–4467. [Google Scholar] [CrossRef]
- Fan, X.; Huang, J.; Zhang, W.; Su, Z.; Li, J.; Wu, Z.; Zhang, P. A Multifunctional, Tough, Stretchable, and Transparent Curcumin Hydrogel with Potent Antimicrobial, Antioxidative, Anti-inflammatory, and Angiogenesis Capabilities for Diabetic Wound Healing. Acs Appl. Mater. Interfaces 2024, 16, 9749–9767. [Google Scholar] [CrossRef]
- Suresh, N.; Mauramo, M.; Waltimo, T.; Sorsa, T.; Anil, S. The Effectiveness of Curcumin Nanoparticle-Coated Titanium Surfaces in Osteogenesis: A Systematic Review. J. Funct. Biomater. 2024, 15, 247. [Google Scholar] [CrossRef]
- Kushram, P.; Majumdar, U.; Bose, S. Hydroxyapatite coated titanium with curcumin and epigallocatechin gallate for orthopedic and dental applications. Biomater. Adv. 2023, 155, 213667. [Google Scholar] [CrossRef]
- Gao, H.; Chen, N.; Sun, L.; Sheng, D.; Zhong, Y.; Huang, M.; Yu, C.; Yang, X.; Hao, Y.; Chen, S.; et al. Time-programmed release of curcumin and Zn2+ from multi-layered RSF coating modified PET graft for improvement of graft-host integration. Int. J. Biol. Macromol. 2024, 272, 132830. [Google Scholar] [CrossRef]
- Liu, B.; Cui, L.-S.; Zhou, B.; Zhang, L.-L.; Liu, Z.-H.; Zhang, L. Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacol. Sin. 2019, 40, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Zhang, Q.; Chi, C.; Wu, G.; Lin, Z.; Li, J.; Gu, Q.; Chen, G. Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of high-fat-diet and streptozotocin-induced diabetic rats. Diabetol. Metab. Syndr. 2020, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Qian, C.; Jin, B.; Hu, C.; Zhang, L.; Wang, M.; Zhou, B.; Zuo, W.; Huang, L.; Wang, Y. Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma. Cancer Biol. Ther. 2023, 24, 2162807. [Google Scholar] [CrossRef] [PubMed]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Gloria, J.L.; Arellano-Buendia, A.S.; Juarez-Rojas, J.G.; Garcia-Arroyo, F.E.; Arguello-Garcia, R.; Sanchez-Munoz, F.; Sanchez-Lozada, L.G.; Osorio-Alonso, H. Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 9082. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.K.; Maulik, S.K. Effect of garlic on cardiovascular disorders: A review. Nutr. J. 2002, 1, 4. [Google Scholar] [CrossRef]
- Li, M.; Yun, W.; Wang, G.; Li, A.; Gao, J.; He, Q. Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front. Pharmacol. 2022, 13, 954938. [Google Scholar] [CrossRef] [PubMed]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.C. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef] [PubMed]
- Qidwai, W.; Ashfaq, T. Role of garlic usage in cardiovascular disease prevention: An evidence-based approach. Evid. Based Complement. Altern. Med. ECAM 2013, 2013, 125649. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhao, M.; Xie, Y.; Wang, Y.; You, Y.; Ke, Y.; Zhang, C.; Chen, X.; Yang, Y.; Zhang, C.; et al. Multifunctional Ac@ZIF-8/AgNPs nanoplatform with pH-responsive and ROS scavenging antibacterial properties promotes infected wound healing. Chem. Eng. J. 2024, 489, 151485. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Wang, Y.; An, M.; Fan, Y. Casein micelles embedded composite organohydrogel as potential wound dressing. Int. J. Biol. Macromol. 2022, 211, 678–688. [Google Scholar] [CrossRef]
- Liu, Y.; Song, R.; Zhang, X.; Zhang, D. Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int. J. Biol. Macromol. 2020, 161, 1405–1413. [Google Scholar] [CrossRef]
- Bose, S.; Robertson, S.F.; Vu, A.A. Garlic extract enhances bioceramic bone scaffolds through upregulating ALP & BGLAP expression in hMSC-monocyte co-culture. Biomater. Adv. 2023, 154, 213622. [Google Scholar]
