The Gypsum Influence on the Formation of Secondary Phases During Autoclave Leaching of Gold-Bearing Concentrates and the Silver Recovery Using Cyanidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis and Method
2.2. Materials and Reagents
2.3. Apparatuses
2.4. Stability Evaluation
2.5. Cyanidation of Pressure Oxidation Cakes
3. Results and Discussion
3.1. Influence of Gypsum Addition on the Behavior of Iron and Arsenic During Pressure Oxidation Leaching, and Silver Recovery During Subsequent Cyanidation of the Residue
3.2. Analysis of the Resulting Precipitation
3.3. Study of the Solubility and Toxicity of the Resulting Ferric Arsenate Precipitates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yang, H.; Zhao, R.; Tong, L.; Chen, Q. Mineralogical characteristics and recovery process optimization analysis of a refractory gold ore with gold particles mainly encapsulated in pyrite and Arsenopyrite. Geochemistry 2023, 83, 125941. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Wang, J.; Liu, X.; Lyu, X. A review of gold extraction using alternatives to cyanide: Focus on current status and future prospects of the novel eco-friendly synthetic gold lixiviants. Miner. Eng. 2022, 176, 107336. [Google Scholar] [CrossRef]
- Abdelnasser, A.; Kumral, M. The nature of gold-bearing fluids in Atud gold deposit. central eastern desert, Egypt. Int. Geol. Rev. 2017, 59, 1845–1860. [Google Scholar] [CrossRef]
- Nan, X.Y.; Cai, X.; Kong, J. Pretreatment process on refractory gold ores with As. ISIJ Int. 2014, 54, 543–547. [Google Scholar] [CrossRef]
- Qin, H.; Guo, X.; Tian, Q.; Yu, D.; Zhang, L. Recovery of gold from sulfide refractory gold ore: Oxidation roasting pretreatment and gold extraction. Miner. Eng. 2021, 164, 106822. [Google Scholar] [CrossRef]
- Chryssoulis, S.L.; McMullen, J. Mineralogical investigation of gold ores. Dev. Miner. Process. 2005, 15, 21–72. [Google Scholar]
- Rogozhnikov, D.A.; Mamyachenkov, S.V.; Karelov, S.V.; Anisimova, O.S. Nitric acid leaching of polymetallic middlings of concentration. Russ. J. Non-Ferr. Met. 2013, 54, 440–442. [Google Scholar] [CrossRef]
- Rogozhnikov, D.A.; Rusalev, R.E.; Dizer, O.A.; Naboychenko, S.S. Nitric acid loosening of rebellious sulphide concentrates containing precious metals. Tsvetnye Met. 2018, 16, 38–44. [Google Scholar] [CrossRef]
- Karimov, K.; Shoppert, A.; Rogozhnikov, D.; Kuzas, E.; Zakhar’yan, S.; Naboichenko, S. Effect of preliminary alkali desilication on ammonia pressure leaching of low-grade copper–silver concentrate. Metals 2020, 10, 812. [Google Scholar] [CrossRef]
- McMullen, J.; Thomas, G. Gold roasting, autoclaving or bio-oxidation process selection based on benchscale and pilot plant test work and costs. In Mineral Processing Plant Design, Practice, and Control at Vancouver; SME: Selangor, Malaysia, 2002; pp. 211–250. [Google Scholar]
- Thomas, G. Pressure oxidation overview. Dev. Miner. Process. 2005, 15, 346–369. [Google Scholar]
- Papangelakis, V.; Demopoulos, G. Acid pressure oxidation of pyrite: Reaction kinetics. Hydrometallurgy 1991, 26, 309–325. [Google Scholar] [CrossRef]
- Papangelakis, V.; Demopoulos, G. Acid pressure oxidation of arsenopyrite: Part I, Reaction Chemistry. Can. J. Metall. Mater. Sci. 1990, 29, 1–12. [Google Scholar] [CrossRef]
- Dizer, O.; Rogozhnikov, D.; Karimov, K.; Kuzas, E.; Suntsov, A. Nitric Acid Dissolution of Tennantite, Chalcopyrite and Sphalerite in the Presence of Fe (III) Ions and FeS2. Materials 2022, 15, 1545. [Google Scholar] [CrossRef] [PubMed]
