Properties and Factors of CsxWO3 Slurry for Building Glass with High Visible Light Transmission and Outstanding Near-Infrared Insulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of CWO
2.2.2. Preparation of Dispersion
2.2.3. Characterizations
2.2.4. Model
3. Results and Discussion
3.1. Characterization of CWO Powder and Dispersion
3.1.1. XRD
3.1.2. XPS
3.1.3. FT-IR
3.1.4. SEM
3.1.5. TG-DSC
3.1.6. Size Distribution and Water Dispersion Spectra
3.2. Influence of Dispersion Process
3.2.1. Ball Size
3.2.2. Milling Time and Solid Content
3.3. Influence of Dispersant
3.3.1. Dispersant Type
3.3.2. Dispersant Dosage
3.4. Simulation of CWO Dispersion
4. Conclusions
- CWO1, obtained by the modified solid-phase method, is more suitable for aqueous dispersion, while CWO2 is suitable for ethanol with weak polarity.
- For CWO1, which has coarse primary particles and light agglomeration, the size of the grinding ball significantly affects the dispersion effect. Using a 0.1 mm grinding ball to disperse for 3 h can greatly improve the performance of the dispersion with a 4% solid content, achieving an average particle size of 105 nm. In contrast, for CWO2, which has fine primary particles but a serious agglomeration tendency, the effect of mechanical ball milling on particle dispersion is not significant enough, and the average particle size can only reach 190 nm.
- When combined with sodium polyacrylate at 20% of the powder mass, CWO1 showed the best performance, maintaining 87% transmittance at 550 nm (T550nm) and 18% transmittance at 1100 nm (T1100nm). Similarly, the effect of CWO2 combined with 50% PVB powder mass was significantly improved, maintaining 73% T 550nm and 8% T1100nm.
- During the experiment, it was found that although both CWO1 and CWO2 dispersions showed excellent visible light transmittance and near-infrared shielding properties, the dispersion prepared with CWO1 had higher shielding properties in the 650–950 nm range. Analysis revealed that these subtle differences are mainly due to the difference of CWO shape and size distribution after dispersion, which is supported by simulation calculation based on the Drude–Lorenz model and the finite element method (FEM).
5. Future Works
- CsxWO3 is a water-based functional slurry with high visible light transmittance and high infrared shielding. The water-based slurry can be applied to architectural glass through processes such as casting, coating, and spraying. Architectural glass containing CsxWO3 slurry has good lighting. At the same time, due to the high infrared shielding of CsxWO3 slurry architectural glass, the indoor temperature of the building maintains a certain stability, reducing the energy consumption of the building. At present, there is little comprehensive application research on tungsten bronze coatings, films, and other composite materials, and there are still gaps in some areas, for example, the performance research of tungsten bronze laminated glass; whether and how tungsten bronze materials can fully exert their excellent performance in multi-component coating and film material systems; and how new tungsten bronze energy-saving glass can be used in conjunction with traditional energy-saving glass, etc. These issues deserve further research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moretti, E.; Belloni, E.; Merli, F.; Zinzi, M.; Buratti, C. Laboratory and pilot scale characterization of granular aerogel glazing systems. Energy Build. 2019, 202, 109349. [Google Scholar] [CrossRef]
