Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants
Abstract
:1. Introduction
2. Corrosion Behaviour of Magnesium Materials in a Biological Environment
3. Advancements and Modifications in the Corrosion Resistance of Mg
3.1. Ball Milling: Processing Approach
3.2. Spark Plasma Sintering (SPS): Technique
3.3. Other Techniques Influencing Corrosion Resistance of Mg Alloys
3.4. Alloying Components in Mg-Based Materials
3.5. Alternative Solution: PLGA (Polylactic Co-Glycolic Acid)
4. Titanium and Corrosion Characteristics
Cytotoxicity and Biomedical Implantation
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartolo, P.; Kruth, J.P.; Silva, J.; Levy, G.; Malshe, A.; Rajurkar, K.; Mitsuishi, M.; Ciurana, J.; Leu, M. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann. 2012, 61, 635–655. [Google Scholar] [CrossRef]
- Hassan, S.F.; Islam, M.T.; Saheb, N.; Baig, M.M.A. Magnesium for implants: A review on the effect of alloying elements on biocompatibility and properties. Materials 2022, 15, 5669. [Google Scholar] [CrossRef]
- Annur, D.; Kartika, I.; Supriadi, S.; Suharno, B. Titanium and titanium-based alloy prepared by spark plasma sintering method for biomedical implant applications—A review. Mater. Res. Express 2021, 8, 012001. [Google Scholar] [CrossRef]
- Teo, A.J.; Mishra, A.; Park, I.; Kim, Y.J.; Park, W.T.; Yoon, Y.J. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. [Google Scholar] [CrossRef]
- Liu, C.; Xin, Y.; Tian, X.; Zhao, J.; Chu, P.K. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy. J. Vac. Sci. Technol. A 2007, 25, 334–339. [Google Scholar] [CrossRef]
- Ramos, D.M.; Dhandapani, R.; Subramanian, A.; Sethuraman, S.; Kumbar, S.G. Clinical complications of biodegradable screws for ligament injuries. Mater. Sci. Eng. C 2020, 109, 110423. [Google Scholar] [CrossRef]
- Godavitarne, C.; Robertson, A.; Peters, J.; Rogers, B. Biodegradable materials. Orthop. Trauma 2017, 31, 316–320. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Apostolova, M.D. Advances in multifunctional bioactive coatings for metallic bone implants. Materials 2022, 16, 183. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef]
- Shahin, M.; Munir, K.; Wen, C.; Li, Y. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater. 2019, 96, 1–19. [Google Scholar] [CrossRef]
- Gutiérrez Púa, L.D.C.; Rincón Montenegro, J.C.; Fonseca Reyes, A.M.; Zambrano Rodríguez, H.; Paredes Méndez, V.N. Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: A review. J. Mater. Sci. 2023, 58, 3879–3908. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K. An outlook on the influence on mechanical properties of AZ31 reinforced with graphene nanoparticles using powder metallurgy technique for biomedical application. Mater. Today Proc. 2022, 56, 2278–2287. [Google Scholar] [CrossRef]
- Jean, C.; Gravelle, P.; Fournie, J.J.; Laurent, G. Influence of stress on extracellular matrix and integrin biology. Oncogene 2011, 30, 2697–2706. [Google Scholar] [CrossRef] [PubMed]
- Walschot, L.H.B.; Schreurs, B.W.; Buma, P.; Verdonschot, N. Impactability and time-dependent mechanical properties of porous titanium particles for application in impaction grafting. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 95, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, L.; Yang, K.; Ma, Z.; Wang, Y.; Cheng, L.; Zhao, D. Materials evolution of bone plates for internal fixation of bone fractures: A review. J. Mater. Sci. Technol. 2020, 36, 190–208. [Google Scholar] [CrossRef]
- AmirtharajMosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent advancements in materials and coatings for biomedical implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef]
- Mellon, S.J.; Tanner, K.E. Bone and its adaptation to mechanical loading: A review. Int. Mater. Rev. 2012, 57, 235–255. [Google Scholar] [CrossRef]
- Gibbs, D.M.; Black, C.R.; Dawson, J.I.; Oreffo, R.O. A review of hydrogel use in fracture healing and bone regeneration. J. Tissue Eng. Regen. Med. 2016, 10, 187–198. [Google Scholar] [CrossRef]
- Puppi, D.; Chiellini, F.; Piras, A.M.; Chiellini, E. Polymeric materials for bone and cartilage repair. Prog. Polym. Sci. 2010, 35, 403–440. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef] [PubMed]
- Tenali, N.; Ganesan, G.; Babu, P.R. An Investigation on theMechanical and Tribological Properties of an Ultrasonic-Assisted StirCasting Al-Cu-Mg Matrix-Based Composite Reinforced with Agro Waste AshParticles. Appl. Eng. Lett. 2024, 9, 46–63. [Google Scholar] [CrossRef]
- Nasr Azadani, M.; Zahedi, A.; Bowoto, O.K.; Oladapo, B.I. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 2022, 11, 1–26. [Google Scholar] [CrossRef]
- Raffa, M.L.; Nguyen, V.H.; Haiat, G. Micromechanical modeling of the contact stiffness of an osseointegrated bone–implant interface. BioMedical Eng. OnLine 2019, 18, 114. [Google Scholar] [CrossRef]
- Rosol, T.J.; Capen, C.C. Calcium-regulating hormones and diseases of abnormal mineral (calcium, phosphorus, magnesium) metabolism. In Clinical Biochemistry of Domestic Animals; Academic Press: Cambridge, MA, USA, 1997; pp. 619–702. [Google Scholar]
- Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys 2021, 9, 705–747. [Google Scholar]
- Kang, Y.; Zhang, K.; Lin, X. Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel–Metal Hydride Batteries: A Review. Coatings 2023, 13, 1100. [Google Scholar] [CrossRef]
- Qi, L.; Zhao, T.; Yan, J.; Ge, W.; Jiang, W.; Wang, J.; Gholipourmalekabadi, M.; Lin, K.; Wang, X.; Zhang, L. Advances in magnesium-containing bioceramics for bone repair. Biomater. Transl. 2024, 5, 3. [Google Scholar]
- Zhou, Y.; Zhang, A.; Wu, J.; Guo, S.; Sun, Q. Application and Perspectives: Magnesium Materials in Bone Regeneration. ACS Biomater. Sci. Eng. 2024, 10, 3514–3527. [Google Scholar] [CrossRef]
- Shivgotra, R.; Soni, B.; Kaur, M.; Thakur, S. Advancement in Biomaterials in the Form of Implants. In Engineered Biomaterials: Synthesis and Applications; Springer Nature: Singapore, 2023; pp. 281–322. [Google Scholar]
- Mathew, A.A.; Panonnummal, R. ‘Magnesium’-the master cation-as a drug—Possibilities and evidences. Biometals 2021, 34, 955–986. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Norton, H.J.; Wei, L.Y.; Frausto, A.; Kilburn, J. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos. Int. 2006, 17, 1022–1032. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef] [PubMed]
- Oczek, W.J.; Lee, W.R.; Davidov, M.E. Effect of magnesium sulfate on cardiovascular hemodynamics. Angiology 1977, 28, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Yurlova, M.S.; Demenyuk, V.D.; Lebedeva, L.Y.; Dudina, D.V.; Grigoryev, E.G.; Olevsky, E.A. Electric pulse consolidation: An alternative to spark plasma sintering. J. Mater. Sci. 2014, 49, 952–985. [Google Scholar] [CrossRef]
- Ramalingam, V.V.; Ramasamy, P.; Kovukkal, M.D.; Myilsamy, G. Research and development in magnesium alloys for industrial and biomedical applications: A review. Met. Mater. Int. 2020, 26, 409–430. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Kumar, R.; Kumar, R.; Goel, P.; Singh, S.; Pimenov, D.Y.; Giasin, K.; Adamczuk, K. Joining of dissimilar Al and Mg metal alloys by friction stir welding. Materials 2022, 15, 5901. [Google Scholar] [CrossRef]
- Kuhlmann, J.; Witte, F.; Heineman, W.R. Electrochemical sensing of dissolved hydrogen in aqueous solutions as a tool to monitor magnesium alloy corrosion. Electroanalysis 2013, 25, 1105–1110. [Google Scholar] [CrossRef]
- Cain, T.W.; Melia, M.A.; Fitz-Gerald, J.M.; Scully, J.R. Evaluation of the potential range for sacrificial Mg anodes for the cathodic protection of Mg alloy AZ31B-H24. Corrosion 2017, 73, 544–562. [Google Scholar] [CrossRef]
- Williams, G.; Birbilis, N.; McMurray, H.N. Controlling factors in localised corrosion morphologies observed for magnesium immersed in chloride containing electrolyte. Faraday Discuss. 2015, 180, 313–330. [Google Scholar] [CrossRef]
- Zhao, M.C.; Liu, M.; Song, G.L.; Atrens, A. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 2008, 50, 3168–3178. [Google Scholar] [CrossRef]
- Schulte, S.; Decker, D.; Nowduri, B.; Gries, M.; Christmann, A.; Meyszner, A.; Rabe, H.; Saumer, M.; Schäfer, K.H. Improving morphological and functional properties of enteric neuronal networks in vitro using a novel upside-down culture approach. Am. J. Physiol. -Gastrointest. Liver Physiol. 2024, 326, G567–G582. [Google Scholar] [CrossRef]