- Atef, Y.; Kinoshita, K.; Ichihara, Y.; Ushida, K.; Hirata, Y.; Kurauchi, Y.; Seki, T.; Katsuki, H. Therapeutic effect of allicin in a mouse model of intracerebral hemorrhage. J. Pharmacol. Sci. 2023, 153, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Susmita, B.; Arjak, B.; Christine, H.; Dishary, B. Allicin-Loaded Hydroxyapatite: Enhanced Release, Cytocompatibility, and Antibacterial Properties for Bone Tissue Engineering Applications. JOM 2022, 74, 3349–3356. [Google Scholar]
- Chen, W.; Li, X.; Zeng, L.; Pan, H.; Liu, Z. Allicin-loaded chitosan/polyvinyl alcohol scaffolds as a potential wound dressing material to treat diabetic wounds: An in vitro and in vivo study. J. Drug Deliv. Sci. Technol. 2021, 65, 102734. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Y.; Gu, J.; Liu, X.; Zhang, Z. Construction and Activity Study of a Natural Antibacterial Patch Based on Natural Active Substance-Green Porous Structures. Molecules 2023, 28, 1319. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lu, B.; Zou, D.; Luo, X.; Liu, L.; Maitz, M.F.; Yang, P.; Huang, N.; Zhao, A.; Chen, J. Allicin-Loaded Intelligent Hydrogel Coating Improving Vascular Implant Performance. Acs Appl. Mater. Interfaces 2023, 15, 38247–38263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, C.; Chen, S.; Li, Z.; Jia, X. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Chandirasegaran, G.; Elanchezhiyan, C.; Ghosh, K.; Sethupathy, S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomed. Pharmacother. 2017, 95, 175–185. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Shi, J.; Ju, R.; Zhu, L.; Li, J.; Guo, L.; Ye, C. Beneficial effect of berberine on atherosclerosis based on attenuating vascular inflammation and calcification. Basic Clin. Med. 2018, 38, 163–168. [Google Scholar]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef]
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med. 2020, 14, 564–582. [Google Scholar] [CrossRef]
- Och, A.; Podgorski, R.; Nowak, R. Biological Activity of Berberine-A Summary Update. Toxins 2020, 12, 713. [Google Scholar] [CrossRef]
- Zhong, X.J.; Liu, S.R.; Zhang, C.W.; Zhao, Y.S.; Sayed, A.; Rajoka, M.S.R.; He, Z.D.; Song, X. Natural alkaloid coptisine, isolated from Coptis chinensis, inhibits fungal growth by disrupting membranes and triggering apoptosis. Pharmacol. Res.-Mod. Chin. Med. 2024, 10, 100383. [Google Scholar] [CrossRef]
- Dong, B.; Liu, X.; Li, J.; Wang, B.; Yin, J.; Zhang, H.; Liu, W. Berberine Encapsulated in Exosomes Derived from Platelet-Rich Plasma Promotes Chondrogenic Differentiation of the Bone Marrow Mesenchymal Stem Cells via the Wnt/β-Catenin Pathway. Biol. Pharm. Bull. 2022, 45, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Li, Y.; Zhang, L.; Zuo, Y.; Li, J.; Li, J. Antibiotic delivery system using nano-hydroxyapatite/chitosan bone cement consisting of berberine. J. Biomed. Mater. Res. Part A 2009, 89, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Ehterami, A.; Abbaszadeh-Goudarzi, G.; Haghi-Daredeh, S.; Niyakan, M.; Alizadeh, M.; JafariSani, M.; Atashgahi, M.; Salehi, M. Bone tissue engineering using 3-D polycaprolactone/gelatin nanofibrous scaffold containing berberine: In vivo and in vitro study. Polym. Adv. Technol. 2022, 33, 672–681. [Google Scholar] [CrossRef]
- Maity, B.; Alam, S.; Samanta, S.; Prakash, R.G.; Govindaraju, T. Antioxidant Silk Fibroin Composite Hydrogel for Rapid Healing of Diabetic Wound. Macromol. Biosci. 2022, 22, 2200097. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Hu, N.; Qin, G.; Ye, B.; He, J.-S. Improved Antimicrobial Ability of Dressings Containing Berberine Loaded Cellulose Acetate/Hyaluronic Acid Electrospun Fibers for Cutaneous Wound Healing. J. Biomed. Nanotechnol. 2022, 18, 77–86. [Google Scholar] [CrossRef]
