Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero, M.; Faccio, R.; Montenegro, B.; Tumelero, M.A.; Cid, C.C.P.; Pasa, A.A.; Mombrú, A.W. Role of conducting polyaniline interphase on the low field magnetoresistance for LSMO-PANI nanocomposites. J. Magn. Magn. Mater. 2018, 466, 446–451. [Google Scholar] [CrossRef]
- Romero, M.; Faccio, R.; Pardo, H.; Tumelero, M.A.; Cid, C.C.P.; Pasa, A.A.; Mombrú, Á.W. Microstructure, interparticle interactions and magnetotransport of manganite-polyaniline nanocomposites. Mater. Chem. Phys. 2016, 171, 178–184. [Google Scholar] [CrossRef]
- Pana, O.; Soran, M.; Leostean, C.; Macavei, S.; Gautron, E.; Teodorescu, C.; Gheorghe, N.; Chauvet, O. Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J. Appl. Phys. 2012, 111, 044309. [Google Scholar] [CrossRef]
- Vinayak, V.V.; Deshmukh, K.; Murthy, V.; Pasha, S.K. Conducting polymer based nanocomposites for supercapacitor applications: A review of recent advances, challenges and future prospects. J. Energy Storage 2024, 100, 113551. [Google Scholar] [CrossRef]
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Dhandapani, E.; Thangarasu, S.; Ramesh, S.; Ramesh, K.; Vasudevan, R.; Duraisamy, N. Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor—A review. J. Energy Storage 2022, 52, 104937. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Ahmmed, A.S.; Lübben, J.F. Review on conductive polymer composites for supercapacitor applications. J. Compos. Sci. 2024, 8, 53. [Google Scholar] [CrossRef]
- Mahimai, B.M.; Li, E.; Pang, J.; Zhang, J.; Zhang, J. Interface engineering in conducting polymers-based supercapacitor. J. Energy Storage 2024, 96, 112598. [Google Scholar] [CrossRef]
- Wustoni, S.; Ohayon, D.; Hermawan, A.; Nuruddin, A.; Inal, S.; Indartono, Y.S.; Yuliarto, B. Material design and characterization of conducting polymer-based supercapacitors. Polym. Rev. 2024, 64, 192–250. [Google Scholar] [CrossRef]
- Gupta, K.; Jana, P.; Meikap, A.; Nath, T. Synthesis of La0.67Sr0.33MnO3 and polyaniline nanocomposite with its electrical and magneto-transport properties. J. Appl. Phys. 2010, 107, 073704. [Google Scholar] [CrossRef]
- Turcu, R.; Pana, O.; Nan, A.; Craciunescu, I.; Chauvet, O.; Payen, C. Polypyrrole coated magnetite nanoparticles from water based nanofluids. J. Phys. D Appl. Phys. 2008, 41, 245002. [Google Scholar] [CrossRef]
- Amarnath, C.A.; Ghamouss, F.; Schmaltz, B.; Autret-Lambert, C.; Roger, S.; Gervais, F.; Tran-Van, F. Polypyrrole/lanthanum strontium manganite oxide nanocomposites: Elaboration and characterization. Synth. Met. 2013, 167, 18–24. [Google Scholar] [CrossRef]
- Ren, X.; Wang, J.; Yin, H.; Tang, Y.; Fan, H.; Yuan, H.; Cui, S.; Huang, L. Hierarchical CoFe2O4@ PPy hollow nanocubes with enhanced microwave absorption. Appl. Surf. Sci. 2022, 575, 151752. [Google Scholar] [CrossRef]
- Kateb, M.; Safarian, S.; Kolahdouz, M.; Fathipour, M.; Ahamdi, V. ZnO–PEDOT core–shell nanowires: An ultrafast, high contrast and transparent electrochromic display. Sol. Energy Mater. Sol. Cells 2016, 145, 200–205. [Google Scholar] [CrossRef]
- Helli, M.; Sadrnezhaad, S.; Hosseini-Hosseinabad, S.; Vahdatkhah, P. Synthesis and characterization of CuO micro-flowers/PPy nanowires nanocomposites as high-capacity anode material for lithium-ion batteries. J. Appl. Electrochem. 2023, 54, 1–11. [Google Scholar] [CrossRef]
- Yin, Z.; Ding, Y.; Zheng, Q.; Guan, L. CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochem. Commun. 2012, 20, 40–43. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, X.; Ni, J.; Zhang, S.; Yang, J.; Liu, P.; Wang, Z.; Lei, J. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode. J. Solid State Electrochem. 2019, 23, 1829–1836. [Google Scholar] [CrossRef]
- Yin, Z.; Fan, W.; Ding, Y.; Li, J.; Guan, L.; Zheng, Q. Shell structure control of PPy-modified CuO composite nanoleaves for lithium batteries with improved cyclic performance. ACS Sustain. Chem. Eng. 2015, 3, 507–517. [Google Scholar] [CrossRef]
- Qian, T.; Zhou, J.; Xu, N.; Yang, T.; Shen, X.; Liu, X.; Wu, S.; Yan, C. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology 2015, 26, 425402. [Google Scholar] [CrossRef]