- Li, H.; Lu, Z.; Li, Q.; So, M.H.; Che, C.M.; Chen, R. Hydrothermal Synthesis and Properties of Controlled α-Fe2O3 Nanostructures in HEPES Solution. Chem. Asian J. 2011, 6, 2320–2331. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, C.J.; Brooks, J.R. Effects of soil PH, redox potential, and elevation on survival ofSpartina patens planted at a west Central Florida salt marsh restoration site. Wetlands 2003, 23, 845–859. [Google Scholar] [CrossRef]
- Jellesen, M.S.; Verdingovas, V.; Conseil, H.; Piotrowska, K.; Ambat, R. Corrosion in electronics: Overview of failures and countermeasures. In Proceedings of the European Corrosion Congress, Pisa, Italy, 8–12 September 2014. [Google Scholar]
- Ramya, M. Advances in Biodegradable Orthopaedic Implants: Optimizing Magnesium Alloy Corrosion Resistance for Enhanced Bone Repair. Biomed. Mater. Devices 2024, 1–19. [Google Scholar] [CrossRef]
- Beura, V.K.; Garg, P.; Joshi, V.V.; Solanki, K.N. Numerical investigation of micro-galvanic corrosion in Mg Alloys: Role of the cathodic intermetallic phase size and spatial distributions. In Magnesium Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 217–223. [Google Scholar]
- Gusieva, K.; Davies, C.H.J.; Scully, J.R.; Birbilis, N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2015, 60, 169–194. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, J.; Gosvami, N.N. Macroscale to nanoscale tribology of magnesium-based alloys: A review. Tribol. Lett. 2022, 70, 27. [Google Scholar] [CrossRef]
- Song, G.L. Corrosion electrochemistry of magnesium (Mg) and its alloys. In Corrosion of Magnesium Alloys; Woodhead Publishing: Cambridge, UK, 2011; pp. 3–65. [Google Scholar]
- Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J.M. Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron (“0”) porphyrins. Role of the addition of magnesium cations. J. Am. Chem. Soc. 1991, 113, 8455–8466. [Google Scholar] [CrossRef]
- Taub, I.A.; Roberts, W.; LaGambina, S.; Kustin, K. Mechanism of dihydrogen formation in the magnesium−water reaction. J. Phys. Chem. A 2002, 106, 8070–8078. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Ji, X.; Li, Y.; Shao, Y.; Chen, Z.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294. [Google Scholar] [CrossRef]
- Payares, L.M.A.; Pua, L.D.C.G.; Montenegro, J.C.R.; Reyes, A.F.; Mendez, V.N.P. Influence of the activation time of magnesium surfaces on the concentration of active hydroxyl groups and corrosion resistance. Heliyon 2024, 10, e34772. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Namasivayam, C. Agricutural by-product as metal adsorbent: Sorption of lead (II) from aqueous solution onto coirpith carbon. Environ. Technol. 2000, 21, 1091–1097. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Lu, X.; Chen, Q.; Zhou, Y.; Wang, F. Influence of Mg substrate on the formation mechanism and corrosion resistance of LDH films. Surf. Coat. Technol. 2024, 476, 130242. [Google Scholar] [CrossRef]
- Jing, C.; Dong, B.; Raza, A.; Zhang, T.; Zhang, Y. Corrosion inhibition of layered double hydroxides for metal-based systems. Nano Mater. Sci. 2021, 3, 47–67. [Google Scholar] [CrossRef]
- Rahim, M.I.; Eifler, R.; Rais, B.; Mueller, P.P. Alkalization is responsible for antibacterial effects of corroding magnesium. J. Biomed. Mater. Res. Part A 2015, 103, 3526–3532. [Google Scholar] [CrossRef]
- Cao, X.; Jia, Q.; Xu, C.; Zhang, Z.; Ren, C.; Yang, W.; Zhang, J. Research on dynamic corrosion behavior and the microstructure of biomedical Mg–Y–Zn–Zr–Sr in simulated body fluid solution after processing by solution treatment. Adv. Eng. Mater. 2020, 22, 1901146. [Google Scholar] [CrossRef]
- Heakal, F.E.T.; Fekry, A.M.; Fatayerji, M.Z. Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochim. Acta 2009, 54, 1545–1557. [Google Scholar] [CrossRef]
- Tang, Z. Effect of Source Water Blending on Iron and Lead Release: Thermodynamic and Statistical Modeling. Ph.D. Dissertation, University of Central Florida, Orlando, FL, USA, 2003. [Google Scholar]
- Feldman, P.D.; Weaver, H.A.; Boice, D.C.; Stern, S.A. HST Observation of Mg+ in Outburst from Comet D/Shoemaker–Levy 9. Icarus 1996, 121, 442–449. [Google Scholar] [CrossRef]
- Maltseva, A.; Shkirskiy, V.; Lefèvre, G.; Volovitch, P. Effect of pH on Mg(OH)2 film evolution on corroding Mg by in situ kinetic Raman mapping (KRM). Corros. Sci. 2019, 153, 272–282. [Google Scholar] [CrossRef]
- Zhu, C.; Hosokai, S.; Akiyama, T. Direct synthesis of MgH2 nanofibers from waste Mg. Int. J. Hydrogen Energy 2012, 37, 8379–8387. [Google Scholar] [CrossRef]
- Venezuela, J.; Liu, Q.; Zhang, M.; Zhou, Q.; Atrens, A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev. 2016, 34, 153–186. [Google Scholar] [CrossRef]
- Ghali, E.; Dietzel, W.; Kainer, K.U. General and localized corrosion of magnesium alloys: A critical review. J. Mater. Eng. Perform. 2004, 13, 7–23. [Google Scholar] [CrossRef]
- Gonzalez-Nunez, M.A. A Non-Chromate Conversion Coating for Magnesium Based Alloys and Magnesium-Based MMC’s; The University of Manchester: Manchester, UK, 1998. [Google Scholar]
- Kielbus, A.; Moskal, G. The influence of Mg17Al12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy. Int. J. Microstruct. Mater. Prop. 2009, 4, 196–206. [Google Scholar]
- Campos, M.D.R.S.; del Rosario, M. The Role of Intermetallic Phases in the Corrosion of Magnesium-Rare Earth Alloys. Ph.D. Dissertation, Technische Universität Hamburg-Harburg, Hamburg, Germany, 2016. [Google Scholar]
- Xie, Z.H.; Xu, D.; Shu, Y.; Yong, Q.; Wu, L.; Yu, G. Environmentally friendly and facile Mg(OH)2 film for electroless nickel plating on magnesium alloy for enhanced galvanic corrosion inhibition. Surf. Coat. Technol. 2024, 478, 130371. [Google Scholar] [CrossRef]
- Wetzel, D.J.; Malone, M.A.; Haasch, R.T.; Meng, Y.; Vieker, H.; Hahn, N.T.; Gölzhäuser, A.; Zuo, J.M.; Zavadil, K.R.; Gewirth, A.A.; et al. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling. ACS Appl. Mater. Interfaces 2015, 7, 18406–18414. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Grace, R.; Woods, R.M. Inhibition of the localized corrosion of Mg alloy AZ31 in chloride containing electrolyte. Corrosion 2015, 71, 184–198. [Google Scholar] [CrossRef]
- Wang, L.; Riedel, S.; Zhao-Karger, Z. Challenges and Progress in Anode-Electrolyte Interfaces for Rechargeable Divalent Metal Batteries. Adv. Energy Mater. 2024, 14, 2402157. [Google Scholar] [CrossRef]
- Shu, Y.; Peng, F.; Xie, Z.H.; Yong, Q.; Wu, L.; Xie, J.; Li, M. Well-oriented magnesium hydroxide nanoplatelets coating with high corrosion resistance and osteogenesis on magnesium alloy. J. Magnes. Alloys 2024, 12, 3292–3307. [Google Scholar] [CrossRef]
- Rapheal, G.; Kumar, S.; Scharnagl, N.; Blawert, C. Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives. Surf. Coat. Technol. 2016, 289, 150–164. [Google Scholar] [CrossRef]
- Kelly, J.J.; Reynders, A.C. A study of GaAs etching in alkaline H2O2 solutions. Appl. Surf. Sci. 1987, 29, 149–164. [Google Scholar] [CrossRef]
- Ishizaki, T.; Hieda, J.; Saito, N.; Saito, N.; Takai, O. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochim. Acta 2010, 55, 7094–7101. [Google Scholar] [CrossRef]
- Blawert, C.; Dietzel, W.; Ghali, E.; Song, G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv. Eng. Mater. 2006, 8, 511–533. [Google Scholar] [CrossRef]
- Picard, T.; Cathalifaud-Feuillade, G.; Mazet, M.; Vandensteendam, C. Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J. Environ. Monit. 2000, 2, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Makar, G.L.; Kruger, J. Corrosion studies of rapidly solidified magnesium alloys. J. Electrochem. Soc. 1990, 137, 414. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Magnesium corrosion mechanisms. Corros. Sci. Technol. 2002, 31, 103–115. [Google Scholar]
- Williams, G.; Birbilis, N.; McMurray, H.N. The source of hydrogen evolved from a magnesium anode. Electrochem. Commun. 2013, 36, 1–5. [Google Scholar] [CrossRef]
- Williams, D.F. Corrosion of implant materials. Annu. Rev. Mater. Sci. 1976, 6, 237–266. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Kubacki, G.W. Oxidative stress, inflammation, and the corrosion of metallic biomaterials: Corrosion causes biology and biology causes corrosion. In Oxidative Stress and Biomaterials; Academic Press: Cambridge, MA, USA, 2016; pp. 59–88. [Google Scholar]
- Rahimi, E.; Offoiach, R.; Baert, K.; Terryn, H.; Fedrizzi, L.; Lekka, M. Albumin protein adsorption on CoCrMo implant alloy: Impact on the corrosion behaviour at localized scale. J. Electrochem. Soc. 2022, 169, 031507. [Google Scholar] [CrossRef]
- Muresan, L.M. Corrosion protective coatings for Ti and Ti alloys used for biomedical implants. In Intelligent Coatings for Corrosion Control; Butterworth-Heinemann: Oxford, UK, 2015; pp. 585–602. [Google Scholar]