- Wang, N.; Wang, L.; Zhang, C.; Tan, H.-Y.; Zhang, Y.; Feng, Y. Berberine suppresses advanced glycation end products-associated diabetic retinopathy in hyperglycemic mice. Clin. Transl. Med. 2021, 11, e569. [Google Scholar] [CrossRef]
- Sang, S.; Wang, S.; Yang, C.; Geng, Z.; Zhang, X. Sponge-inspired sulfonated polyetheretherketone loaded with polydopamine-protected osthole nanoparticles and berberine enhances osteogenic activity and prevents implant-related infections. Chem. Eng. J. 2022, 437, 135255. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, H.; Lan, Y.; Khan, H.M.; Zhang, H.; Zhang, L.; Zhang, F.; Cui, Y.; Zhang, L.; Huang, D.; et al. Study on 3D printed MXene-berberine-integrated scaffold for photo-activated antibacterial activity and bone regeneration. J. Mater. Chem. B 2024, 12, 2158–2179. [Google Scholar] [CrossRef]
- Zhao, H.; Lou, Z.; Chen, Y.; Cheng, J.; Wu, Y.; Li, B.; He, P.; Tu, Y.; Liu, J. Tea polyphenols (TPP) as a promising wound healing agent: TPP exerts multiple and distinct mechanisms at different phases of wound healing in a mouse model. Biomed. Pharmacother. 2023, 166, 115437. [Google Scholar] [CrossRef]
- Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites. Int. J. Mol. Sci. 2019, 20, 3630. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Tang, M.; Xie, Y.; Huang, X.; Liu, Y. Tea Polyphenols Inhibit the Activity and Toxicity of Staphylococcus aureus by Destroying Cell Membranes and Accumulating Reactive Oxygen Species. Foodborne Pathog. Dis. 2023, 20, 294–302. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, R.; Li, L.; Wang, Y.; Luo, R.; Yang, L.; Wang, Y. Green Tea Polyphenol Induced Mg2+-rich Multilayer Conversion Coating: Toward Enhanced Corrosion Resistance and Promoted in Situ Endothelialization of AZ31 for Potential Cardiovascular Applications. ACS Appl. Mater. Interfaces 2019, 11, 41165–41177. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, F.-Y.; Chen, Z.-J.; Lan, R.-T.; Huang, R.-H.; Fu, W.-Q.; Gul, R.M.; Wang, J.; Xu, J.-Z.; Li, Z.-M. Antibacterial and anti-inflammatory ultrahigh molecular weight polyethylene/tea polyphenol blends for artificial joint applications. J. Mater. Chem. B 2020, 8, 10428–10438. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shen, S.; Yu, K.; Wang, H.; Fu, J. Construction of porous structure-based carboxymethyl chitosan/sodium alginate/tea polyphenols for wound dressing. Int. J. Biol. Macromol. 2023, 233, 123404. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Zhao, R.; Yin, X.; Shi, Y.; Fan, H.; Zhou, Y.; Tan, L. Antibacterial and Antioxidant Composite Fiber Prepared from Polyurethane and Polyacrylonitrile Containing Tea Polyphenols. Fibers Polym. 2020, 21, 103–110. [Google Scholar] [CrossRef]
- Wang, Z.; Lyu, T.; Xie, Q.; Zhang, Y.; Sun, H.; Wan, Y.; Tian, Y. Shape-adapted self-gelation hydrogel powder for high-performance hemostasis and wound healing. Appl. Mater. Today 2023, 35, 101948. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, Y.; Yao, Y.; Zhao, J.; Luo, R.; Fan, S.; Wei, Y.; Ouyang, S.; Peng, W.; Zhang, Y.; et al. Therapeutic effects of tea polyphenol-loaded nanoparticles coated with platelet membranes on LPS-induced lung injury. Biomater. Sci. 2023, 11, 6223–6235. [Google Scholar] [CrossRef]
- Wick, T.V.; Roberts, T.R.; Batchinsky, A.I.; Tuttle, R.R.; Reynolds, M.M. Surface Modification of Oxygenator Fibers with a Catalytically Active Metal-Organic Framework to Generate Nitric Oxide: An Ex Vivo Pilot Study. ACS Appl. Bio Mater. 2023, 6, 1953–1959. [Google Scholar] [CrossRef]
- Beurskens, D.M.H.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.P.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Jinfa, J.; Sheng, M.; Jin, H.; Qin, Y.; Xu, W.; Wei, Z.; Liu, Z. Effects of composite Chitosan/Heparin coated membrane through a layer by layer self-assemble technique on stent thrombosis. Acad. J. Second Mil. Med. Univ. 2008, 29, 1324–1327. [Google Scholar]