- Ates, M.; Serin, M.A.; Ekmen, I.; Ertas, Y.N. Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 2015, 72, 2573–2589. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Gu, S.; Liu, R.; Wang, X.; Liu, L.; Xu, W. Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 2015, 22, 1355–1363. [Google Scholar] [CrossRef]
- Awad, M.; Nawwar, M.; Zhitomirsky, I. Synergy of Charge Storage Properties of CuO and Polypyrrole in Composite CuO-Polypyrrole Electrodes for Asymmetric Supercapacitor Devices. ACS Appl. Energy Mater. 2024, 7, 5572–5581. [Google Scholar] [CrossRef]
- MacDonald, M.; Zhitomirsky, I. Pseudocapacitive and Magnetic Properties of SrFe12O19–Polypyrrole Composites. J. Compos. Sci. 2024, 8, 351. [Google Scholar] [CrossRef]
- MacDonald, M.; Zhitomirsky, I. Capacitive Properties of Ferrimagnetic NiFe2O4-Conductive Polypyrrole Nanocomposites. J. Compos. Sci. 2024, 8, 51. [Google Scholar] [CrossRef]
- Dmitriev, A.I. Numerical model of a local contact of a polymer nanocomposite and its experimental validation. Facta Univ. Ser. Mech. Eng. 2021, 19, 079–089. [Google Scholar] [CrossRef]
- Wang, K.; Alaluf, D.; Rodrigues, G.; Preumont, A. Precision shape control of ultra-thin shells with strain actuators. J. Appl. Comput. Mech. 2020. [Google Scholar]
- Xia, Q.; Xia, T.; Wu, X. PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Met. 2022, 41, 1195–1201. [Google Scholar] [CrossRef]
- Liu, L.; Hu, X.; Zeng, H.-Y.; Yi, M.-Y.; Shen, S.-G.; Xu, S.; Cao, X.; Du, J.-Z. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors. J. Mater. Sci. Technol. 2019, 35, 1691–1699. [Google Scholar] [CrossRef]
- Beknalkar, S.A.; Teli, A.M.; Shin, J.C. Current innovations and future prospects of metal oxide electrospun materials for supercapacitor technology: A review. J. Mater. Sci. Technol. 2023, 166, 208–233. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Rong, M.Z.; Zhang, M.Q. Self-healable functional polymers and polymer-based composites. Prog. Polym. Sci. 2023, 144, 101724. [Google Scholar] [CrossRef]
- Yuan, R.; Yin, X.; Gu, S.; Chang, J.; Li, H. Flexible double-wall carbon foam/Cu-Co oxides based symmetric supercapacitor with ultrahigh energy density. J. Mater. Sci. Technol. 2023, 160, 109–117. [Google Scholar] [CrossRef]
- Birajdar, D.; Devatwal, U.; Jadhav, K. X-ray, IR and bulk magnetic properties of Cu1+xMnxFe2–2xO4 ferrite system. J. Mater. Sci. 2002, 37, 1443–1448. [Google Scholar] [CrossRef]
- Marinca, T.F.; Chicinaş, I.; Isnard, O. Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment. Ceram. Int. 2013, 39, 4179–4186. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, B.; Zhang, X.; Zhao, X.; Liu, X.; Wu, S.; Yang, D.-P. Oyster shell-derived CuFe2O4-Hap nanocomposite for healthy houses: Bacterial and formaldehyde elimination. Chem. Eng. J. 2023, 477, 147054. [Google Scholar] [CrossRef]
- Ma, J.; Guo, X.; Ji, X. Amino-functionalized CuFe2O4 supported Pd nanoparticles as magnetically catalyst for H2 production from methanolysis of ammonia borane and hydrogenation of nitro aromatics. Int. J. Hydrogen Energy 2024, 51, 345–356. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Xia, H.; Liu, R.; Wang, H. Fabrication of two novel amino-functionalized and starch-coated CuFe2O4-modified magnetic biochar composites and their application in removing Pb2+ and Cd2+ from wastewater. Int. J. Biol. Macromol. 2024, 258, 128973. [Google Scholar] [CrossRef]
- Mostafa, E.M.; Hammam, R.E. Tailored solar collector coatings: Synthesis and characterization of CuFe2O4/PANI nanocomposites. Opt. Mater. 2024, 156, 115879. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Hu, X.; Yao, Y.; Li, Z. Tween modified CuFe2O4 nanoparticles with enhanced supercapacitor performance. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127676. [Google Scholar] [CrossRef]
- Liang, W.; Yang, W.; Sakib, S.; Zhitomirsky, I. Magnetic CuFe2O4 nanoparticles with pseudocapacitive properties for electrical energy storage. Molecules 2022, 27, 5313. [Google Scholar] [CrossRef]
- Rushmittha, J.; Radhika, S.; Alrashidi, K.A.; Maheshwaran, G.; Dhinesh, S.; Sambasivam, S. Hybridization of CuFe2O4 by carbon microspheres with improved charge storage characteristics for high energy density solid-state hybrid supercapacitor. Mater. Today Sustain. 2024, 28, 100950. [Google Scholar] [CrossRef]
