Effect of Mechanical Damage on Tritium Permeability Resistance of FeAl/Al2O3 Coating on 316L Stainless Steel
Abstract
:1. Introduction
2. Experimental Methods
2.1. Coating Preparation
2.2. Hydrogen Isotope Gas Drive Permeation (GDP) Test
2.3. Microstructure Inspection
2.4. Simulation of Mechanical Damage of Coating Surface
- Scratch damage: A scratch meter was used to create the linear groove-like damage on the surface;
- Debonding (or spalling) damage: A spatula was employed to create the regional loss of coating on the surface;
- Thermal shock damage: The samples were subjected to 30 thermal shock cycles, with temperatures ranging from room temperature to 450 °C. Both the heating and cooling rates exceeded 500 °C/s.
3. Results and Analysis
3.1. Hydrogen Isotope Permeation
3.2. Microstructure Examination Results
3.2.1. Intact Coating
3.2.2. Coating after Thermal Shock
3.2.3. Coating with Scratch
3.2.4. Coating with Debonding
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jean-Baptiste, P.; Baumier, D.; Fourré, E.; Dapoigny, A.; Clavel, B. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002–2005). J. Environ. Radioact. 2007, 94, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, C.; Wang, S.; Li, H. Computational analysis of ~3H source term for pressurized water reactor. At. Energy Sci. Technol. 2016, 50, 459–463. [Google Scholar]
- Ye, P.; Yang, X.Y. Sources and effects of tritium in high-temperature gas-cooled reactor closed Brayton indirect circulation. At. Energy Sci. Technol. 2009, 43, 367–370. [Google Scholar]
- Dolin, V.; Lo Frano, R.; Cancemi, S.A. Assessment of Spent Nuclear Fuel in Ukrainian Storage System: Inventory and Performance. Energies 2024, 17, 1945. [Google Scholar] [CrossRef]
- Zhang, S.T.; Huang, X.M.; Zhao, D.Y.; Hong, Z.H.; Zeng, X.X.; Cai, L.Z. Experimental study on deuterium permeation of the first wall of a new type of TiN-containing tritium barrier transition layer. Mater. Rep. 2022, 36, 38–42. [Google Scholar]
- Liu, L.; Ruan, Q.; Xiao, S.; Meng, X.; Huang, C.; Wu, Y.; Fu, R.K.; Chu, P.K. Fabrication and hydrogen permeation resistance of dense CrN coatings. Surf. Coat. Technol. 2022, 437, 128326. [Google Scholar] [CrossRef]
- Yao, Z.; Suzuki, A.; Levchuk, D.; Terai, T. Sic coating by rf sputtering as tritium permeation barrier for fusion blanket. Fusion Sci. Technol. 2007, 52, 865–869. [Google Scholar] [CrossRef]
- Di, J.; Wang, Y.; Zhang, H.; Xue, L.H.; Yan, Y.W. Preparation of Cr2O3 Tritium Inhibitor Coatings by Electroplating and High Temperature Oxidation. J. Rare Met. Mater. Eng. 2019, 48, 656–661. [Google Scholar]
- Chikada, T.; Suzuki, A.; Terai, T.; Muroga, T.; Koch, F. Compatibility of erbium oxide coating with liquid lithium-lead alloy and corrosion protection effect of iron layer. Fusion Eng. Des. 2013, 88, 640–643. [Google Scholar] [CrossRef]
- Feng, J.; Chen, M.Y.; Tong, H.H.; Jin, F.Y.; Dan, M.; Xu, Z.J.; Shen, L.R.; Zhang, G.K. Preparation of Alumina Coatings as Tritium Permeation Barrier by a Composite Treatment of Low Temperature Plasma. Rare Met. Mater. Eng. 2017, 46, 2837–2841. [Google Scholar]
- Yang, F.L.; Xiang, X.; Lu, G.D.; Zhang, G.K.; Tang, T.; Shi, Y.; Wang, X.L. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers. J. Nucl. Mater. 2016, 478, 144–148. [Google Scholar] [CrossRef]
- Wang, L.L.; Wu, Y.Y.; Luo, X.F.; Ning, Z.E.; Wang, J.H.; Yang, J.J.; Feng, Y.J.; Liao, J.L.; Yang, Y.Y.; Feng, K.M.; et al. Effects of Ar/O2 ratio on preparation and properties of multilayer Cr2O3/α-Al2O3 tritium permeation barrier. Surf. Coat. Technol. 2018, 339, 132–138. [Google Scholar] [CrossRef]
- Zhang, G.K. Theoretical Study on Hydrogen Behavior in α-Al2O3 Tritium Inhibitor Coating Materials. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2014. [Google Scholar]
- Hu, L.; Zhang, G.K.; Tang, T. Research Progress on the Formation Mechanism and Low Temperature Preparation Technology of Al2O3 Thin Films on FeAl/Al2O3 Tritium Barrier Coatings. Mater. Mech. Eng. 2019, 43, 1–7. [Google Scholar]
- Shao, Z.M. Preparation and Properties of Fe-Al/Al2O3 Tritium Inhibitor Coating. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2023. [Google Scholar]
- Wang, W.X. Preparation of Anti-Tritium Permeable Coating Layer of Al2O3/FeAl on the Surface of CLAM Steel. Ph.D. Thesis, China Academy of Engineering Physics, Chengdu, China, 2016. [Google Scholar]