- Jaoua-Bahloul, H.; Varieras, D.; Beyou, E. Solar spectral properties of PVC plastisol-based films filled with various fillers: Filled PVC plastisols. J. Vinyl Addit. Technol. 2018, 25, E188–E194. [Google Scholar] [CrossRef]
- Li, G.; Guo, C.; Yan, M.; Liu, S. CsxWO3 Nanorods: Realization of Full-spectrum-responsive Photocatalytic Activities from UV, Visible to Near-Infrared Region. Appl. Catal. B Environ. 2015, 183, 142–148. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Zhang, G.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y.; Xie, Y. Photocatalytic CO2 Conversion of M0.33WO3 Directly from the Air with High Selectivity: Insight into Full Spectrum-Induced Reaction Mechanism. J. Am. Chem. Soc. 2019, 141, 5267–5274. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, Y.; Yang, X.; Yao, Z.; Zhen, Z.; Xue, J.; Wei, Y.; Niu, K. Preparation and characterization of PVB/CsxWO3/SiO2 (aerogel) nanocomposites for laminated glass with high visible light transmission and excellent thermal insulation. J. Mater. Sci. 2024, 59, 6322–6333. [Google Scholar] [CrossRef]
- Yang, G.; Liang, H.; Zhou, D.; Xu, Y.; Takáts, V.; Shpotyuk, Y.; He, X.; Gao, Y. Effect of micro-crystallization on near-infrared shielding performance of Li0.09K0.23WO3 doped glass for energy-saving window. Ceram. Int. 2024, 50, 14625–14630. [Google Scholar] [CrossRef]
- Yang, G.; Liu, Y.; Yang, C.; Xia, F.; Hu, D.; Wu, Y.; Yaroslav, S.; Takáts, V.; He, X. Near-infrared-shielding energy-saving borosilicate glass-ceramic window materials based on doping of defective tantalum tungsten oxide (Ta0.3W0.7O2.85) nanocrystals. Ceram. Int. 2022, 49, 403–412. [Google Scholar] [CrossRef]
- Lin, S.; Wang, H.; Zhang, X.; Wang, D.; Di, Z.; Song, J.; Liu, Z.; Huang, Y.; Huang, K.; Tao, N.; et al. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 2019, 62, 111–116. [Google Scholar] [CrossRef]
- Takeda, H.; Ohtsuka, Y.; Adachi, K.; Kuno, H. Coating Solution for a Heat-Ray Shielding Film and a Process for Forming a Heat-Ray Shielding Film by Employing the Same. U.S. Patent US5840364A, 24 November 1998. [Google Scholar]
- Yuan, Y.; Zhang, L.; Hu, L.; Wang, Y.; Min, G. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites. J. Solid State Chem. 2011, 184, 3364–3367. [Google Scholar] [CrossRef]
- Purvis, K.; Lu, G.; Schwartz, J.; Bernasek, S. Surface Characterization and Modification of Indium Tin Oxide in Ultrahigh Vacuum. J. Am. Chem. Soc. 2000, 122, 1808–1809. [Google Scholar] [CrossRef]
- Takeda, H.; Kuno, H.; Adachi, K. Solar Control Dispersions and Coatings with Rare-Earth Hexaboride Nanoparticles. J. Am. Ceram. Soc. 2008, 91, 2897–2902. [Google Scholar] [CrossRef]
- Chen, L.; Lam, S.; Zeng, Q.; Amal, R.; Yu, A. Effect of Cation Intercalation on the Growth of Hexagonal WO3 Nanorods. J. Phys. Chem. C 2012, 116, 11722–11727. [Google Scholar] [CrossRef]
- Zivkovic, O.; Yan, C.; Wagner, M. Tetragonal alkali metal tungsten bronze and hexagonal tungstate nanorods synthesized by alkalide reduction. J. Mater. Chem. 2009, 19, 6029–6033. [Google Scholar] [CrossRef]
- Sekikawa, T.; Ōno, Y. Phase diagram of the three-orbital Hubbard-Holstein model simulating Superconducting Tungsten Bronze AxWO3. J. Phys. Conf. Ser. 2022, 2164, 012012. [Google Scholar] [CrossRef]
