Impact of Column Support Stiffness on the Mechanical Performance of Flat Frame Structural Systems Supporting Thin-Walled Folded Roofs
Abstract
:1. Introduction
2. Critical Review of the Present Knowledge
3. The Aim of the Research
4. Methodology
5. Results
6. Analysis
6.1. Relationships Characteristic for the First Type Cfgi of the Frame Configurations
6.2. Relations Characteristic for the Copi Frame Configurations Optimized
6.3. Parametric Model of the Column Support Joint
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cfgi | the unoptimized frame configuration |
Copi | the optimized frame configuration |
k | the stiffness of the column supporting joints |
c | the flexibility of the column supporting joints |
Pgi | the upper chord of a girder |
Pdi | the lower chord of a girder |
Pki | the diagonal of a girder |
Psi | the column |
Dop_cl, dop_cl | the outer diameter/thickness of the column sections |
Dop_tp/dop_tp | the outer diameter/thickness of the top chord sections |
Dop_bt/dop_bt | the outer diameter/thickness of the bottom chord sections |
Dop_dg/dop_dg | the outer diameter/thickness of the diagonal sections |
Smod_cl | the section module of the column cross-sections |
Smod_tp | the section module of the top chord cross-sections |
Smod_bt | the section module of the bottom chord cross-sections |
Smod_dg | the section module of the diagonals cross-sections |
σc | the compressive stresses |
σt | the tensile stresses |
fcr | the critical load factor |
Δxmax | the maximum displacement in the x-axis direction |
Δzmax | the maximum deflection in the z-axis direction |
[x, y, z] | the orthogonal coordinate system |
(x, z) | one of three principal planes of [x,y,z] |
References
- Nageim, H. Steel Structures. Practical Design Studies, 4th ed.; CRC Press LLC: London, UK, 2016. [Google Scholar]
- Abbas, I.; Marin, M.; Saeed, T. A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 2020, 12, 488. [Google Scholar] [CrossRef]
- Havelia, P. A Ground Structure Method to Optimize Topology and Sizing of Steel Frame Structures to Minimize Material, Fabrication and Erection Costs. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2016. [Google Scholar]
- Yu, W.W.; LaBoube, R.A.; Chen, H. Cold Formed Steel Design; John Wiley and Sons Inc.: New York, NY, USA, 2000. [Google Scholar]
- Abramczyk, J. Shell Free Forms of Buildings Roofed with Transformed Corrugated Sheeting, Monograph; Publishing House of Rzeszow University of Technology: Rzeszów, Poland, 2017. [Google Scholar]
- Rebielak, J. Two-Stage Method Applied for Approximate Calculations of Selected Types of Statically Indeterminate Trusses. Int. J. Comput. Methods 2020, 18, 2041004. [Google Scholar] [CrossRef]
- Chen, W.F.; Goto, Y.; Liew, R.J.Y. Stability Design of Semi-Rigid Frames; John Wiley and Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Abramczyk, J. Folded Sheets as a Universal Material for Shaping Transformed Shell Roofs. Materials 2021, 14, 2051. [Google Scholar] [CrossRef]
- Abramczyk, J. Transformed Shell Structures Determined by Regular Networks as a Complex Material for Roofing. Materials 2021, 14, 3582. [Google Scholar] [CrossRef] [PubMed]
- Reichhart, A. Geometrical and Structural Shaping Building Shells Made up of Transformed Flat Folded Sheets; House of Rzeszow University of Technology: Rzeszów, Poland, 2002. (In Polish) [Google Scholar]
- Reichhart, A. Principles of designing shells of profiled steel sheets. In Proceedings of the X International Conference on Lightweight Structures in Civil Engineering, Rzeszow, Poland, 5–6 December 2004; pp. 138–145. [Google Scholar]
- Abramczyk, J. Shape transformations of folded sheets providing shell free forms for roofing. In Proceedings of the 11th Conference on Shell Structures Theory and Applications, Gdańsk, Poland, 11–13 October 2018; CRC Press/Balkema: Leiden, The Netherlands, 2017; pp. 409–412. [Google Scholar]
- Abramczyk, J. Innovative Building Forms Determined by Orthotropic Properties of Folded Sheets Transformed into Roof Shells. J. Int. Assoc. Shell Spat. Struct. 2020, 61, 111–124. [Google Scholar]
- Reichhart, A. Corrugated Deformed Steel Sheets as Material for Shells. In Proceedings of the International Conference of Lightweight Structures in Civil Engineering, Warsaw, Poland, 1 December 1995; pp. 625–636. [Google Scholar]
- Abramczyk, J.; Chrzanowska, K.; Bielak, W. Impact of Inclination of Girders and Columns on the Effort and Stability of Flat Bar Frames. Materials 2023, 16, 6284. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowska, K. An influence of column inclination on the work of plane bar structural systems supporting shed roof sheeting. J. Civ. Eng. Environ. Archit. 2024, 71, 67–81. [Google Scholar] [CrossRef]