- Song, B.; Dong, S.J.; Liao, H.L.; Coddet, C. Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying. Surf. Coat. Technol. 2015, 268, 24–29. [Google Scholar] [CrossRef]
- Magnee, A.; Offergeld, E.; Leroy, M.; Lefort, A. Fe-AI Intermetallic Coating Applications to Thermal Energy Conversion Advanced Systems. In Proceedings of the International Thermal Spray Conference (ITSC 1998), Nice, France, 25–28 May 1998. [Google Scholar]
- Tortorelli, P.F.; DeVan, J.H. Behavior of Iron Aluminides in Oxidizing and Oxidizing/Sulfldizing Environments; Elsevier: Amsterdam, The Netherlands, 1992; pp. 573–577. [Google Scholar]
- Majumdar, S.; Paul, B.; Chakraborty, P.; Kishor, J.; Kain, V.; Dey, G.K. Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop. J. Nucl. Mater. 2017, 486, 60–65. [Google Scholar] [CrossRef]
- Ji, G.; Elkedim, O.; Grosdidier, T. Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings. Surf. Coat. Technol. 2005, 190, 406–416. [Google Scholar] [CrossRef]
- Knowles, S.D.; Senor, D.J.; Forbes, S.V.; Johnson, R.N.; Hollenberg, G.W. Method of Coating the Interior Surface of Hollow Objects with a Diffusion Coating. U.S. Patent 6,866,886, 15 March 2005. [Google Scholar]
- Huang, J.; Xie, H.; Luo, L.M.; Zan, X.; Liu, D.G.; Wu, Y.C. Preparation and properties of FeAl/Al2O3composite tritium permeation barrier coating on surface of 316L stainless steel. Surf. Coat. Technol. 2020, 383, 125282. [Google Scholar] [CrossRef]
- Shao, Z.M.; Yang, H.; Zhang, S.W.; Liu, W.P.; Xiao, Z.Q.; Zheng, M.J. A dense Fe-Al/Al2O3 coating as tritium permeation barrier on CLAM steel by hot-dipping aluminizing. Surf. Coat. Technol. 2022, 440, 128491. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Abu Al-Rub, R.K.; Palazotto, A.N. Non-local coupling of viscoplasticity and anisotropic viscodamage for impact problems using the gradient theory. Arch. Mech. 2003, 55, 39–89. [Google Scholar]
- Glema, A.; Łodygowski, T.; Sumelka, W. Nowacki’s double shear test in the framework of the anisotropic thermo-elasto-viscoplastic material model. J. Theor. Appl. Mech. 2010, 48, 973–1001. [Google Scholar]
- Zhong, Y.; Zhu, C.; Zhang, W.; Yang, J.; Deng, J.; Li, Q.; Liu, H.; Zhou, Y.; Yue, H.; Qiu, X.; et al. Exploring the application potential of FexAl/Al2O3 coatings for lead-cooled fast reactors. J. Nucl. Mater. 2024, 588, 154807. [Google Scholar] [CrossRef]
Temperature/°C | Permeability (mol/m/s/Pa0.5) | ||||
---|---|---|---|---|---|
Scratch 31.9% | Scratch 21.5% | Debonding 2.8% | Debonding 8.6% | Thermal Shock | |
500 | 4.0 × 10−12 | 2.9 × 10−12 | 9.1 × 10−13 | 6.9 × 10−13 | 4.0 × 10−13 |
450 | 1.9 × 10−12 | 1.6 × 10−12 | 4.9 × 10−13 | 4.3 × 10−13 | 2.6 × 10−13 |
400 | 8.3 × 10−13 | 7.4 × 10−13 | 2.7 × 10−13 | 2.3 × 10−13 | 1.3 × 10−13 |
Temperature/°C | Permeability (mol/m/s/Pa0.5) | ||||
---|---|---|---|---|---|
Scratch 31.9% | Scratch 21.5% | Debonding 2.8% | Debonding 8.6% | Thermal Shock | |
500 | 4.6 × 10−12 | 3.6 × 10−12 | 1.6 × 10−12 | 1.1 × 10−12 | 7.2 × 10−13 |
450 | 2.2 × 10−12 | 1.7 × 10−12 | 6.7 × 10−13 | 4.8 × 10−13 | 3.5 × 10−13 |
400 | 1.3 × 10−12 | 8.4 × 10−13 | 44 × 10−13 | 2.8 × 10−13 | 2.0 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Nie, L.; Meng, F.; Hu, H.; Zong, S.; Hong, Z.; Wang, L.; Li, C.; Ren, Q.; Hu, J. Effect of Mechanical Damage on Tritium Permeability Resistance of FeAl/Al2O3 Coating on 316L Stainless Steel. Materials 2024, 17, 5195. https://doi.org/10.3390/ma17215195
Li Y, Nie L, Meng F, Hu H, Zong S, Hong Z, Wang L, Li C, Ren Q, Hu J. Effect of Mechanical Damage on Tritium Permeability Resistance of FeAl/Al2O3 Coating on 316L Stainless Steel. Materials. 2024; 17(21):5195. https://doi.org/10.3390/ma17215195
Chicago/Turabian StyleLi, Yinghong, Lihong Nie, Fantao Meng, Haixiang Hu, Sifan Zong, Zhihao Hong, Long Wang, Changzheng Li, Qisen Ren, and Jing Hu. 2024. "Effect of Mechanical Damage on Tritium Permeability Resistance of FeAl/Al2O3 Coating on 316L Stainless Steel" Materials 17, no. 21: 5195. https://doi.org/10.3390/ma17215195
APA StyleLi, Y., Nie, L., Meng, F., Hu, H., Zong, S., Hong, Z., Wang, L., Li, C., Ren, Q., & Hu, J. (2024). Effect of Mechanical Damage on Tritium Permeability Resistance of FeAl/Al2O3 Coating on 316L Stainless Steel. Materials, 17(21), 5195. https://doi.org/10.3390/ma17215195