High-Temperature Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. As-Received UNS S32750 Super Duplex Stainless Steel Alloy
3.2. High-Temperature Deformation Behaviour
3.2.1. Deformability of UNS S32750 Super Duplex Stainless Steel Alloy
3.2.2. Microstructure Evolution During Hot-Rolling Deformation
- -
- Applied deformation degree: 40%, 60%, and 70%;
- -
- Applied deformation temperature: 1050 °C, 1100 °C, 1150 °C, and 1200 °C.
4. Conclusions
- Increasing the deformation degree (degree of reduction in height) can be achieved by increasing the deformation temperature.
- Increasing the applied impact energy can lead to an increase in the deformation degree.
- The evolution of the deformation resistance () as a function of temperature (T) shows a decreasing tendency while increasing the deformation temperature for all impact energies. The evolution of the mechanical work () as a function of temperature (T) shows a decreasing tendency while increasing the deformation temperature for all impact energies.
- In all cases, the microstructure shows intensely deformed grains, strongly elongated in the rolling direction in both the ferrite (δ) and austenite (γ) intensely deformed grains. The intensity of the grain deformation is increasing with the increase in the applied deformation degree. Also, it was observed that increasing the deformation temperature leads to a strong increase in the weight fraction of the dynamically recrystallised (DRX) ferrite (δ) grains.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz, J.A.; Chand, M.; Signorelli, J.W.; Calvo, J.; Cabrera, J.M. Strengthening of duplex stainless steel processed by equal channel angular pressing (ECAP). Int. J. Adv. Manuf. Technol. 2022, 123, 2261–2278. [Google Scholar] [CrossRef]
- Bastos, I.N.; Tavares, S.S.M.; Dalard, F.; Nogueira, R.P. Effect of microstructure on corrosion behavior of super duplex stainless steel at critical environment conditions. Scr. Mater. 2007, 57, 913–916. [Google Scholar] [CrossRef]
- Francis, R. The Corrosion of Duplex Stainless Steels: A Practical Guide for Engineers; NACE International: Houston, TX, USA, 2018. [Google Scholar]
- Alturaihi, S.S.; Serban, N.; Cinca, I.; Angelescu, M.L.; Balkan, I.V. Influence of solution treatment temperature on microstructural and mechanical properties of hot rolled UNS S32760/F55 super duplex stainless steel (SDSS). U.P.B. Sci. Bull. Ser. B 2021, 83. ISSN 1454-2331. Available online: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez2ab_839863.pdf (accessed on 16 April 2024).
- Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Machinability study of first-generation duplex (2205), second generation duplex (2507) and austenite stainless steel during drilling process. Wear 2013, 304, 20–28. [Google Scholar] [CrossRef]
- Kane, R. Superstainless Steels resist hostile environments. Adv. Mater. Process. (U.S.) 1993, 144, 16–20. [Google Scholar]
- Olsson, J.; Snis, M. Duplex—A new generation of stainless steels for desalination plants. Desalination 2007, 205, 104–113. [Google Scholar] [CrossRef]
- Chaudhari, A.Y.; Diwakar, N.; Kalpande, S.D. Impact of high temperature heat input on morphology and mechanical properties of duplex stainless steel 2205. U.P.B. Sci. Bull. Ser. D 2023, 85. ISSN 1454-2358. Available online: www.scientificbulletin.upb.ro/rev_docs_arhiva/full6da_775360.pdf (accessed on 16 April 2024).