- Rogozhnikov, D.A.; Karelov, S.V.; Mamyachenkov, S.V.; Anisimova, O.S. Technology for the hydrometallurgical processing of a complex multicomponent sulfide-based raw material. Metallurgist 2013, 57, 247–250. [Google Scholar] [CrossRef]
- Collins, M.; Buban, K.; Faris, M.; Masters, I.; Antonio, M. Design of the AGA Brazil Refractory Gold Pressure Oxidation Plant; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2012; pp. 3–14. [Google Scholar]
- Fleming, C.; Geldart, J.; Blatter, P.; Cousin, P.; Robitalille, J. Flowsheet development for Agnico Eagles refractory gold Kittila project in Finland. In Hydrometallurgy 2008: Proceedings of the 6th International Symposium; SME: Southfield, MI, USA, 2008; pp. 404–413. [Google Scholar]
- Zavalyuev, A.; Rogozhnikov, D.; Fomenko, I.; Lyakh, S. Conditioning of POX slurry and its effect on pressure oxidation performance of refractory gold sulphide ore. Tsvetnye Met. 2023, 1, 44–50. [Google Scholar] [CrossRef]
- Du Plessis, C.A.; Lambert, H.; Gärtner, R.S.; Ingram, K.; Slabbert, W.; Eksteen, J.J. Lime use in gold processing—A review. Miner. Eng. 2021, 174, 107231. [Google Scholar] [CrossRef]
- Islas, H.; Flores, M.; Juárez, J.; Reyes, M.; Blanco, A.; Gutiérrez, E.; Aguilar-Carrillo, J.; Nolasco, M.; Rodríguez, I.; Reyes, I. Silver leaching from jarosite-type compounds using cyanide and non-cyanide lixiviants: A kinetic approach. Miner. Eng. 2021, 174, 107250. [Google Scholar] [CrossRef]
- Chan, T.; Collins, M.; Dennett, J.; Stiksma, J.; Ji, J.; Kalanchey, R.; Berezowsky, R. Pilot plant pressure oxidation of refractory gold-silver concentrate from Eldorado Gold Corporation’s Certej Project in Romania. Can. Metall. Q. 2015, 54, 252–260. [Google Scholar] [CrossRef]
- Simmons, G.L.; Gathje, J.C. High temperature POX of precious/base metal concentrates from Newmont’s Phoenix Project, using controlled precipitation of sulphate species to enhance silver recovery. In Pressure Hydrometallurgy 2004, Proceedings of the International Conference on the Use of Pressure Vessels for Metal Extraction and Recovery, Proceedings of the 34th Annual Hydrometalluigy Meeting of CIM, Banff, AB, Canada, 23–27 October 2004; CIM: Montreal, QC, Canada, 2004; pp. 735–750. [Google Scholar]
- Gunaratnam, A.A.; Dreisinger, D.B.; Choi, Y. Characterisation of solid phases in the iron–sulphate–water system where silver is present. Can. Metall. Q. 2018, 57, 405–415. [Google Scholar] [CrossRef]
- Fleuriault, C.M.; Anderson, C.G.; Shuey, S. Iron phase control during pressure oxidation at elevated temperature. Miner. Eng. 2016, 98, 161–168. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Jambor, J.L. Characterization of the iron arsenate-sulphate compounds precipitated at elevated temperatures. Hydrometallurgy 2007, 86, 147–163. [Google Scholar] [CrossRef]
- Swash, P.M.; Monhemius, A.J. Hydrothermal precipitation from aqueous solutions containing iron(III), arsenate and sulphate. In Hydrometallurgy’94; Springer: Dordrecht, The Netherlands, 1994; pp. 177–190. [Google Scholar]
- Gomez, M.A.; Becze, L.; Cutler, J.N.; Demopoulos, G.P. Hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3–As2O5–H2SO4 solutions. Hydrometallurgy 2011, 107, 74–90. [Google Scholar] [CrossRef]
- Sung Ng, W.; Liu, Y.; Chen, M. The effect of curing on arsenic precipitation and kinetic study of pressure oxidation of pyrite and arsenopyrite. Miner. Eng. 2022, 185, 107675. [Google Scholar]