- Cadosch, D.; Chan, E.; Gautschi, O.P.; Meagher, J.; Zellweger, R.; Filgueira, L. Titanium IV ions induced human osteoclast differentiation and enhanced bone resorption in vitro. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 91, 29–36. [Google Scholar] [CrossRef]
- Prestat, M.; Thierry, D. Corrosion of titanium under simulated inflammation conditions: Clinical context and in vitro investigations. Acta Biomater. 2021, 136, 72–87. [Google Scholar] [CrossRef]
- Griffith, M.B. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, Crustacea, aquatic insects, and Mollusca. Environ. Toxicol. Chem. 2017, 36, 576–600. [Google Scholar] [CrossRef]
- Di Virgilio, A.L.; Reigosa, M.; de Mele, M.F.L. Biocompatibility of magnesium particles evaluated by in vitro cytotoxicity and genotoxicity assays. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 99, 111–119. [Google Scholar] [CrossRef]
- Speich, M.; Pineau, A.; Ballereau, F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin. Acta 2001, 312, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xin, Y.; Tian, X.; Chu, P.K. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J. Mater. Res. 2007, 22, 1806–1814. [Google Scholar] [CrossRef]
- Grillo, C.A.; Alvarez, F.; de Mele, M.A.F.L. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells. Mater. Sci. Eng. C 2016, 58, 372–380. [Google Scholar] [CrossRef]
- Ohta, S. Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 2011, 17, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Hillsley, M.V.; Frangos, J.A. Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 1994, 43, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Howell, C.; Grinthal, A.; Sunny, S.; Aizenberg, M.; Aizenberg, J. Designing liquid-infused surfaces for medical applications: A review. Adv. Mater. 2018, 30, 1802724. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Walker, J.; Shadanbaz, S.; Kirkland, N.T.; Stace, E.; Woodfield, T.; Staiger, M.P.; Dias, G.J. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1134–1141. [Google Scholar] [CrossRef]
- Antunes, R.A.; de Oliveira, M.C.L. Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation. Acta Biomater. 2012, 8, 937–962. [Google Scholar] [CrossRef]
- Seetharaman, S.; Sankaranarayanan, D.; Gupta, M. Magnesium-Based Temporary Implants: Potential, Current Status, Applications, and Challenges. J. Funct. Biomater. 2023, 14, 324. [Google Scholar] [CrossRef]
- Gastaldi, D.; Sassi, V.; Petrini, L.; Vedani, M.; Trasatti, S.; Migliavacca, F. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents. J. Mech. Behav. Biomed. Mater. 2011, 4, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Herber, V.; Okutan, B.; Antonoglou, G.; Sommer, N.G.; Payer, M. Bioresorbable magnesium-based alloys as novel biomaterials in oral bone regeneration: General review and clinical perspectives. J. Clin. Med. 2021, 10, 1842. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.C.; Qi, W.C.; Zhang, F.; Li, S.Q. In vitro corrosion of pure magnesium and AZ91 alloy—The influence of thin electrolyte layer thickness. Regen. Biomater. 2016, 3, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Willumeit-Römer, R.; Ahmad Agha, N.; Luthringer, B. Degradable magnesium implants—Assessment of the current situation. In Magnesium Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 405–411. [Google Scholar]
- Zhou, B.; Dong, C.; Li, X.; Bai, H.; Yin, B.; Li, H.; Shen, K. CO2 Corrosion of Downhole Sand Control Screen: Experiments, Model, and Application. Energies 2024, 17, 3316. [Google Scholar] [CrossRef]
- Al Bacha, S.; Aubert, I.; Devos, O.; Zakhour, M.; Nakhl, M.; Bobet, J.L. Corrosion of pure and milled Mg17Al12 in “model” seawater solution. Int. J. Hydrogen Energy 2020, 45, 15805–15813. [Google Scholar] [CrossRef]
- Kim, Y.H.; Chung, W.S.; Chun, H.H.; Lee, I.; Kim, Y.H.; Kim, D.H.; Park, H. The effect of ball milling on the ph of Mg-based metals, oxides and Zn in aqueous media. Met. Mater. Int. 2010, 16, 253–258. [Google Scholar] [CrossRef]
- Sharma, A.R.; Goyal, R. Immersion studies of Al2O3–13% TiO2 and Cr2O3 coatings on ship hull plate in simulated seawater environment in laboratory. Mater. Today Proc. 2022, 48, 946–951. [Google Scholar]
- Rocha, A.F.; Bastos, A.C.; Cardoso, J.P.; Rodrigues, F.; Fernandes, C.M.; Soares, E.; Sacramento, J.; Senos, A.M.R.; Ferreira, M.G.S. Corrosion behaviour of WC hardmetals with nickel-based binders. Corros. Sci. 2019, 147, 384–393. [Google Scholar] [CrossRef]
- Badawy, W.A.; Al-Kharafi, F.M.; El-Azab, A.S. Electrochemical behaviour and corrosion inhibition of Al, Al-6061 and Al–Cu in neutral aqueous solutions. Corros. Sci. 1999, 41, 709–727. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Naseri, M.; Gashti, S.O.; Vafaeian, S.; Keshavarz, M.K. A study on passive and electrochemical response of pure nickel in borate buffer solutions: Effect of cold deformation. J. Mater. Eng. Perform. 2018, 27, 3401–3410. [Google Scholar] [CrossRef]
- Friedrichs, O.; Sánchez-López, J.C.; López-Cartes, C.; Dornheim, M.; Klassen, T.; Bormann, R.; Fernández, A. Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2. Appl. Surf. Sci. 2006, 252, 2334–2345. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Huang, Y.; Ovri, H.; Zheludkevich, M.L.; Kainer, K.U. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim. Acta 2016, 187, 20–33. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Jayalakshmi, S.; Gupta, M. Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium. Mater. Sci. Eng. A 2011, 530, 149–160. [Google Scholar] [CrossRef]
- Srinivasan, P.B.; Blawert, C.; Höche, D. Corrosion of innovative magnesium (Mg) alloys. In Corrosion of Magnesium Alloys; Woodhead Publishing: Cambridge, UK, 2011; pp. 234–265. [Google Scholar]
- Xu, Y.; Zhou, Y.; Li, Y.; Hao, Y.; Wu, P.; Ding, Z. Magnesium-Based Hydrogen Storage Alloys: Advances, Strategies, and Future Outlook for Clean Energy Applications. Molecules 2024, 29, 2525. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Wagatsuma, K.; Suzuki, S.; Kumagai, M.; Imafuku, M.; Tashiro, H.; Kajiwara, K.; Shobu, T. Relationship between dislocations and residual stresses in cold-drawn pearlitic steel analyzed by energy-dispersive X-ray diffraction. Mater. Charact. 2013, 83, 152–160. [Google Scholar] [CrossRef]
- Graetz, K.; Paras, J.S.; Schuh, C.A. Nanostructure stability and nano-phase separation sintering in the titanium–magnesium system. Materialia 2018, 1, 89–98. [Google Scholar] [CrossRef]
- Brons, J.G.; Thompson, G.B. A comparison of grain boundary evolution during grain growth in fcc metals. Acta Mater. 2013, 61, 3936–3944. [Google Scholar] [CrossRef]
- Yu, H.; Sun, Y.; Hu, L.; Wan, Z.; Zhou, H. The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling. J. Alloys Compd. 2017, 704, 537–544. [Google Scholar] [CrossRef]
- Dobkowska, A.; Kruszewski, M.J.; Ciftci, J.; Morończyk, B.; Zgłobicka, I.; Zybała, R.; Żrodowski, Ł. Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sintering. Materials 2024, 17, 1602. [Google Scholar] [CrossRef]
- Esen, Z.; Öcal, E.B.; Akkaya, A.; Gürçay, B.; Özcan, C.; Özgümüş, B.A.; Duygulu, Ö.; Dericioğlu, A.F. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites. Corros. Sci. 2020, 166, 108470. [Google Scholar] [CrossRef]
- Agour, M.; Abdal-Hay, A.; Hassan, M.K.; Bartnikowski, M.; Ivanovski, S. Alkali-treated titanium coated with a polyurethane, magnesium and hydroxyapatite composite for bone tissue engineering. Nanomaterials 2021, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gilbert, J.L. Cytotoxic effect of galvanically coupled magnesium–titanium particles. Acta Biomater. 2016, 30, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.G.; Partridge, P.G.; Steeds, J.W.; Wilkes, D.M.J.; Ward-Close, C.M. Microstructure of vapour quenched Ti–29 wt% Mg alloy solid solution. J. Mater. Sci. 1997, 32, 3089–3099. [Google Scholar] [CrossRef]
- Tejeda-Ochoa, A.; Kametani, N.; Carreño-Gallardo, C.; Ledezma-Sillas, J.E.; Adachi, N.; Todaka, Y.; Herrera-Ramirez, J.M. Formation of a metastable fcc phase and high Mg solubility in the Ti-Mg system by mechanical alloying. Powder Technol. 2020, 374, 348–352. [Google Scholar] [CrossRef]
- Vermeulen, P.; Niessen, R.A.H.; Notten, P.H.L. Hydrogen storage in metastable MgyTi (1 − y) thin films. Electrochem. Commun. 2006, 8, 27–32. [Google Scholar] [CrossRef]
- Kovaleva, E.; Klötzli, U.; Habler, G.; Libowitzky, E. Finite lattice distortion patterns in plastically deformed zircon grains. Solid Earth 2014, 5, 1099–1122. [Google Scholar] [CrossRef]
- Song, G.; Song, S. A possible biodegradable magnesium implant material. Adv. Eng. Mater. 2007, 9, 298–302. [Google Scholar] [CrossRef]