- Chail, G.; Kangas, P. Super and Hyper Duplex Stainless Steels: Structures, Properties and Applications. Procedia Struct. Integr. 2016, 2, 1755–1762. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Gong, Q.; Guo, H.; Cao, Z.; Mu, W. Annealing parameters effect on microstructure evolution, tensile properties and deformation behaviors of direct-cold-rolled UNS S32101 duplex stainless steel with heterogeneous layered structure. Mater. Sci. Eng. A 2023, 883, 145439. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Xi, X.; Xiao, Z. Altered microstructure characteristics and enhanced corrosion resistance of UNS S32750 duplex stainless steel via ultrasonic surface rolling process. J. Mater. Process. Technol. 2022, 309, 117750. [Google Scholar] [CrossRef]
- McGuire, M.F. Stainless Steels for Design Engineers; Chapter 7: Duplex Stainless Steels; ASM Technical Books; ASM International: Almere, The Netherlands, 2008; pp. 91–107. [Google Scholar] [CrossRef]
- Perren, R.A.; Suter, T.A.; Uggowitzer, P.J.; Weber, L.; Magdowski, R.; Böhni, H.; Speidel, M.O. Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new microelectrochemical method: I. Precipitate-free states. Corros. Sci. 2001, 43, 707–726. [Google Scholar] [CrossRef]
- Li, J.; Shen, W.; Lin, P.; Wang, F.; Yang, Z. Effect of Solution Treatment Temperature on Microstructural Evolution, Precipitation Behavior, and Comprehensive Properties in UNS S32750 Super Duplex Stainless Steel. Metals 2020, 10, 1481. [Google Scholar] [CrossRef]
- Pardal, J.M.; Tavares, S.S.M.; Fonseca, M.C.; Souza, J.A.; Côrte, R.R.A.; Abreu, H.F.G. Influence of the grain size on deleterious phase precipitation in super duplex stainless steel UNS S32750. Mater. Charact. 2009, 60, 165–172. [Google Scholar] [CrossRef]
- Tehovnik, F.; Arzensek, B.; Arh, B.; Skobir, D.; Pirnar, B.; Zuzek, B. Microstructure evolution in SAF 2507 super duplex stainless steel. Mater. Technol. 2011, 45, 339–345. Available online: http://mit.imt.si/izvodi/mit114/tehovnik.pdf (accessed on 10 April 2024).
- Gao, Z.; Li, J.; Chen, Y.; Wang, Y. Effect of Dual-Phase Structure on The Microstructure and Deformation Inhomogeneity of UNS S32750 Duplex Stainless Steel. Ironmak. Steelmak. 2020, 48, 393–401. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.; Wu, M.; Xu, J.; Liu, Z. Establishing the hot working window for the forging of S32906 super duplex stainless steel through considering deformation parameter sensitivities. J. Mater. Res. Technol. 2024, 28, 4463–4474. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Hu, J.; Qi, X.; Bian, Y.; Shen, A.; Xu, P.; Zhao, Y. Microstructure evolution and mechanical properties of briefly heat-treated SAF 2507 super duplex stainless steel welds. Constr. Build. Mater. 2018, 168, 338–345. [Google Scholar] [CrossRef]
- Zheng, X.; Ghassemi-Armaki, H.; Srivastava, A. Structural and microstructural influence on deformation and fracture of dual-phase steels. Mater. Sci. Eng. A 2020, 774, 138924. [Google Scholar] [CrossRef]
- Alturaihi, S.S.; Alluaibi, M.H.; Cojocaru, E.M.; Raducanu, D. Microstructural changes occurred during hot-deformation of SDSS F55 (Super-duplex stainless steel) alloy. U.P.B. Sci. Bull. Ser. B 2019, 81. ISSN 1454-2331. Available online: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full74c_462419.pdf (accessed on 3 May 2024).
- Memoni, A.; Dehghani, K.; Poletti, M.C. Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures. Mater. Chem. Phys. 2013, 139, 747–755. [Google Scholar] [CrossRef]
- Min, W.; Baosheng, L.; Shoulu, Z.; Guoping, L.; Lixin, W.; Lifeng, H.; Yinghui, W. Hot Deformation Behavior and Softening Mechanism of As-Cast S32750 Super Duplex Stainless Steel at Low and High Strain Rates. J. Mater. Eng. Perform. 2020, 29, 727–738. [Google Scholar] [CrossRef]
- Xu, H.; Han, C.; Bai, Y.; Li, W.; Qiao, X.; Sha, X. Hot deformation behaviour of microstructural evolution in 2507 Super Duplex Stainless Steel during high-temperature straining. Ironmak. Steelmak. 2022, 49, 1021–1031. [Google Scholar] [CrossRef]