- Jiang, X.; Peng, C.; Fu, D.; Chen, Z.; Shen, L.; Li, Q.; Ouyang, T.; Wang, Y. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 2015, 353, 1087–1094. [Google Scholar] [CrossRef]
- Riveros, P.A.; Dutrizac, J.E.; Spencer, P. Arsenic Disposal Practices in the Metallurgical Industry. Can. Metall. Q. 2001, 40, 395–420. [Google Scholar] [CrossRef]
- Nazari, A.M.; Radzinski, R.; Ghahreman, A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 2017, 174, 258–281. [Google Scholar] [CrossRef]
- Clancy, T.M.; Snyder, K.V.; Reddy, R.; Lanzirotti, A.; Amrose, S.E.; Raskin, L.; Hayes, K.F. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment. J. Hazard. Mater. 2015, 300, 522–529. [Google Scholar] [CrossRef]
- Robins, R. Solubility and stability of scorodite, FeAsO4*2H2O: Discussion. Am. Mineral. 1987, 72, 842–844. [Google Scholar]
- Filippou, D.; Demopoulos, G.P. Arsenic immobilization by controlled scorodite precipitation. J. Miner. 1997, 49, 52–55. [Google Scholar] [CrossRef]
- Rios-Valenciana, E.E.; Briones-Gallardo, R.; Cházaro-Ruiz, L.F.; Martínez-Villegas, N.; Celis, L.B. Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic. J. Hazard. Mater. 2017, 339, 114–121. [Google Scholar] [CrossRef]
- Ahoranta, S.H.; Kokko, M.E.; Papirio, S.; Özkaya, B.; Puhakka, J.A. Arsenic removal from acidic solutions with biogenic ferric precipitates. J. Hazard. Mater. 2016, 306, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Monhemius, A.J.; Swash, P.M. Removing and stabilizing As from copper refining circuits by hydrothermal processing. J. Miner. 1999, 51, 30–33. [Google Scholar] [CrossRef]
- Fujita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Effects of zinc, copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process. Hydrometallurgy 2008, 93, 30–38. [Google Scholar] [CrossRef]
- Gomez, M.A.; Assaaoudi, H.; Becze, L.; Cutler, J.N.; Demopoulos, G.P. Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4·2H2O), ferric arsenate sub-hydrate (FAsH; FeAsO4·0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO4)1−x(SO4)x(OH)x]·wH2O). J. Raman Spectrosc. 2009, 41, 212–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimov, K.; Rogozhnikov, D.; Fomenko, I.; Zavalyuev, A.; Tretiak, M.; Dizer, O. The Gypsum Influence on the Formation of Secondary Phases During Autoclave Leaching of Gold-Bearing Concentrates and the Silver Recovery Using Cyanidation. Materials 2024, 17, 5245. https://doi.org/10.3390/ma17215245
Karimov K, Rogozhnikov D, Fomenko I, Zavalyuev A, Tretiak M, Dizer O. The Gypsum Influence on the Formation of Secondary Phases During Autoclave Leaching of Gold-Bearing Concentrates and the Silver Recovery Using Cyanidation. Materials. 2024; 17(21):5245. https://doi.org/10.3390/ma17215245
Chicago/Turabian StyleKarimov, Kirill, Denis Rogozhnikov, Ilia Fomenko, Alexander Zavalyuev, Maksim Tretiak, and Oleg Dizer. 2024. "The Gypsum Influence on the Formation of Secondary Phases During Autoclave Leaching of Gold-Bearing Concentrates and the Silver Recovery Using Cyanidation" Materials 17, no. 21: 5245. https://doi.org/10.3390/ma17215245
APA StyleKarimov, K., Rogozhnikov, D., Fomenko, I., Zavalyuev, A., Tretiak, M., & Dizer, O. (2024). The Gypsum Influence on the Formation of Secondary Phases During Autoclave Leaching of Gold-Bearing Concentrates and the Silver Recovery Using Cyanidation. Materials, 17(21), 5245. https://doi.org/10.3390/ma17215245