- Song, K.; Weng, S.; Zhou, J.; Jiang, R.; Cao, H.; Zhang, H. Tunable Optical Constants of Aluminum Tungsten Bronzes in Electrochromic Tungsten Oxide Thin Films. J. Phys. Chem. C 2023, 127, 18036–18042. [Google Scholar] [CrossRef]
- You, Y.; Tian, M.; Chai, Q.; Tong, Y.; Liang, P.; Wu, D.; Chao, X.; Yang, Z.; Wei, L. Superior Energy Storage Performance Achieved in Tungsten Bronze Sbcn-Based Ceramics Through Tape-Casting. J. Alloys Compd. 2024, 1002, 175469. [Google Scholar] [CrossRef]
- Zhu, Z.; Jin, Z.; Jiang, C.; Wu, S.; Hu, C.; Liu, L.; Fang, L.; Cheng, Z. Ferroelectric field enhanced tribocatalytic hydrogen production and RhB dye degradation by tungsten bronze ferroelectrics. Nanoscale 2024, 16, 10597–10606. [Google Scholar] [CrossRef]
- Takeda, H.; Adachi, K. Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions. J. Am. Ceram. Soc. 2007, 90, 4059–4061. [Google Scholar] [CrossRef]
- Guo, J.D.; Reis, K.P.; Whittingham, M.S. Open structure tungstates: Synthesis, reactivity and ionic mobility. Solid State Ion. 1992, 53, 305–314. [Google Scholar] [CrossRef]
- Cui, G.; Wang, W.; Ma, M.; Xie, J.; Shi, X.; Deng, N.; Xin, J.; Tang, B. IR-driven photocatalytic water splitting with WO2–NaxWO3 hybrid conductor material. Nano Lett. 2015, 15, 7199–7203. [Google Scholar] [CrossRef]
- Dickens, P.G.; Whittingham, M.S. The tungsten bronzes and related compounds. Q. Rev. Chem. Soc. 1968, 22, 30–44. [Google Scholar] [CrossRef]
- Moon, K.; Cho, J.J.; Lee, Y.B.; Yoo, P.J.; Bark, C.W.; Park, J. Near infrared shielding properties of quaternary tungsten bronze nanoparticle Na0.11Cs0.22WO3. Bull. Korean Chem. Soc. 2013, 34, 731. [Google Scholar] [CrossRef]
- Choi, J.; Moon, K.; Kang, I.; Kim, S.; Yoo, P.J.; Oh, K.W.; Park, J. Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine. Chem. Eng. J. 2015, 281, 236–242. [Google Scholar] [CrossRef]
- Mattox, T.M.; Bergerud, A.; Agrawal, A.; Milliron, D.J. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater. 2014, 26, 1779–1784. [Google Scholar] [CrossRef]
- Kim, J.; Agrawal, A.; Krieg, F.; Bergerud, A.; Milliron, D.J. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett. 2016, 16, 3879–3884. [Google Scholar] [CrossRef]
- Liu, G.; Wang, S.; Nie, Y.; Sun, X.; Zhang, Y.; Tang, Y. Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior. J. Mater. Chem. A 2013, 1, 10120–10129. [Google Scholar] [CrossRef]
- Tegg, L.; Haberfehlner, G.; Kothleitner, G.; Kisi, E.; Keast, V.J. Crystal structures, electrical properties, and electron energy-loss spectroscopy of the sodium and potassium tetragonal tungsten bronzes. J. Alloys Compd. 2021, 868, 159200. [Google Scholar] [CrossRef]
- Sato, Y.K.; Terauchi, M.; Adachi, K. Anisotropic plasmons due to carrier electrons in Cs-doped hexagonal WO3 studied by momentum transfer resolved electron energy-loss spectroscopy. J. Appl. Phys. 2019, 126, 18. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Q.; Shi, F.; Liu, S.; Luo, J.; Bao, L.; Feng, X. Dispersion of Cs0.33WO3 particles for preparing its coatings with higher near infrared shielding properties. Appl. Surf. Sci. 2014, 309, 175–180. [Google Scholar] [CrossRef]