- Cheetham, A.K.; Wilkinson, A.P. Synchrotron X-ray and Neutron Diffraction Studies in Solid-State Chemistry. Angew. Int. Ed. Engl. 1992, 31, 1557–1570. [Google Scholar] [CrossRef]
- Guo, M.; Diao, P.; Wang, X.; Cai, S. The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J. Solid State Chem. 2005, 178, 3210–3215. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Li, M.; Liu, J.; Cai, D.; Wei, Q.; Yan, C.; Shi, Y. Enhanced mechanical property with refined microstructure of a novel γ-TiAl/TiB2 metal matrix composite (MMC) processed via hot isostatic press. Mater. Des. 2018, 141, 57–66. [Google Scholar] [CrossRef]
- Lamm, B.W.; Mitchell, D.J. Chemical vapor deposition of zirconium compounds: A review. Coatings 2023, 13, 266. [Google Scholar] [CrossRef]
- Patelli, N.; Calizzi, M.; Migliori, A.; Morandi, V.; Pasquini, L. Hydrogen desorption below 150 °C in MgH2–TiH2 composite nanoparticles: Equilibrium and kinetic properties. J. Phys. Chem. C 2017, 121, 11166–11177. [Google Scholar] [CrossRef]
- Asano, K.; Enoki, H.; Akiba, E. Synthesis of HCP, FCC and BCC structure alloys in the Mg–Ti binary system by means of ball milling. J. Alloys Compd. 2009, 480, 558–563. [Google Scholar] [CrossRef]
- Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A.; Alarfaj, E.; Zahed, N.; Al-Hamedi, S. High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 2011, 863–869. [Google Scholar] [CrossRef]
- Huot, J.; Ravnsbæk, D.B.; Zhang, J.; Cuevas, F.; Latroche, M.; Jensen, T.R. Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 2013, 58, 30–75. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Al-Hazza, A.; Al-Hajji, L.A.; Ali, N.; Al-Duweesh, A.A.; Banyan, M.; Al-Ajmi, F. Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 2021, 11, 2484. [Google Scholar] [CrossRef]
- Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemeș, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E.H. Producing metal powder from machining chips using ball milling process: A review. Materials 2023, 16, 4635. [Google Scholar] [CrossRef]
- Dhiman, S.; Joshi, R.S.; Singh, S.; Gill, S.S.; Singh, H.; Kumar, R.; Kumar, V. A framework for effective and clean conversion of machining waste into metal powder feedstock for additive manufacturing. Clean. Eng. Technol. 2021, 4, 100151. [Google Scholar] [CrossRef]
- Schwanninger, M.J.C.R.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Sarwat, S.G. Contamination in wet-ball milling. Powder Metall. 2017, 60, 267–272. [Google Scholar] [CrossRef]
- Çuvalcı, O.; Varol, T.; Akçay, S.B.; Güler, O.; Çanakçı, A. Effect of ball mill time and wet pre-milling on the fabrication of Ti powders by recycling Ti machining chips by planetary milling. Powder Technol. 2023, 426, 118637. [Google Scholar] [CrossRef]
- Charlton, B.; Fisher, A.S.; Goodall, P.S.; Hinds, M.W.; Lancaster, S.; Salisbury, M. Atomic spectrometry update. Industrial analysis: Metals, chemicals and advanced materials. J. Anal. At. Spectrom. 2006, 21, 1431–1471. [Google Scholar] [CrossRef]
- Li, K.; Chen, W.; Yu, G.X.; Zhang, J.Y.; Xin, S.W.; Liu, J.X.; Wang, X.X.; Sun, J. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging. J. Mater. Sci. Technol. 2022, 120, 53–64. [Google Scholar] [CrossRef]
- Oliveira, E.V.; Costa, F.A.; Raimundo, R.A.; Lourenço, C.S.; Morales, M.A.; Mathaudhu, S.N.; Gomes, U.U. Effect of milling time in characteristics of the powder Cu-5wt.% graphite. Adv. Powder Technol. 2022, 33, 103360. [Google Scholar] [CrossRef]
- Kalisvaart, W.P.; Notten, P.H.L. Mechanical alloying and electrochemical hydrogen storage of Mg-based systems. J. Mater. Res. 2008, 23, 2179–2187. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lu, J.; Sohn, H.Y.; Fang, Z.Z. Hydrogen storage properties of the Mg–Ti–H system prepared by high-energy–high-pressure reactive milling. J. Power Sources 2008, 180, 491–497. [Google Scholar] [CrossRef]
- Fernique, R.M.T.; Savoie, S.; Gariépy, M.; Braidy, N.; Schulz, R. A simple route to produce tungsten carbide powders by high-energy ball milling and annealing. Ceram. Int. 2020, 46, 1736–1742. [Google Scholar] [CrossRef]
- Maweja, K.; Phasha, M.; van der Berg, N. Microstructure and crystal structure of an equimolar Mg–Ti alloy processed by Simoloyer high-energy ball mill. Powder Technol. 2010, 199, 256–263. [Google Scholar] [CrossRef]
- Sefer, B. Oxidation and Alpha–F Industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V. Ph.D. Dissertation, Luleåtekniskauniversitet, Norrbotten County, Sweden, 2014. [Google Scholar]
- Czerwinski, F.; Jochym, P.T.; Litynska-Dobrzynska, L. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions. Mater. Des. 2016, 92, 8–17. [Google Scholar]
- Restrepo, A.H.; Ríos, J.M.; Arango, F.; Correa, E.; Zuleta, A.A.; Valencia-Escobar, A.; Bolivar, F.J.; Castaño, J.G.; Echeverría, F.E. Characterization of titanium powders processed in n-hexane by high-energy ball milling. Int. J. Adv. Manuf. Technol. 2020, 110, 1681–1690. [Google Scholar] [CrossRef]
- Asano, K.; Enoki, H.; Akiba, E. Synthesis process of Mg–Ti BCC alloys by means of ball milling. J. Alloys Compd. 2009, 486, 115–123. [Google Scholar] [CrossRef]
- Fellah, M.; Hezil, N.; Touhami, M.Z.; AbdulSamad, M.; Obrosov, A.; Bokov, D.O.; Marchenko, E.; Montagne, A.; Alain, I.O.S.T.; Alhussein, A. Structural, tribological and antibacterial properties of (α + β) based ti-alloys for biomedical applications. J. Mater. Res. Technol. 2020, 9, 14061–14074. [Google Scholar] [CrossRef]
- Wang, Z.; Beese, A.M. Effect of chemistry on martensitic phase transformation kinetics and resulting properties of additively manufactured stainless steel. Acta Mater. 2017, 131, 410–422. [Google Scholar] [CrossRef]
- Liang, G.; Schulz, R. Synthesis of Mg-Ti alloy by mechanical alloying. J. Mater. Sci. 2003, 38, 1179–1184. [Google Scholar] [CrossRef]
- Yin, B.; Wu, Z.; Curtin, W.A. Comprehensive first-principles study of stable stacking faults in hcp metals. Acta Mater. 2017, 123, 223–234. [Google Scholar] [CrossRef]
- Wei, B.; Wu, W.; Gong, M.; Yu, S.; Ni, S.; Song, M.; Wang, J. Influence of lowering basal stacking fault energy on twinning behaviours. Acta Mater. 2023, 245, 118637. [Google Scholar] [CrossRef]
- Wen, T.; Liu, A.; Wang, R.; Zhang, L.; Han, J.; Wang, H.; Srolovitz, D.J.; Wu, Z. Modelling of dislocations, twins and crack-tips in HCP and BCC Ti. Int. J. Plast. 2023, 166, 103644. [Google Scholar] [CrossRef]
- Huang, S.J.; Muneeb, A.; Abbas, A.; Sankar, R. The effect of Mg content and milling time on the solid solubility and microstructure of Ti–Mg alloys processed by mechanical milling. J. Mater. Res. Technol. 2021, 11, 1424–1433. [Google Scholar] [CrossRef]
- Cayron, C. Shifting the shear paradigm in the crystallographic models of displacive transformations in metals and alloys. Crystals 2018, 8, 181. [Google Scholar] [CrossRef]
- Vinogradov, A.; Merson, E.; Myagkikh, P.; Linderov, M.; Brilevsky, A.; Merson, D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials 2023, 16, 1324. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, T.T.; Chu, Y.; Song, B.; Zhao, J.; Chen, X.H.; Zheng, K.H.; Pan, F.S. Effect of Ti particles on the microstructure and mechanical properties of AZ91 magnesium matrix composites. Acta Metall. Engl. Lett. 2024, 37, 513–524. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hou, Q.; Hao, Y.; Ding, Z. Ball Milling Innovations Advance Mg-Based Hydrogen Storage Materials Towards Practical Applications. Materials 2024, 17, 2510. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Wei, X.; Zheng, Y.; Yang, S.; Lu, Y.; Ding, Z.; Luo, Q.; Li, Q.; Pan, F. Thermodynamic and Kinetic Regulation for Mg-Based Hydrogen Storage Materials: Challenges, Strategies, and Perspectives. Adv. Funct. Mater. 2024, 2406639. [Google Scholar] [CrossRef]
- Abbas, A.; Hussein, M.A.; Javid, M. Microstructural characterization of AM60-TixNby nanocomposite powders processed by high-energy ball milling. Mater. Chem. Phys. 2024, 313, 128718. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M. Improved h-storage performance of novel mg-based nanocomposites prepared by high-energy ball milling: A review. Energies 2021, 14, 6400. [Google Scholar] [CrossRef]
- Jain, I.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Pundt, A.; Kirchheim, R. Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 2006, 36, 555–608. [Google Scholar] [CrossRef]
- Grosjean, M.H.; Zidoune, M.; Roué, L.; Huot, J.; Schulz, R. Effect of ball milling on the corrosion resistance of magnesium in aqueous media. Electrochim. Acta 2004, 49, 2461–2470. [Google Scholar] [CrossRef]
- Zhang, D.L. Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 2004, 49, 537–560. [Google Scholar] [CrossRef]