- Abel, J.F.; Mungan, I. Fifty Years of Progress for Shell and Spatial Structures; International Association for Shell and Spatial Structures: Madrid, Spain, 2011. [Google Scholar]
- Tarczewski, R. Structural systems in the mind of an architect—Cognition through a non-linear teaching model. World Trans. Eng. Technol. Educ. 2021, 19, 358–363. [Google Scholar]
- Khodaie, S.; Mohamadi-Shooreh, M.R.; Mofid, M. Parametric analyses on the initial stiffness od the SHS column base plate connections using FEM. Eng. Struct. 2012, 34, 363370. [Google Scholar] [CrossRef]
- Zhang, H.; Shayan, S.; Rasmussen, K.J.R.; Ellingwood, B.R. System-based design of planar steel frames, I: Reliability framework. J. Constr. Steel Res. 2016, 123, 135–143. [Google Scholar] [CrossRef]
- Kurobane, Y.; Packer, J.A.; Wardenier, J.; Yeomans, N. Design Guide for Structural Hollow Section Column Connections; Verlag TUV Rheinland GmbH: Koln, Germany, 2005. [Google Scholar]
- Packer, J.A.; Henderson, J.E. Hollow Structural Section Connections and Truss—A Design Guide, 2nd ed.; Canadian Institute of Steel Construction: Toronto, ON, Canada, 1997. [Google Scholar]
- Ziemian, R.D.; McGuire, W.; Deierlein, G.G. Inelastic limit states design. Part I: Planar frame studies. J. Struct Eng. ASCE 1992, 118, 2532–2549. [Google Scholar] [CrossRef]
- Gomes, R.A.; Oliveira, L.A.; Francisco, M.B.; Gomes, G.F. Tubular auxetic structures: A review. Thin-Walled Struct. 2023, 188, 110850. [Google Scholar] [CrossRef]
- Wardenier, J.; Packer, J.A.; Zhao, X.-L.; Veghte, G.J. Hollow Sections in Structural Applications. Bouwen Met Staal; Zoetemeer: Berlare, Belgium, 2010. [Google Scholar]
- Abouelregal, A.E.; Marin, M. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 2020, 12, 1276. [Google Scholar] [CrossRef]
- Rębielak, J. Architectonic forms and engineering systems designed by application of method of superposition. In Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa, 2–4 September 2019. [Google Scholar]
- Attard, M.M. Nonlinear theory of Non-Uniform Torsion of Thin-Walled Open Beams. Thin-Walled Struct. 1986, 4, 101–134. [Google Scholar] [CrossRef]
- Somma, G.; Vit, M. Experimental investigation of flare groove weld stiffness in lattice girder beams by means of push-out tests. J. Constr. Steel Res. 2023, 202, 107780. [Google Scholar] [CrossRef]
- Ananthi, G.B.G.; Roy, K.; Lim, J.B. Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle column. Steel Compos. Struct. 2019, 33, 595–614. [Google Scholar]
- Korcz-Konkol, N.; Iwicki, P. Truss imperfections in the design of bar and diaphragm bracing systems. J. Constr. Steel Res. 2023, 206, 107936. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Z.; Peng, X.; Ma, C.; Zhang, A.; Chen, Z.; Chen, Y.; Wang, D.; Zhang, Y. Predicting and optimizing the dimensions of rod in lattice structures fabricated by laser powder bed fusion. Mater. Today Commun. 2024, 40, 109979. [Google Scholar] [CrossRef]
- Kaveh, A.; Gerami, A.B. Optimal design of large-scale space steel frames using cascade enhanced colliding body optimization. Struct. Multidiscip. Optim. 2017, 55, 237–256. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Daei, M.; Zeynalian, M.; Ataei, A. Neural networks-based formulation for predicting ultimate strength of bolted shear connectors in composite cold-formed steel beams. Eng. Appl. Artif. Intell. 2023, 118, 105614. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.; Zhao, K.; Cheng, X. A Shallow Neural Network for Recognition of Strip Steel Surface Defects Based on Attention Mechanism. ISIJ Int. 2023, 63, 525–533. [Google Scholar] [CrossRef]
- Kim, B.; Yuvaraj, N.; Park, H.W.; Preethaa, K.R.; Pandian, R.A.; Lee, D.E. Investigation of steel frame damage based on computer vision and deep learning. Autom. Constr. 2021, 132, 103941. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Y.; Luo, H.; Wang, Z. Plastic Constitutive Training Method for Steel Based on a Recurrent Neural Network. Buildings 2024, 14, 3279. [Google Scholar] [CrossRef]
- Vukadinović, A.; Radosavljević, J.; Đorđević, A.; Protić, M.; Petrović, N. Multi-objective optimization of energy performance for a detached residential building with a sunspace using the NSGA-II genetic algorithm. Sol. Energy 2021, 224, 1426–1444. [Google Scholar] [CrossRef]
- Bello-García, A.; Coz Díaz, J.J.; Suarez, F.; Jose, P.; Nieto, G. Optimization of steel structures with one genetic algorithm according to three international building codes. Rev. Constr. 2018, 17, 47–59. [Google Scholar] [CrossRef]
- Fan, J.; Li, T.; Sun, P.; Wang, D.; Chen, X. Experimental analysis of the truss-to-column connection in a modularized prefabricated steel structure. J. Build. Eng. 2022, 49, 104115. [Google Scholar] [CrossRef]
- PN-EN 1991-1-3; Eurocode 1: Actions on Structures. Part 1-3: General Actions. Snow Loads. PKN: Warsaw, Poland, 2005.