- Momeni, A.; Dehghani, K. Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater. Sci. Eng. A 2011, 528, 1448–1454. [Google Scholar] [CrossRef]
- Balancin, O.; Hoffmann, W.A.M.; Jonas, J.J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures. Metall. Mater. Trans. A 2000, 31, 1353–1364. [Google Scholar] [CrossRef]
- Kingklang, S.; Uthaisangsuk, V. Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507. Metall. Mater. Trans. A 2017, 48, 95–108. [Google Scholar] [CrossRef]
- Renton, N.C.; Elhoud, A.M.; Deans, W.F. Effect of plastic deformation on the corrosion behavior of a super-duplex stainless steel. J. Mater. Eng. Perform. 2011, 20, 436–444. [Google Scholar] [CrossRef]
- Kisasöz, B.O.; Tütük, I.; Acar, S.; Kisasöz, A. Electrochemical corrosion behaviour of UNS S32205 duplex stainless steel dependent on sigma phase precipitation. Mater. Test. 2024, 66, 787–801. [Google Scholar] [CrossRef]
- Zhang, W.P.; Li, L.; Huang, C.; Ngai, T.; Hu, L. Effect of Sintering Temperature and Solution Treatment on Phase Changes and Mechanical Properties of High-Nitrogen Stainless Steel Prepared by MIM. Materials 2023, 16, 2135. [Google Scholar] [CrossRef]
- Cojocaru, V.D.; Serban, N.; Angelescu, M.L.; Cotrut, M.C.; Cojocaru, E.M.; Vintila, A.N. Influence of Solution Treatment Temperature on Microstructural Properties of an Industrially Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy. Metals 2017, 7, 210. [Google Scholar] [CrossRef]
- Kamaya, M. Characterization of microstructural damage due to low-cycle-fatigue by EBSD observation. Mater. Charact. 2009, 160, 1454–1462. [Google Scholar] [CrossRef]
- Angelescu, M.L.; Cojocaru, E.M.; Șerban, N.; Cojocaru, V.D. Evaluation of Hot Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy. Metals 2020, 10, 673. [Google Scholar] [CrossRef]
- Wright, S.I.; Nowell, M.M.; Field, D.P. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 2011, 17, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Kamaya, M. Assessment of local deformation using EBSD: Quantification of local damage at grain boundaries. Mater. Charact. 2012, 66, 56–67. [Google Scholar] [CrossRef]
Hammer mass, m [kg] | 117 | |||
Strike height, H [m] | 0.5 | 1.0 | 1.5 | 2.0 |
Impact energy, E* [J] | 545.2 | 1021.5 | 1480.6 | 1905.3 |
Up-setting temperature, T [°C] | 1050 | |||
Obtained deformation degree, ε [%] | 16.52 | 28.77 | 39.67 | 48.06 |
Up-setting temperature, T [°C] | 1100 | |||
Obtained deformation degree, ε [%] | 18.73 | 33.10 | 44.41 | 53.94 |
Up-setting temperature, T [°C] | 1150 | |||
Obtained deformation degree, ε [%] | 22.18 | 38.30 | 50.74 | 59.28 |
Up-setting temperature, T [°C] | 1200 | |||
Obtained deformation degree, ε [%] | 26.16 | 44.31 | 55.79 | 64.83 |
Up-setting temperature, T [°C] | 1050 | 1100 | 1150 | 1200 |
Impact energy, E* [J] | 545.2 | |||
[MPa] | 321.9 | 283.1 | 237.7 | 200.1 |
[J/mm3] | 0.35 | 0.31 | 0.26 | 0.22 |
Impact energy, E* [J] | 1021.5 | |||
[MPa] | 339.2 | 291.9 | 248.8 | 210.8 |
[J/mm3] | 0.38 | 0.33 | 0.28 | 0.24 |
Impact energy, E* [J] | 1480.6 | |||
[MPa] | 346.7 | 304.7 | 259.5 | 229.5 |
[J/mm3] | 0.40 | 0.35 | 0.31 | 0.28 |
Impact energy, E* [J] | 1905.3 | |||
[MPa] | 357.1 | 308.9 | 271.4 | 236.3 |
[J/mm3] | 0.42 | 0.37 | 0.34 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocaru, V.D.; Șerban, N.; Cojocaru, E.M.; Zărnescu-Ivan, N. High-Temperature Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy. Materials 2024, 17, 5151. https://doi.org/10.3390/ma17215151
Cojocaru VD, Șerban N, Cojocaru EM, Zărnescu-Ivan N. High-Temperature Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy. Materials. 2024; 17(21):5151. https://doi.org/10.3390/ma17215151
Chicago/Turabian StyleCojocaru, Vasile Dănuț, Nicolae Șerban, Elisabeta Mirela Cojocaru, and Nicoleta Zărnescu-Ivan. 2024. "High-Temperature Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy" Materials 17, no. 21: 5151. https://doi.org/10.3390/ma17215151
APA StyleCojocaru, V. D., Șerban, N., Cojocaru, E. M., & Zărnescu-Ivan, N. (2024). High-Temperature Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy. Materials, 17(21), 5151. https://doi.org/10.3390/ma17215151