- Canakci, A.; Erdemir, F.; Varol, T.; Patir, A. Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: Measurement and analysis. Measurement 2013, 46, 3532–3540. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Bellon, P.; Averback, R.S.; Hales, S.J. Nanocrystalline TiAl powders synthesized by high-energy ball milling: Effects of milling parameters on yield and contamination. J. Alloys Compd. 2004, 368, 187–196. [Google Scholar] [CrossRef]
- Christidis, G.E.; Makri, P.; Perdikatsis, V. Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Miner. 2004, 39, 163–175. [Google Scholar] [CrossRef]
- Prasad, S.S.; Prasad, S.B.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research-A review. J. Magnes. Alloys 2022, 10, 1–61. [Google Scholar] [CrossRef]
- Rebuffi, L.; Troian, A.; Ciancio, R.; Carlino, E.; Amimi, A.; Leonardi, A.; Scardi, P. On the reliability of powder diffraction Line Profile Analysis of plastically deformed nanocrystalline systems. Sci. Rep. 2016, 6, 20712. [Google Scholar] [CrossRef]
- Faraji, G.; Kim, H.S.; Kashi, H.T. Severe Plastic Deformation: Methods, Processing and Properties; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Varin, R.A.; Czujko, T.; Chiu, C.; Wronski, Z. Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J. Alloys Compd. 2006, 424, 356–364. [Google Scholar] [CrossRef]
- Mohamed, F.A. A dislocation model for the minimum grain size obtainable by milling. Acta Mater. 2003, 51, 4107–4119. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Bid, S.; Gateshki, M.; Petkov, V. Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater. Chem. Phys. 2005, 93, 224–230. [Google Scholar] [CrossRef]
- Zolriasatein, A.; Shokuhfar, A. Size effect on the melting temperature depression of Al12Mg17 complex metallic alloy nanoparticles prepared by planetary ball milling. Phys. E Low-Dimens. Syst. Nanostructures 2015, 74, 101–107. [Google Scholar] [CrossRef]
- Sakher, E.; Loudjani, N.; Benchiheub, M.; Bououdina, M. Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis. J. Nanomater. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Julkapli, N.M.; Bagheri, S. Magnesium oxide as a heterogeneous catalyst support. Rev. Inorg. Chem. 2016, 36, 1–41. [Google Scholar] [CrossRef]
- Shichalin, O.; Belov, A.; Buravlev, I.; Kolodeznikov, E.; Fedorets, A.; Lembikov, A.; Zolotnikov, S.; Maiorov, V.; Nozdrachev, E.; Ruslan, A.; et al. Additive manufacturing development of construction materials for a lunar base via spark plasma sintering of volcanic rocks using in-situ resource utilization concept. Constr. Build. Mater. 2024, 442, 137553. [Google Scholar] [CrossRef]
- Quach, D.V.; Groza, J.R.; Zavaliangos, A.; Anselmi-Tamburini, U. Fundamentals and applications of field/current assisted sintering. In Sintering of Advanced Materials; Woodhead Publishing: Chambridge, UK, 2010; pp. 249–275e. [Google Scholar]
- Dorozhkin, S.V. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. J. Compos. Sci. 2024, 8, 218. [Google Scholar] [CrossRef]
- Sharma, N.; Alam, S.N.; Ray, B.C. Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites. Spark Plasma Sinter. Mater. Adv. Process. Appl. 2019, 21–59. [Google Scholar]
- Tokita, M. Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Li, L.; Xu, X.; Yang, L.; Luo, Z.; Wang, B.; Ma, S.; Fan, Y.; Huang, Z. The effects of short-term exposure to low temperatures during the booting stage on starch synthesis and yields in wheat grain. Front. Plant Sci. 2021, 12, 684784. [Google Scholar] [CrossRef]
- Li, X.; Fu, C.; Xu, W.; Zhao, X.; Xu, W.; Wang, F.; Guo, J. Hybrid low-temperature sintering processes of electro-ceramics. J. Am. Ceram. Soc. 2024, 107, 1996–2009. [Google Scholar] [CrossRef]
- Fuji, M. 3.4 Adsorption Properties and Wettability of Nanoparticle Surface. In Nanoparticle Technology Handbook; Elsevier: Amsterdam, The Netherlands, 2018; p. 121. [Google Scholar]
- Hooper, K.E.A. Rapid Processing of Dye-Sensitised Solar Cells using Near Infrared Radiative Heating; Swansea University: Swansea, UK, 2014. [Google Scholar]
- Laptev, A.M.; Bram, M.; Garbiec, D.; Räthel, J.; van der Laan, A.; Beynet, Y.; Huber, J.; Küster, M.; Cologna, M.; Guillon, O. Tooling in Spark Plasma Sintering Technology: Design, Optimization, and Application. Adv. Eng. Mater. 2024, 26, 2301391. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Wang, H. Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 2008, 53, 326–352. [Google Scholar] [CrossRef]
- Colomban, P. Chemical preparation routes and lowering the sintering temperature of ceramics. Ceramics 2020, 3, 312–339. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Dudina, D.V.; Olevsky, E.A.; Dudina, D.V. Sintering by low-voltage electric pulses (including Spark Plasma Sintering (SPS)). In Field-Assisted Sintering; Springer: Cham, Switzerland, 2018; pp. 89–191. [Google Scholar]
- Xu, Z.; Kou, S.Q.; Dong, B.X.; Zhong, X.; Yang, H.; Liu, L.; Guo, R.; Shu, S.L.; Qiu, F.; Zhang, L.C. Preparation, reaction mechanism and microwave-absorbing application of functional transition metal carbide/nitride ceramic materials. J. Mater. Res. Technol. 2024, 31, 2593–2617. [Google Scholar] [CrossRef]
- Kohut, A.; Wagner, M.; Seipenbusch, M.; Geretovszky, Z.; Galbács, G. Surface features and energy considerations related to the erosion processes of Cu and Ni electrodes in a spark discharge nanoparticle generator. J. Aerosol Sci. 2018, 119, 51–61. [Google Scholar] [CrossRef]
- Voloshko, A. Nanoparticle Formation by Means of Spark Discharge at Atmospheric Pressure. Ph.D. Dissertation, Université Jean Monnet-Saint-Etienne, Saint-Etienne, France, 2015. [Google Scholar]
- Kruis, F.E.; Fissan, H.; Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 1998, 29, 511–535. [Google Scholar] [CrossRef]
- Shi, L.; Li, Z.M.; Xie, B.H.; Wang, J.H.; Tian, C.R.; Yang, M.B. Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polym. Int. 2006, 55, 862–871. [Google Scholar] [CrossRef]
- Kohut, A. On the Plasma and Electrode Erosion Processes in Spark Discharge Nanoparticle Generators. Ph.D. Dissertation, SzegediTudomanyegyetem, Szeged, Hungary, 2017. [Google Scholar]
- Cavaliere, P.; Sadeghi, B.; Shabani, A. Spark plasma sintering: Process fundamentals. In Spark Plasma Sintering of Materials; Springer: Cham, Switzerland, 2019; pp. 3–20. [Google Scholar]
- Delaizir, G.; Bernard-Granger, G.; Monnier, J.; Grodzki, R.; Kim-Hak, O.; Szkutnik, P.D.; Soulier, M.; Saunier, S.; Goeuriot, D.; Rouleau, O.; et al. A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 2012, 47, 1954–1960. [Google Scholar] [CrossRef]
- Kuang, X.; Carotenuto, G.; Nicolais, L. A review of ceramic sintering and suggestions on reducing sintering temperatures. Adv. Perform. Mater. 1997, 4, 257–274. [Google Scholar] [CrossRef]
- Kocjan, A.; Bhootpur, N.; Iveković, A.; Eriksson, M. Rapid Densification of Nanocrystalline Zirconia: Pressureless versus Pressure-assisted Spark Plasma Sintering. Open Ceram. 2024, 100657. [Google Scholar] [CrossRef]
- Kong, C.S.; Kim, D.Y.; Lee, H.K.; Shul, Y.G.; Lee, T.H. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J. Power Sources 2002, 108, 185–191. [Google Scholar] [CrossRef]
- Nikodemski, S.; Tong, J.; O’Hayre, R. Solid-state reactive sintering mechanism for proton conducting ceramics. Solid State Ion. 2013, 253, 201–210. [Google Scholar] [CrossRef]
- Chen, F.; Yang, S.; Wu, J.; Galaviz Perez, J.A.; Shen, Q.; Schoenung, J.M.; Lavernia, E.J.; Zhang, L. Spark plasma sintering and densification mechanisms of conductive ceramics under coupled thermal/electric fields. J. Am. Ceram. Soc. 2015, 98, 732–740. [Google Scholar] [CrossRef]
- Ogunmefun, O.A.; Bayode, B.L.; Jamiru, T.; Olubambi, P.A. A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques. J. Alloys Compd. 2023, 170407. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef]
- Danninger, H.; Calderon, R.D.O.; Gierl-Mayer, C. Powder metallurgy and sintered materials. Addit. Manuf. 2017, 19. [Google Scholar]
- Mori, K.I.; Maeno, T.; Mongkolkaji, K. Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping. J. Mater. Process. Technol. 2013, 213, 508–514. [Google Scholar] [CrossRef]
- Nisar, A.; Zhang, C.; Boesl, B.; Agarwal, A. Unconventional materials processing using spark plasma sintering. Ceramics 2021, 4, 20–39. [Google Scholar] [CrossRef]
- Weston, N.S.; Derguti, F.; Tudball, A.; Jackson, M. Spark plasma sintering of commercial and development titanium alloy powders. J. Mater. Sci. 2015, 50, 4860–4878. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Klapiszewski, Ł.; Jesionowski, T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technol. 2017, 319, 373–407. [Google Scholar] [CrossRef]