- PN-EN 1991-1-4; Eurocode 1: Actions on Structures: Part 1.4: Wind Actions. PKN: Warsaw, Poland, 2008.
- PN-EN 1993-1-1; Eurocode 3: Design of Steel Structures: Part 1.1—General Rules and Rules for Buildings. PKN: Warsaw, Poland, 2004.
- Kem, G.N. Rigidity and safety optimization of 3-dimensional repetitive frame systems as bar-joint building with graphs. Eng. Struct. 2019, 201, 109782. [Google Scholar] [CrossRef]
- Autodesk Robot. Available online: https://www.autodesk.com/products/robot-structural-analysis (accessed on 19 November 2024).
- Sophianopoulos, D.S.; Ntina, M.I. Investigation of the seismic performance of a single story–Single bay special truss moment frame with SMAs incorporated. Structures 2021, 33, 2374–2387. [Google Scholar] [CrossRef]
- Rhino/Grasshopper. Available online: https://www.rhino3d.pl/grasshopper (accessed on 19 November 2024).
Configuration | Cfg1 | Cfg2 | Cfg3 | Cfg4 | Cfg4 |
---|---|---|---|---|---|
Type of the joints | Rigid | Semi rigid | Semi rigid | Semi rigid | Articulated |
Stiffness k (kNm/Deg) | 5000 | 500 | 100 | 50 | 0 |
Flexibility c (Deg/kNm) | 0.000 | 0.01 | 0.02 | 100 | 10,000 |
Dop_cl/dop_cl (mm) | 406.4/6.3 | 406.4/6.3 | 406.4/6.3 | 406.4/6.3 | 406.4/6.3 |
Dop_tp/dop_tp (mm) | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 |
Dop_bt/dop_bt (mm) Dop_dg/dop_dg (mm) | 114.3/5.0 70/3.6 | 114.3/5.0 70/3.6 | 114.3/5.0 70/3.6 | 114.3/5.0 70/3.6 | 114.3/5.0 70/3.6 |
Girder | Column | ||
---|---|---|---|
Coefficient | Value | Coefficient | Value |
GD (kN/m2) | 1.04 | GSc (kN/m2) | 0.5 |
S1 (kN/m2) | 0.72 | WDep + Wis (kN/m2) | 0.631 |
S2 (kN/m2) | 0.36 | WEep + Wis (kN/m2) | 0.134 |
Wep + Wis (kN/m2) | −0.042 | WBep + Wis (kN/m2) | 0.631 |
Wes + Wip (kN/m2) | −0.31 |
Roof (kN/m2) | Winward Wall (kN/m2) | Leeward Wall (kN/m2) | Side Walls (kN/m2) | Wall’s Weight (kN/m2) | |
---|---|---|---|---|---|
Komb1 | 2.24 | 0.57 | 0.12 | - | 0.5737 |
Komb2 | 1.91 | 0.57 | 0.12 | - | 0.675 |
Komb3 | 1.67 | 0.95 | 0.20 | - | 0.5737 |
Komb4 | 1.70 | 0.57 | 0.12 | - | 0.5737 |
Komb5 | 1.64 | 0.57 | 0.12 | - | 0.675 |
Komb6 | 1.40 | 0.95 | 0.20 | - | 0.5737 |
Komb7 | 0.58 | 0.95 | 0.20 | - | 0.5 |
Komb8 | 1.73 | 0.38 | 0.08 | - | 0.5 |
Komb9 | 1.36 | 0.63 | 0.13 | - | 0.5 |
Komb10 | 2.24 | - | - | 0.52 | 0.5737 |
Komb11 | 1.91 | - | - | 0.52 | 0.675 |
Komb12 | 1.67 | - | - | 0.87 | 0.5737 |
Komb13 | 1.70 | - | - | 0.52 | 0.5737 |
Komb14 | 1.64 | - | - | 0.52 | 0.675 |
Komb15 | 1.40 | - | - | 0.87 | 0.5737 |
Komb16 | 0.58 | - | - | 0.87 | 0.5 |
Komb17 | 1.73 | - | - | 0.35 | 0.5 |
Komb18 | 1.36 | - | - | 0.58 | 0.5 |