- Liu, X.; Liu, X.; Zheng, H.; Lu, K.; Chen, D.; Xiong, C.; Huang, F.; Zhang, L.; Zhang, D. Improvement of hydrophilicity and formation of heparin/chitosan coating inhibits stone formation in ureteral stents. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 694, 134065. [Google Scholar] [CrossRef]
- Awonusi, B.O.; Li, H.; Yin, Z.; Zhao, J.; Yang, K.; Li, J. Surface Modification of Zn-Cu Alloy with Heparin Nanoparticles for Urinary Implant Applications. Acs Appl. Bio Mater. 2024, 7, 1748–1762. [Google Scholar] [CrossRef]
- Goh, M.; Min, K.; Kim, Y.H.; Tae, G. Chemically heparinized PEEK via a green method to immobilize bone morphogenetic protein-2 (BMP-2) for enhanced osteogenic activity. RSC Adv. 2024, 14, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, Y.; Wu, H.; Dou, Y.; Li, Z.; Zhang, H. Polydopamine-heparin complex reinforced antithrombotic and antimicrobial activities of heparinized hydrogels for biomedical applications. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106908. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, Z.; Liang, L.; Lan, K.; Zheng, Q.; Wang, Y.; Guo, Y.; Zhu, K.; Mehmood, R.; Wang, B. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties. Appl. Surf. Sci. 2020, 528, 146539. [Google Scholar] [CrossRef]
- Kun, W.; Ying, Y.; Wei, L.; Da, L.; Hui, L. Preparation of fully bio-based multilayers composed of heparin-like carboxymethylcellulose sodium and chitosan to functionalize poly (l-lactic acid) film for cardiovascular implant applications. Int. J. Biol. Macromol. 2023, 231, 123285. [Google Scholar]
- Qiu, H.; Qi, P.; Liu, J.; Yang, Y.; Tan, X.; Xiao, Y.; Maitz, M.F.; Huang, N.; Yang, Z. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials 2019, 207, 10–22. [Google Scholar] [CrossRef]
- Parolia, A.; Bapat, R.A.; Chaubal, T.; Yang, H.J.; Panda, S.; Mohan, M.; Sahebkar, A.; Kesharwani, P. Recent update on application of propolis as an adjuvant natural medication in management of gum diseases and drug delivery approaches. Process Biochem. 2022, 112, 254–268. [Google Scholar] [CrossRef]
- Selvaraju, G.D.; Umapathy, V.R.; SumathiJones, C.; Cheema, M.S.; Jayamani, D.R.; Dharani, R.; Sneha, S.; Yamuna, M.; Gayathiri, E.; Yadav, S. Fabrication and characterization of surgical sutures with propolis silver nano particles and analysis of its antimicrobial properties. J. King Saud Univ. Sci. 2022, 34, 102082. [Google Scholar] [CrossRef]
- Khodabakhshi, D.; Eskandarinia, A.; Kefayat, A.; Rafienia, M.; Navid, S.; Karbasi, S.; Moshtaghian, J. In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy. Colloids Surf. B-Biointerfaces 2019, 178, 177–184. [Google Scholar] [CrossRef]
- Isabel, M.F.A.; Sarita, M.; Sebastian, O.; Sara, L.-M.; Humberto, G.G.J.; Andres, D.-C.; Alex, L.; Carlos, P.; Alex, O.; Birgit, G.; et al. Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing. Heliyon 2024, 10, e23955. [Google Scholar]
- Somsanith, N.; Kim, Y.-K.; Jang, Y.-S.; Lee, Y.-H.; Yi, H.-K.; Jang, J.-H.; Kim, K.-A.; Bae, T.-S.; Lee, M.-H. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants. Materials 2018, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Palla-Rubio, B.; Araújo-Gomes, N.; Fernández-Gutiérrez, M.; Rojo, L.; Suay, J.; Gurruchaga, M.; Goñi, I. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydr. Polym. 2018, 203, 331–341. [Google Scholar] [CrossRef]
- Jian, Y.; Yang, C.; Zhang, J.; Qi, L.; Shi, X.; Deng, H.; Du, Y. One-step electrodeposition of Janus chitosan coating for metallic implants with anti-corrosion properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128498. [Google Scholar] [CrossRef]