- Zhao, Y.; Klammer, N.; Vidal, J. Purification strategy and effect of impurities on corrosivity of dehydrated carnallite for thermal solar applications. RSC Adv. 2019, 9, 41664–41671. [Google Scholar] [CrossRef]
- Twite, R.L.; Bierwagen, G.P. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat. 1998, 33, 91–100. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, T.; Yu, X.; Sun, X.; Yang, H. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: A review. J. Alloys Compd. 2021, 879, 160453. [Google Scholar] [CrossRef]
- Ünal, M.T.; Hashim, H.; Gökçe, H.S.; Ayough, P.; Köksal, F.U.A.T.; El-Shafie, A.; Salman, A.M. Physical and mechanical properties of pre-treated plant-based lightweight aggregate concretes: A review. Constr. Build. Mater. 2024, 444, 137728. [Google Scholar] [CrossRef]
- Vishnoi, M.; Kumar, P.; Murtaza, Q. Surface texturing techniques to enhance tribological performance: A review. Surf. Interfaces 2021, 27, 101463. [Google Scholar] [CrossRef]
- Insua, A.; Galindo-Moreno, P.; Miron, R.J.; Wang, H.L.; Monje, A. Emerging factors affecting peri-implant bone metabolism. Periodontol. 2000 2024, 94, 27–78. [Google Scholar] [CrossRef]
- Goswami, B.; Ray, A.K. Perspectives of innovations in superalloys for gas turbines. J. Metall. Mater. Sci. 2011, 53, 325–347. [Google Scholar]
- Fattah-Alhosseini, A.; Chaharmahali, R.; Rajabi, A.; Babaei, K.; Kaseem, M. Performance of PEO/polymer coatings on the biodegradability, antibacterial effect and biocompatibility of Mg-based materials. J. Funct. Biomater. 2022, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, G.; Li, J.J. Advances in implant surface modifications to improve osseointegration. Mater. Adv. 2021, 2, 6901–6927. [Google Scholar] [CrossRef]
- Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma electrolytic oxidation (PEO) process—Processing, properties, and applications. Nanomaterials 2021, 11, 1375. [Google Scholar] [CrossRef]
- Jian, S.Y.; Lin, C.F.; Tsai, T.L.; Wang, P.H.; Chen, C.H.; Lin, S.Y.; Tseng, C.C. In vivo degradation behavior of magnesium alloy for bone implants with improving biological activity, mechanical properties, and corrosion resistance. Int. J. Mol. Sci. 2023, 24, 1602. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, W.; Huang, H.; Chang, W.; Zhang, S.; Zhang, R.; Zhao, R.; Zhang, Y. Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy. Appl. Surf. Sci. 2019, 487, 581–592. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Li, H.; Zhang, S.; Zhao, R.; Li, G.; Zhang, R.; Sheng, Y.; Cao, S.; Zhao, Y.; et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy. J. Alloys Compd. 2020, 823, 153721. [Google Scholar] [CrossRef]
- Qiao, L.P.; Lou, J.; Zhang, S.F.; Qu, B.; Chang, W.H.; Zhang, R.F. The entrance mechanism of calcium and phosphorus elements into micro arc oxidation coatings developed on Ti6Al4V alloy. Surf. Coat. Technol. 2016, 285, 187–196. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Qiao, L.; Zhao, R.; Zhang, S.; Zhang, R.; Chen, C.; Li, X.; Zhao, Y. Preparation and formation mechanism of copper incorporated micro-arc oxidation coatings developed on Ti-6Al-4V alloys. Surf. Coat. Technol. 2019, 375, 74–85. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yu, Q.; Qi, Y.; Peng, Z.; Liang, J. Dual self-healing composite coating on magnesium alloys for corrosion protection. Chem. Eng. J. 2021, 424, 130551. [Google Scholar] [CrossRef]
- Wang, Y.; Lou, J.; Zeng, L.; Xiang, J.; Zhang, S.; Wang, J.; Xiong, F.; Li, C.; Zhao, Y.; Zhang, R. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys. Appl. Surf. Sci. 2017, 412, 29–36. [Google Scholar] [CrossRef]
- Veleva, L. Protective coatings and inorganic anti-corrosion pigments. In Paint and Coating Testing Manual; ASTM International: West Conshohocken, PA, USA, 2012; pp. 282–299. [Google Scholar]
- Cao, F.; Song, G.L.; Atrens, A. Corrosion and passivation of magnesium alloys. Corros. Sci. 2016, 111, 835–845. [Google Scholar] [CrossRef]
- Kostadinov, G.; Danailov, P.; Dimitrova, R.; Kandeva, M.; Penyashki, T.; Kamburov, V.; Nikolov, A.; Elenov, B. Surface Topography and Roughness Parameters of Electrospark Coatings on Titanium and Nickel Alloys. Appl. Eng. Lett. 2021, 6, 89–98. [Google Scholar] [CrossRef]
- Atrens, A.; Liu, M.; Abidin, N.I.Z. Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B 2011, 176, 1609–1636. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K.; Malik, V.; Mohammed, K.A.; Prakash, C.; Buddhi, D.; Dixit, S. Significance of alloying elements on the mechanical characteristics of Mg-based materials for biomedical applications. Crystals 2022, 12, 1138. [Google Scholar] [CrossRef]
- Peng, Q.; Li, K.; Han, Z.; Wang, E.; Xu, Z.; Liu, R.; Tian, Y. Degradable magnesium-based implant materials with anti-inflammatory activity. J. Biomed. Mater. Res. Part A 2013, 101, 1898–1906. [Google Scholar] [CrossRef]
- Rosalbino, F.; De Negri, S.; Scavino, G.; Saccone, A. Microstructure and in vitro degradation performance of Mg–Zn–Mn alloys for biomedical application. J. Biomed. Mater. Res. Part A 2013, 101, 704–711. [Google Scholar] [CrossRef]
- Li, D.; Zhang, D.; Yuan, Q.; Liu, L.; Li, H.; Xiong, L.; Guo, X.; Yan, Y.; Yu, K.; Dai, Y.; et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomater. 2022, 141, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: Polymer coatings opportunities and challenges. Coatings 2021, 11, 747. [Google Scholar] [CrossRef]
- Varpe, N.J.; Hamilton, A. Investigation into Burnishing Process to Examine Effect on Surface Integrity, Wear and Corrosion Resistance of Carbon Alloy (EN31) Steel. J. Mater. Eng. Perform. 2023, 1–15. [Google Scholar] [CrossRef]
- Khalil, K.A.; Sherif, E.S.M.; Almajid, A.A. Corrosion passivation in simulated body fluid of magnesium/hydroxyapatite nanocomposites sintered by high frequency induction heating. Int. J. Electrochem. Sci. 2011, 6, 6184–6199. [Google Scholar] [CrossRef]
- Yun, Y.; Dong, Z.; Lee, N.; Liu, Y.; Xue, D.; Guo, X.; Kuhlmann, J.; Doepke, A.; Halsall, H.B.; Heineman, W.; et al. Revolutionizing biodegradable metals. Mater. Today 2009, 12, 22–32. [Google Scholar] [CrossRef]
- Wooley, P.H.; Hallab, N.J. Wound healing, chronic inflammation, and immune responses. In Metal-on-Metal Bearings; Springer: New York, NY, USA, 2013; pp. 109–133. [Google Scholar]
- Li, H.; Wang, P.; Lin, G.; Huang, J. The role of rare earth elements in biodegradable metals: A review. Acta Biomater. 2021, 129, 33–42. [Google Scholar] [CrossRef]
- Drynda, A.; Hassel, T.; Bach, F.W.; Peuster, M. In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 649–660. [Google Scholar] [CrossRef]
- Pesode, P.; Barve, S. Additive manufacturing of magnesium alloys and its biocompatibility. Bioprinting 2023, 36, e00318. [Google Scholar] [CrossRef]
- Pastierovičová, L.; Kuchariková, L.; Tillová, E.; Chalupová, M.; Bonek, M. The Effect of Manganese on Fe-Rich Intermetallic Phases in Progressive Secondary AlSi7Mg0.6 Alloy. Appl. Eng. Lett. 2022, 7, 100–107. [Google Scholar] [CrossRef]
- Yan, Y.; Cao, H.; Kang, Y.; Yu, K.; Xiao, T.; Luo, J.; Deng, Y.; Fang, H.; Xiong, H.; Dai, Y. Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. J. Alloys Compd. 2017, 693, 1277–1289. [Google Scholar] [CrossRef]
- Kubásek, J.; Vojtěch, D.; Jablonská, E.; Pospíšilová, I.; Lipov, J.; Ruml, T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater. Sci. Eng. C 2016, 58, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, M.; Zheng, F.; Peng, L.; Ding, W. Improvement in grain refinement efficiency of Mg–Zr master alloy for magnesium alloy by friction stir processing. J. Magnes. Alloys 2014, 2, 239–244. [Google Scholar] [CrossRef]
- Feyerabend, F.; Fischer, J.; Holtz, J.; Witte, F.; Willumeit, R.; Drücker, H.; Vogt, C.; Hort, N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010, 6, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Yokel, R.A.; Hussain, S.; Garantziotis, S.; Demokritou, P.; Castranova, V.; Cassee, F.R. The yin: An adverse health perspective of nanoceria: Uptake, distribution, accumulation, and mechanisms of its toxicity. Environ. Sci. Nano 2014, 1, 406–428. [Google Scholar] [CrossRef]
- Carruthers, B.M.; Jain, A.K.; De Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.P.; et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Liu, M.; Schmutz, P.; Uggowitzer, P.J.; Song, G.; Atrens, A. The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corros. Sci. 2010, 52, 3687–3701. [Google Scholar] [CrossRef]
- Atrens, A.; Liu, M.; Abidin, N.Z.; Song, G.L. Corrosion of magnesium (Mg) alloys and metallurgical influence. In Corrosion of Magnesium Alloys; Woodhead Publishing: Cambridge, UK, 2011; pp. 117–165. [Google Scholar]