Roof (kN/m2) | Winward Wall (kN/m2) | Leeward Wall (kN/m2) | Side Walls (kN/m2) | Wall’s Weight (kN/m2) | |
---|---|---|---|---|---|
Configuration | Cfg1 | Cfg2 | Cfg3 | Cfg4 | Cfg5 |
σmax_cl/σmin_cl | 236/−218 | 230/−201 | 289/−260 | 333/−303 | 482/−448 |
σmax_tp/σmin_tp | 233/−123 | 234/−126 | 237/−131 | 239/−134 | 238/−154 |
σmax_bt/σmin_bt | 179/−226 | 193/−231 | 231/−238 | 259/−241 | 335/−241 |
σmax_dg/σmin_dg | 232/−236 | 232/−236 | 239/−246 | 245/−254 | 263/−277 |
Δx (mm) | 38 | 39 | 40 | 40 | 40 |
Δz (mm) | 58 | 79 | 136 | 170 | 316 |
Δf (Deg) | 0.007 | 0.007 | 0.014 | 0.021 | 0.045 |
k (kNm/°) | Rigid | 500 | 100 | 50 | 0 |
Configuration | Cop2 | Cop3 | Cop4 | Cop5 | Cop6 | Cop7 | Cop8 |
---|---|---|---|---|---|---|---|
Dop_cl/dop_cl | 406/6.3 | 457/5.6 | 457/8.0 | 508/8.0 | 610/6.3 | 610/7.1 | 711/8.0 |
Dop_tp/dop_tp | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 | 168.3/4.5 |
Dop_bt/dop_bt | 114.3/5 | 114.3/5.0 | 114.3/5 | 114.3/4.5 | 114.3/5.0 | 114.3/5.6 | 177.8/5.0 |
Dop_dg/dop_dg | 70/3.6 | 70/3.6 | 70/4.0 | 70/4.0 | 70/4.0 | 70/4.0 | 70/4.0 |
Smod_cl (cm3) | 399,205 | 450,910 | 639,090 | 791,781 | 906,414 | 1,019,502 | 1,561,537 |
Smod_tp (cm3) | 1174 | 1174 | 1174 | 1174 | 1174 | 1174 | 1174 |
Smod_bt (cm3) | 878 | 878 | 878 | 792 | 878 | 981 | 1377 |
Smod_dg (cm3) | 386 | 386 | 427 | 427 | 427 | 427 | 427 |
k (kNm/Deg) | 500 | 300 | 180 | 100 | 50 | 25 | 0 |
Coefficient | ||
---|---|---|
Line pr1 | −13.09 | 15.62 |
Line pr2 | −1.802 | 9.808 |
Line pr3 | 0.000 | 4.000 |
Coefficient | k (kNm/Deg) | Smod (m3) |
Point Q1 | 29.25 | 9.281 |
Point Q2 | 322.3 | 4.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramczyk, J.; Chrzanowska, K. Impact of Column Support Stiffness on the Mechanical Performance of Flat Frame Structural Systems Supporting Thin-Walled Folded Roofs. Materials 2025, 18, 67. https://doi.org/10.3390/ma18010067
Abramczyk J, Chrzanowska K. Impact of Column Support Stiffness on the Mechanical Performance of Flat Frame Structural Systems Supporting Thin-Walled Folded Roofs. Materials. 2025; 18(1):67. https://doi.org/10.3390/ma18010067
Chicago/Turabian StyleAbramczyk, Jacek, and Katarzyna Chrzanowska. 2025. "Impact of Column Support Stiffness on the Mechanical Performance of Flat Frame Structural Systems Supporting Thin-Walled Folded Roofs" Materials 18, no. 1: 67. https://doi.org/10.3390/ma18010067
APA StyleAbramczyk, J., & Chrzanowska, K. (2025). Impact of Column Support Stiffness on the Mechanical Performance of Flat Frame Structural Systems Supporting Thin-Walled Folded Roofs. Materials, 18(1), 67. https://doi.org/10.3390/ma18010067