- Hussain, A.; Gruehn, R.; Rüscher, C. Crystal growth of alkali metal tungsten brozes MxWO3 (M = K, Rb, Cs), and their optical properties. J. Alloys Compd. 1997, 246, 51–61. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, Y.; Lu, L.; Yang, H. Oxygen defect-induced small polaron transfer for controlling the near-infrared absorption coefficient of hexagonal cesium tungsten bronze nanocrystals. Ceram. Int. 2022, 48, 6942–6947. [Google Scholar] [CrossRef]
- Gao, T.; Jelle, B.P. Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods. J. Phys. Chem. C 2013, 117, 13753–13761. [Google Scholar] [CrossRef]
- Li, X.; Mu, W.; Xie, X.; Liu, B.; Tang, H.; Zhou, G.; Wei, H.; Jian, Y.; Luo, S. Strontium adsorption on tantalum-doped hexagonal tungsten oxide. J. Hazard. Mater. 2014, 264, 386–394. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Douvas, A.M.; Argitis, P.; Kennou, S.; Sygellou, L.; Papadimitropoulos, G.; Kostis, I.; Stathopoulos, N.A. Reduction of Tungsten Oxide: A Path Towards Dual Functionality Utilization for Efficient Anode and Cathode Interfacial Layers in Organic Light-Emitting Diodes. Adv. Funct. Mater. 2011, 21, 1489–1497. [Google Scholar] [CrossRef]
- Castro, F.J.; Tonus, F.; Bobet, J.-L.; Urretavizcaya, G. Synthesis of hydrogen tungsten bronzes HxWO3 by reactive mechanical milling of hexagonal WO3. J. Alloys Compd. 2010, 495, 537–540. [Google Scholar] [CrossRef]
Name | Pureness | Source | Note |
---|---|---|---|
A4100 | Tech | Jinan Puluosi New Materials Co., Ltd. (Jinan, China) | Dispersant 1 |
TEGO-735w | Tech | Shenzhen Longdi Chemical Co., Ltd. (Shenzhen, China) | Dispersant 2 |
PVP | AR | Aladdin Scientific Corp. (Riverside, CA, USA) | Dispersant 3 |
PVB | AR | Weng Jiang Reagent Co., Ltd. (Weng Jiang, China) | Dispersant 4 |
PVA | AR | Rhawn Reagent (Shanghai, China) | Dispersant 5 |
Sodium citrate | AR | Xiya Reagent (Jinan, China) | Dispersant 6 |
Win4196 | Tech | Shandong Winbos New Materials Co., Ltd. (Weifang, China) | Dispersant 7 |
Material Parameters | Longitudinal | Transverse |
---|---|---|
High frequency dielectric constant | 6.3 | 5.8 |
Plasma frequency (rad/s) | 7.0844 × 1015 | 4.8316 × 1015 |
Scattering constant (rad/s) | 3.2964 × 1014 | 5.0859 × 1014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Mu, Y.; Yang, X.; Yao, Z.; Peng, S.; Shi, J.; Tian, W.; Wei, Y.; Niu, K. Properties and Factors of CsxWO3 Slurry for Building Glass with High Visible Light Transmission and Outstanding Near-Infrared Insulation. Materials 2024, 17, 5196. https://doi.org/10.3390/ma17215196
Liu Y, Mu Y, Yang X, Yao Z, Peng S, Shi J, Tian W, Wei Y, Niu K. Properties and Factors of CsxWO3 Slurry for Building Glass with High Visible Light Transmission and Outstanding Near-Infrared Insulation. Materials. 2024; 17(21):5196. https://doi.org/10.3390/ma17215196
Chicago/Turabian StyleLiu, Yunpeng, Yuqi Mu, Xihao Yang, Zhiyu Yao, Shaofeng Peng, Jincheng Shi, Wendi Tian, Yen Wei, and Kangmin Niu. 2024. "Properties and Factors of CsxWO3 Slurry for Building Glass with High Visible Light Transmission and Outstanding Near-Infrared Insulation" Materials 17, no. 21: 5196. https://doi.org/10.3390/ma17215196
APA StyleLiu, Y., Mu, Y., Yang, X., Yao, Z., Peng, S., Shi, J., Tian, W., Wei, Y., & Niu, K. (2024). Properties and Factors of CsxWO3 Slurry for Building Glass with High Visible Light Transmission and Outstanding Near-Infrared Insulation. Materials, 17(21), 5196. https://doi.org/10.3390/ma17215196