- Han, H.S.; Kim, Y.Y.; Kim, Y.C.; Cho, S.Y.; Cha, P.R.; Seok, H.K.; Yang, S.J. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Met. Mater. Int. 2012, 18, 243–247. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Zhang, J.; Sun, T.; Zhang, W.; Li, Z. Recent advance of strontium functionalized in biomaterials for bone regeneration. Bioengineering 2023, 10, 414. [Google Scholar] [CrossRef]
- Ding, Y.; Wen, C.; Hodgson, P.; Li, Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B 2014, 2, 1912–1933. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, K.; Cheng, R.; Xiang, Y.; Yuan, T.; Cheng, Y.; Sarmento, B.; Cui, W. The current status of biodegradable stent to treat benign luminal disease. Mater. Today 2017, 20, 516–529. [Google Scholar] [CrossRef]
- Hennig, B.; Meerarani, P.; Toborek, M.; McClain, C.J. Antioxidant-like properties of zinc in activated endothelial cells. J. Am. Coll. Nutr. 1999, 18, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.; Deng, J.; Li, N.; Chu, X.; Liu, Y.; Li, W.; Cai, H.; Xiu, P.; Zhang, Y.; Guan, Z.; et al. In vitro and in vivo studies on biomedical magnesium low-alloying with elements gadolinium and zinc for orthopedic implant applications. ACS Appl. Mater. Interfaces 2018, 10, 4394–4408. [Google Scholar] [CrossRef] [PubMed]
- Adzila, S.; Murad, M.; Sopyan, I. Doping metal into calcium phosphate phase for better performance of bone implant materials. Recent Pat. Mater. Sci. 2012, 5, 18–47. [Google Scholar] [CrossRef]
- Bowen, P.K.; Shearier, E.R.; Zhao, S.; Guillory, R.J.; Zhao, F.; Goldman, J.; Drelich, J.W. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-Alloys. Adv. Healthc. Mater. 2016, 5, 1121–1140. [Google Scholar] [CrossRef]
- Singla, Y.K.; Maughan, M.R.; Arora, N.; Dwivedi, D.K. Enhancing the wear resistance of iron-based alloys: A comprehensive review of alloying element effects. J. Manuf. Process. 2024, 120, 135–160. [Google Scholar] [CrossRef]
- Cadosch, D.; Al-Mushaiqri, M.S.; Gautschi, O.P.; Meagher, J.; Simmen, H.P.; Filgueira, L. Biocorrosion and uptake of titanium by human osteoclasts. J. Biomed. Mater. Res. Part A 2010, 95, 1004–1010. [Google Scholar] [CrossRef]
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58. [Google Scholar] [CrossRef]
- Visan, A.I.; Popescu-Pelin, G.; Socol, G. Degradation behavior of polymers used as coating materials for drug delivery—A basic review. Polymers 2021, 13, 1272. [Google Scholar] [CrossRef]
- Oh, Y.; Jeong, H.; Lim, S.; Hong, J. Controlled nitric oxide release using poly (lactic-co-glycolic acid) nanoparticles for anti-inflammatory effects. Biomacromolecules 2020, 21, 4972–4979. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kim, J.M.; Seo, K.S.; Jeong, Y.K.; Lee, H.B.; Khang, G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Bio-Med. Mater. Eng. 2005, 15, 279–288. [Google Scholar]
- Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials 2017, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- D’Avenio, G.; Daniele, C.; Grigioni, M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. Materials 2024, 17, 1787. [Google Scholar] [CrossRef] [PubMed]
- Torres, F.G.; Rodriguez, S.; Saavedra, A.C. Green composite materials from biopolymers reinforced with agroforestry waste. J. Polym. Environ. 2019, 27, 2651–2673. [Google Scholar] [CrossRef]
- Kohn, D.H.; Sarmadi, M.; Helman, J.I.; Krebsbach, P.H. Effects of pH on human bone marrow stromal cells in vitro: Implications for tissue engineering of bone. J. Biomed. Mater. Res. 2002, 60, 292–299. [Google Scholar] [CrossRef]
- Shirzadi, A.A.; Assadi, H.; Wallach, E.R. Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2001, 31, 609–618. [Google Scholar] [CrossRef]
- Akbarzadeh, F.Z.; Sarraf, M.; Ghomi, E.R.; Kumar, V.V.; Salehi, M.; Ramakrishna, S.; Bae, S. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Thomas, M.; Turner, S.; Jackson, M. Microstructural damage during high-speed milling of titanium alloys. Scr. Mater. 2010, 62, 250–253. [Google Scholar] [CrossRef]
- Wu, Y.H.; Li, N.; Cheng, Y.; Zheng, Y.F.; Han, Y. In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. J. Mater. Sci. Technol. 2013, 29, 545–550. [Google Scholar] [CrossRef]
- Varghese, S.; Devi, R.; Kumar, D.; Khatri, N.; Singh, G.; Kumar, V. Biomaterials in Medical Applications. Curr. Mater. Sci. Former. Recent Pat. Mater. Sci. 2024, 17, 212–239. [Google Scholar]
- Müller, N.; Weidinger, E.; Leitner, B.; Schwarz, M.J. The role of inflammation in schizophrenia. Front. Neurosci. 2015, 9, 372. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Muralidharan, V.S. Empirical and deterministic models of pitting corrosion-An overview. Corros. Rev. 1996, 14, 375–402. [Google Scholar] [CrossRef]
- Adya, N.; Alam, M.; Ravindranath, T.; Mubeen, A.; Saluja, B. Corrosion in titanium dental implants: Literature review. J. Indian Prosthodont. Soc. 2005, 5, 126–131. [Google Scholar] [CrossRef]
- Lower, S.K. Chemical reactions at an electrode, galvanic and electrolytic cells. In Electrochemistry; Simon Fraser University: Burnaby, BC, Canada, 2004; pp. 35–38. [Google Scholar]
- Bhola, R.; Chandra, C.; Alabbas, F.M.; Kundu, S.; Mishra, B.; Olson, D.L. Corrosion response of Ti6Al4V and Ti15Mo dental implant alloys in the presence of listerine oral rinse. Int. J. Corros. 2013, 2013, 739841. [Google Scholar] [CrossRef]
- Sharma, R.; Geranpayehvaghei, M.; Ejeian, F.; Razmjou, A.; Asadnia, M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021, 235, 122815. [Google Scholar] [CrossRef]
- Guo, T.; Scimeca, J.C.; Ivanovski, S.; Verron, E.; Gulati, K. Cytotoxicity, corrosion and electrochemical stability of titanium dental implants. Surf. Modif. Titan. Dent. Implant. 2023, 219–253. [Google Scholar]
- Stepanovska, J.; Matejka, R.; Rosina, J.; Bacakova, L.; Kolarova, H. Treatments for enhancing the biocompatibility of titanium implants. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2020, 164, 23–33. [Google Scholar] [CrossRef]
- Bher, A.; Mayekar, P.C.; Auras, R.A.; Schvezov, C.E. Biodegradation of biodegradable polymers in mesophilic aerobic environments. Int. J. Mol. Sci. 2022, 23, 12165. [Google Scholar] [CrossRef]
- Nakagawa, M.; Matsuya, S.; Udoh, K. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dent. Mater. J. 2002, 21, 83–92. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, W.; Cui, W.; Qin, G. Corrosion resistance and antibacterial activity of Ti-NO coatings deposited on dental titanium alloy. Surf. Coat. Technol. 2021, 419, 127296. [Google Scholar] [CrossRef]
- Wong, C.L.; Tan, Y.N.; Mohamed, A.R. A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. J. Environ. Manag. 2011, 92, 1669–1680. [Google Scholar] [CrossRef]
- Amin, M.A.; Fadlallah, S.A.; Alosaimi, G.S. In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2014, 39, 19519–19540. [Google Scholar] [CrossRef]
- Kuphasuk, C.; Oshida, Y.; Andres, C.J.; Hovijitra, S.T.; Barco, M.T.; Brown, D.T. Electrochemical corrosion of titanium and titanium-based alloys. J. Prosthet. Dent. 2001, 85, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Eliaz, N. Corrosion of metallic biomaterials: A review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, A.; Rajeswari, S.; Balossier, G.; Rebelo, A.H.S.; Ferreira, J.M.F. Corrosion aspects of metallic implants—An overview. Mater. Corros. 2008, 59, 855–869. [Google Scholar] [CrossRef]
- Royhman, D.; Dominguez-Benetton, X.; Yuan, J.C.C.; Shokuhfar, T.; Takoudis, C.; Mathew, M.T.; Sukotjo, C. The Role of Nicotine in the Corrosive Behavior of a Ti-6Al-4V Dental Implant. Clin. Implant. Dent. Relat. Res. 2015, 17, e352–e363. [Google Scholar] [CrossRef]
- Sridhar, S.; Abidi, Z.; Wilson Jr, T.G.; Valderrama, P.; Wadhwani, C.; Palmer, K.; Rodrigues, D.C. In vitro evaluation of the effects of multiple oral factors on dental implants surfaces. J. Oral Implantol. 2016, 42, 248–257. [Google Scholar] [CrossRef]
- Bin Anwar Fadzil, A.F.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Role of surface quality on biocompatibility of implants-A review. Ann. 3d Print. Med. 2022, 8, 100082. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv. Sci. Technol. 2021, 61, 102316. [Google Scholar] [CrossRef]
- Campoccia, D.; Montanaro, L.; Speziale, P.; Arciola, C.R. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 2010, 31, 6363–6377. [Google Scholar] [CrossRef]
- Badhe, R.V.; Akinfosile, O.; Bijukumar, D.; Barba, M.; Mathew, M.T. Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices–A mini review. Toxicol. Lett. 2021, 350, 213–224. [Google Scholar] [CrossRef]