- Jian, Y.; Zhang, J.; Yang, C.; Qi, L.; Wang, X.; Deng, H.; Shi, X. Biological MWCNT/chitosan composite coating with outstanding anti-corrosion property for implants. Colloids Surf. B Biointerfaces 2023, 225, 113227. [Google Scholar] [CrossRef]
- Lin, M.-H.; Wang, Y.-H.; Kuo, C.-H.; Ou, S.-F.; Huang, P.-Z.; Song, T.-Y.; Chen, Y.-C.; Chen, S.-T.; Wu, C.-H.; Hsueh, Y.-H.; et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydr. Polym. 2021, 257, 117639. [Google Scholar] [CrossRef]
- Khoshnood, N.; Frampton, J.P.; Zaree, S.R.A.; Jahanpanah, M.; Heydari, P.; Zamanian, A. The corrosion and biological behavior of 3D-printed polycaprolactone/ chitosan scaffolds as protective coating for Mg alloy implants. Surf. Coat. Technol. 2024, 477, 130368. [Google Scholar] [CrossRef]
- Niknam, Z.; Golchin, A.; Rezaei-Tavirani, M.; Ranjbarvan, P.; Zali, H.; Omidi, M.; Mansouri, V. Osteogenic Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells Cultured on Magnesium Oxide/Polycaprolactone Nanofibrous Scaffolds for Improving Bone Tissue Reconstruction. Adv. Pharm. Bull. 2022, 12, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Vimalraj, S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene 2020, 754, 144855. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int. J. Mol. Sci. 2019, 20, 1694. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Chen, C.; Zhang, X.; Wen, X.; Xiao, Y.; Li, L.; Xu, Q.; Fu, F.; Diao, H.; Liu, X. Layer-by-layer coating of carboxymethyl chitosan-gelatin-alginate on cotton gauze for hemostasis and wound healing. Surf. Coat. Technol. 2021, 406, 126644. [Google Scholar] [CrossRef]
- Gao, X.; Huang, R.; Jiao, Y.; Groth, T.; Yang, W.; Tu, C.; Li, H.; Gong, F.; Chu, J.; Zhao, M. Enhanced wound healing in diabetic mice by hyaluronan/chitosan multilayer-coated PLLA nanofibrous mats with sustained release of insulin. Appl. Surf. Sci. 2022, 576, 151825. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, L.; Liu, X.; Zhou, Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf. B-Biointerfaces 2021, 204, 111802. [Google Scholar] [CrossRef]
- Gao, J.; Yang, G.; Pi, R.; Li, R.; Wang, P.; Zhang, H.; Le, K.; Chen, S.; Liu, P. Tanshinone IIA protects neonatal rat cardiomyocytes from adriamycin-induced apoptosis. Transl. Res. 2008, 151, 79–87. [Google Scholar] [CrossRef]
- Yin, X.; Yin, Y.; Cao, F.-L.; Chen, Y.-F.; Peng, Y.; Hou, W.-G.; Sun, S.-K.; Luo, Z.-J. Tanshinone IIA Attenuates the Inflammatory Response and Apoptosis after Traumatic Injury of the Spinal Cord in Adult Rats. PLoS ONE 2012, 7, e38381. [Google Scholar] [CrossRef]
- Fan, G.-W.; Gao, X.-M.; Wang, H.; Zhu, Y.; Zhang, J.; Hu, L.-M.; Su, Y.-F.; Kang, L.-Y.; Zhang, B.-L. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. J. Steroid Biochem. Mol. Biol. 2009, 113, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, Y.; Li, H.; Dai, Y.; Zhou, G.; Zhou, Z.; Xia, H.; Liu, H. Tanshinone IIA Delivery Silk Fibroin Scaffolds Significantly Enhance Articular Cartilage Defect Repairing via Promoting Cartilage Regeneration. Acs Appl. Mater. Interfaces 2020, 12, 21470–21480. [Google Scholar] [CrossRef]
- Liu, Q.-Y.; Yao, Y.-M.; Yu, Y.; Dong, N.; Sheng, Z.-Y. Correction: Astragalus Polysaccharides Attenuate Postburn Sepsis via Inhibiting Negative Immunoregulation of CD4+CD25high T Cells. PLoS ONE 2018, 6, e19811. [Google Scholar]
- Zheng, Y.-J.; Zhou, B.; Song, Z.-F.; Li, L.; Wu, J.; Zhang, R.-Y.; Tang, Y.-Q. Study of Astragalus mongholicus polysaccharides on endothelial cells permeability induced by HMGB1. Carbohydr. Polym. 2013, 92, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Hu, D.; Wang, R.; Liu, K.; Zheng, Y.; He, J.; Chen, X.; Zhang, Y.; Zhao, X.; Bu, Y.; et al. Astragalus polysaccharides driven stretchable nanofibrous membrane wound dressing for joint wound healing. Int. J. Biol. Macromol. 2023, 248, 125557. [Google Scholar] [CrossRef]