- Lo Nostro, P.; Ninham, B.W. Hofmeister phenomena: An update on ion specificity in biology. Chem. Rev. 2012, 112, 2286–2322. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Ananikov, V.P. Toxicity of metal compounds: Knowledge and myths. Organometallics 2017, 36, 4071–4090. [Google Scholar] [CrossRef]
- Mombelli, A.; Hashim, D.; Cionca, N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin. Oral Implant. Res. 2018, 29, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Goriainov, V.; Cook, R.; Latham, J.M.; Dunlop, D.G.; Oreffo, R.O. Bone and metal: An orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014, 10, 4043–4057. [Google Scholar] [CrossRef]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef]
- Gao, J.C.; Qiao, L.Y.; Xin, R.L. Effect of Mg2+ concentration on biocompatibility of pure magnesium. Front. Mater. Sci. China 2010, 4, 126–131. [Google Scholar] [CrossRef]
- Pichler, K.; Kraus, T.; Martinelli, E.; Sadoghi, P.; Musumeci, G.; Uggowitzer, P.J.; Weinberg, A.M. Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts. Int. Orthop. 2014, 38, 881–889. [Google Scholar] [CrossRef]
- Thomas, J.; Chopra, V.; Sharma, A.; Panwar, V.; Kaushik, S.; Rajput, S.; Mittal, M.; Guha, R.; Chattopadhyay, N.; Ghosh, D. An injectable hydrogel having proteoglycan-like hierarchical structure supports chondrocytes delivery and chondrogenesis. Int. J. Biol. Macromol. 2021, 190, 474–486. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect. Tissue Res. 2014, 55 (Suppl. S1), 155–159. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, S.; Lin, X.; Zhang, Y.; Ren, L.; Yang, K. Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB. J. Mater. Sci. Technol. 2014, 30, 487–492. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglič, A.; Seifalian, A. Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 2014, 111, 111. [Google Scholar]
- Poinern, G.E.J.; Brundavanam, S.; Fawcett, D. Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2012, 2, 218–240. [Google Scholar] [CrossRef]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable magnesium alloys developed as bone repair materials: A review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [PubMed]
- Danişman, Ş.; Ersoy, E.; Doğan, C. Investigation of the Surface Properties of TiN-Coated Ti6Al4V Alloy. Appl. Eng. Letters 2021, 6, 175–183. [Google Scholar] [CrossRef]
- Singh, J.; Hashmi, A.W.; Ahmad, S.; Tian, Y. Critical review on biodegradable and biocompatibility magnesium alloys: Progress and prospects in bio-implant applications. Inorg. Chem. Commun. 2024, 113111. [Google Scholar] [CrossRef]
- Duraccio, D.; Mussano, F.; Faga, M.G. Biomaterials for dental implants: Current and future trends. J. Mater. Sci. 2015, 50, 4779–4812. [Google Scholar] [CrossRef]
- Altay, B.; Çoban, E. Dental Implant Corrosion Products May Accumulate in the Human Body. J. Oral Maxillofac. Surg. 2024, 82, 56–64. [Google Scholar] [CrossRef]
- Holzapfel, B.M.; Reichert, J.C.; Schantz, J.T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D.W. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 2013, 65, 581–603. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C.; Xiong, J.; Hodgson, P.; Wen, C. Cytotoxicity of titanium and titanium alloying elements. J. Dent. Res. 2010, 89, 493–497. [Google Scholar] [CrossRef]
- Steffi, C.; Shi, Z.; Kong, C.H.; Wang, W. Modulation of osteoclast interactions with orthopaedic biomaterials. J. Funct. Biomater. 2018, 9, 18. [Google Scholar] [CrossRef]
- Li, Z.; Kong, K.; Qi, W. Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochem. Biophys. Res. Commun. 2006, 343, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, G.; Safronova, T.; Golubchikov, D.; Shevtsova, O.; Rau, J.V. Resorbable Mg2+-containing phosphates for bone tissue repair. Materials 2021, 14, 4857. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Wang, Y.; Xin, Y.; Li, X.; Li, T.; Zhang, H.; Quan, L.; Li, Y.; Arya, D.K.; Rajinikanth, P.S.; et al. Bioinspired core-shell nanofiber drug-delivery system modulates osteogenic and osteoclast activity for bone tissue regeneration. Mater. Today Bio 2024, 26, 101088. [Google Scholar] [CrossRef]
- Blumenthal, N.C.; Cosma, V. Inhibition of apatite formation by titanium and vanadium ions. J. Biomed. Mater. Res. 1989, 23, 13–22. [Google Scholar] [CrossRef]
- Sayes, C.M.; Wahi, R.; Kurian, P.A.; Liu, Y.; West, J.L.; Ausman, K.D.; Warheit, D.B.; Colvin, V.L. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 2006, 92, 174–185. [Google Scholar] [CrossRef]
- Fischer, J.; Prosenc, M.H.; Wolff, M.; Hort, N.; Willumeit, R.; Feyerabend, F. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater. 2010, 6, 1813–1823. [Google Scholar] [CrossRef]
S. No. | Researcher | Results/Outcomes | References |
---|---|---|---|
1. | Zhu et al. | Calcium ions enter MAO coatings through diffusion and electromigration, with proper Na12Phy improving calcium amount. Surface morphology influences corrosion resistance, while Ca(H2PO4)2·H2O enhances calcium amount. | [230] |
2. | Shi et al. | Near-neutral solutions were used to prepare Ca-P MAO coatings on Mg alloy, with IP6 enhancing calcium content and corrosion resistance, while EDTA-CaNa2 corrosively affects magnesium alloys. | [231] |
3. | Qiao et al. | The orthogonal experiment investigated the entrance mechanism of calcium into anodic coatings through diffusion and electromigration, achieving the influencing sequences of factors on Ca and P contents. | [232] |
4. | Li et al. | Multipurpose MAO coatings on Mg alloys showing anti-bacterial properties | [233] |
5. | Liu et al. | Optimizing magnesium implant corrosion resistance using doped MAO coatings | [234] |
6. | Wang et al. | Improved MAO coatings with regulated porosity for use in biomedicine | [235] |
Material | Clinical Tolerance | Key Properties | Limitations |
---|---|---|---|
Titanium | High biocompatibility, excellent corrosion resistance | Promotes osseointegration | Higher elastic modulus than bone (stress shielding) |
Zinc | Moderate biocompatibility, biodegradable | Anti-inflammatory, antioxidant properties | Cytotoxic in high concentrations |
Calcium | Essential for bone growth; well-tolerated in low amounts | Promotes osteogenesis | High concentrations may cause rapid degradation and hydrogen evolution |
Aluminium | Good corrosion resistance in some alloys (AZ91) | Improves mechanical properties | Potential neurotoxicity |
Silver | Anti-bacterial properties, moderate biocompatibility | Reduces infections | Cytotoxic in high concentrations; short-term protection only |
Manganese | Moderately biocompatible, enhances mechanical strength | Improves corrosion resistance | Excess Mn content can cause cytotoxicity and neurotoxicity |
Rare Earth Elements (REEs) | Varying biocompatibility, generally improves corrosion resistance | Promotes long-term stability | Cytotoxicity concerns (Gd, Y), may accumulate in tissues |
Polylactic-co-glycolic acid | Excellent biocompatibility, biodegradable polymer | Controls degradation rate of Mg implants | Requires precise processing for uniform coatings |
Researcher | Material | Results | References |
---|---|---|---|
Royhman et al. | Ti-6Al-4V disk | Nicotine appeared to reduce local rusting at certain concentrations. However, it slowed the growth of passive films. | [300] |
Bhola et al. | Ti6Al4V, Ti15Mo | On Ti6Al4V alloy, listerine shows an increase in corrosion rate, while on Ti15Mo alloy, it shows a decrease in corrosion rate. | [288] |
Sridhar et al. | Large grit, acid-etched cp Ti implants | Discoloration, fracture, surface delamination, and fatigue cracks were seen on the surface, indicating surface degradation. Micro-pits are a type of surface degradation. | [301] |
Nakagawa et al. | Ti-based implant material | HF concentration exceeds 30 ppm, titanium passivation film is destroyed | [293] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.K.; Gajević, S.; Sharma, L.K.; Pradhan, R.; Miladinović, S.; Ašonja, A.; Stojanović, B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. Materials 2024, 17, 5157. https://doi.org/10.3390/ma17215157
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. Materials. 2024; 17(21):5157. https://doi.org/10.3390/ma17215157
Chicago/Turabian StyleSharma, Sachin Kumar, Sandra Gajević, Lokesh Kumar Sharma, Reshab Pradhan, Slavica Miladinović, Aleksandar Ašonja, and Blaža Stojanović. 2024. "Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants" Materials 17, no. 21: 5157. https://doi.org/10.3390/ma17215157
APA StyleSharma, S. K., Gajević, S., Sharma, L. K., Pradhan, R., Miladinović, S., Ašonja, A., & Stojanović, B. (2024). Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. Materials, 17(21), 5157. https://doi.org/10.3390/ma17215157