- Gao, J.; Chen, T.; Zhao, D.; Zheng, J.; Liu, Z. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo. PLoS ONE 2016, 11, e0168219. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.-D.; Mungur, R.; Zhou, H.-J.; Hassan, M.; Jiang, S.-N.; Zheng, J.-S. Ginkgolide B promotes the proliferation and differentiation of neural stem cells following cerebral ischemia/reperfusion injury, both in vivo and in vitro. Neural Regen. Res. 2018, 13, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Xu, W.; Zhang, L.; Liu, M. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int. Immunopharmacol. 2020, 85, 106652. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xia, K.; Han, L.; Zhang, M.; Fan, J.; Song, L.; Liao, A.; Wang, W.; Guo, J. Local Administration of Ginkgolide B Using a Hyaluronan-Based Hydrogel Improves Wound Healing in Diabetic Mice. Front. Bioeng. Biotechnol. 2022, 10, 898231. [Google Scholar] [CrossRef]
- Madian, N.G.; El-Ashmanty, B.A.; Abdel-Rahim, H.K. Improvement of Chitosan Films Properties by Blending with Cellulose, Honey and Curcumin. Polymers 2023, 15, 2587. [Google Scholar] [CrossRef]
- San Martin-Martinez, E.; Casanas-Pimentel, R.; Almaguer-Flores, A.; Prado-Prone, G.; Garcia-Garcia, A.; Landa-Solis, C.; Hernandez-Rangel, A. Curcumin-loaded Polycaprolactone/Collagen Composite Fibers as Potential Antibacterial Wound Dressing. Fibers Polym. 2022, 23, 3002–3011. [Google Scholar] [CrossRef]
Materials | Reaction Process | Reference |
---|---|---|
Glycidyl methacrylate (GMA), carbon fiber (CF) | The COOH on the surface of CF would lose electrons and then remove carbon dioxide to generate carbon radicals on the surface of CF. The carbon radical would attack the carbon–carbon double bond in GMA to initiate the radical polymerization of GMA monomers and graft polymers would be formed on the CF surface. | [45] |
Waterborne polyurethane coatings (WPU), graphene oxide (GO) | The hydroxyl group on the surface of GO reacts with the amino group of the WPU molecular chain to form an amide bond. | [46] |
Graphene oxide (GO), Ethylenediamine (EDA), polyvinylidene fluoride (PVDF) | GO-NH2 obtained by GO and EDA by a coupling reaction was grafted with dehydrofluorinated PVDF (DF-PVDF) in a Michael addition reaction. | [47] |
Carboxymethyl cellulose (CMC), epigallocatechin gallate (EGCG-g-CS) | Polyionic complexes were formed by ionic bonding of the amino groups in EGCG-g-CS with the carboxyl groups in CMC. | [48] |
Epsilon-poly-l-lysine (EPL), cellulose | Hydroxyl groups on C6 of cellulose were oxidized to carboxyl groups by TEMPO, and a grafting reaction was achieved between newly formed carboxyl groups of cellulose and amino of EPL. | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Duan, H.; Zhang, Z.; Chen, L.; Li, J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. Materials 2024, 17, 5607. https://doi.org/10.3390/ma17225607
Wang Y, Duan H, Zhang Z, Chen L, Li J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. Materials. 2024; 17(22):5607. https://doi.org/10.3390/ma17225607
Chicago/Turabian StyleWang, Yanchao, Huimin Duan, Zhongna Zhang, Lan Chen, and Jingan Li. 2024. "Research Progress on the Application of Natural Medicines in Biomaterial Coatings" Materials 17, no. 22: 5607. https://doi.org/10.3390/ma17225607
APA StyleWang, Y., Duan, H., Zhang, Z., Chen, L., & Li, J. (2024). Research Progress on the Application of Natural Medicines in Biomaterial Coatings. Materials, 17(22), 5607. https://doi.org/10.3390/ma17225607