- Nikam, P.N.; Patil, S.S.; Chougale, U.M.; Bajantri, T.H.; Fulari, A.V.; Fulari, V.J. Synthesis and characterization of CuFe2O4 spinel ferrite for supercapacitor application. J. Indian Chem. Soc. 2024, 101, 101277. [Google Scholar] [CrossRef]
- Mbebou, M.; Polat, S.; Zengin, H. Sustainable cauliflower-patterned CuFe2O4 electrode production from chalcopyrite for supercapacitor applications. Nanomaterials 2023, 13, 1105. [Google Scholar] [CrossRef]
- Sikkema, R.; Zhitomirsky, I. Magnetic supercapacitors: Charge storage mechanisms, magnetocapacitance, and magnetoelectric phenomena. Appl. Phys. Rev. 2023, 10, 021307. [Google Scholar] [CrossRef]
- Ata, M.; Liu, Y.; Zhitomirsky, I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. Rsc Adv. 2014, 4, 22716–22732. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Taberna, P.; Simon, P.; Fauvarque, J.-F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292. [Google Scholar] [CrossRef]
- Al Kiey, S.A.; Ramadan, R.; El-Masry, M.M. Synthesis and characterization of mixed ternary transition metal ferrite nanoparticles comprising cobalt, copper and binary cobalt–copper for high-performance supercapacitor applications. Appl. Phys. A 2022, 128, 473. [Google Scholar] [CrossRef]
- Khairy, M.; Bayoumy, W.; Selima, S.; Mousa, M. Studies on characterization, magnetic and electrochemical properties of nano-size pure and mixed ternary transition metal ferrites prepared by the auto-combustion method. J. Mater. Res. 2020, 35, 2652–2663. [Google Scholar] [CrossRef]
- Berkowitz, A.; Schuele, W.; Flanders, P. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 1968, 39, 1261–1263. [Google Scholar] [CrossRef]
- Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous Cubic Nanocages Assembled by Coupled Monolayers with 100% Theoretical Capacity and Robust Cycling. ACS Cent. Sci. 2024, 10, 1283–1294. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Chen, R.; Wu, Q.; Zan, G. Advanced nickel-based composite materials for supercapacitor electrodes. Ionics 2024, 30, 1833–1855. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhitomirsky, I. Surface modification of MnO2 and carbon nanotubes using organic dyes for nanotechnology of electrochemical supercapacitors. J. Mater. Chem. A 2013, 1, 12519–12526. [Google Scholar] [CrossRef]
- Conway, B.; Pell, W. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J. Power Sources 2002, 105, 169–181. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14. [Google Scholar] [CrossRef]
- Pell, W.; Conway, B.; Marincic, N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2000, 491, 9–21. [Google Scholar] [CrossRef]
- Pell, W.G.; Conway, B.E. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. J. Electroanal. Chem. 2001, 500, 121–133. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Bai, Y.; Li, X. Significant effect of cations on polypyrrole cycle stability. Solid State Ion. 2020, 346, 115216. [Google Scholar] [CrossRef]
- Aman, S.; Gouadria, S.; Ahmad, N.; Khan, S.A.; Manzoor, S.; Farid, H.M.T. The structural, dielectric and magnetic study of cobalt based spinel ferrites and polypyrrole composites. J. Mater. Sci. Mater. Electron. 2022, 33, 19534–19543. [Google Scholar] [CrossRef]
- Bartl, A.; Dunsch, L.; Schmeiβer, D.; Göpel, W.; Naarmann, H. Influence of oxygen on the paramagnetic properties of polypyrrole layers. Synth. Met. 1995, 69, 389–390. [Google Scholar] [CrossRef]
- Ghasemi, A.K.; Ghorbani, M.; Lashkenari, M.S.; Nasiri, N. Facile synthesize of PANI/GO/CuFe2O4 nanocomposite material with synergistic effect for superb performance supercapacitor. Electrochim. Acta 2023, 439, 141685. [Google Scholar] [CrossRef]
- Ishaq, S.; Moussa, M.; Kanwal, F.; Ayub, R.; Van, T.N.; Azhar, U.; Losic, D. One step strategy for reduced graphene oxide/cobalt-iron oxide/polypyrrole nanocomposite preparation for high performance supercapacitor electrodes. Electrochim. Acta 2022, 427, 140883. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Sankar, K.V.; Sanjeeviraja, C.; Selvan, R.K. Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J. Alloys Compd. 2013, 553, 350–357. [Google Scholar] [CrossRef]
Electrode | Capacitance from CV Data | Capacitance from GCD Data | ||||||
---|---|---|---|---|---|---|---|---|
1 mV s−1 | 100 mV s−1 | 3 mA cm−2 | 40 mA cm−2 | |||||
CS F cm−2 | Cm F g−1 | CS F cm−2 | Cm F g−1 | CS F cm−2 | Cm F g−1 | CS F cm−2 | Cm F g−1 | |
CFO 100 | 1.2 | 31 | 0.85 | 21.7 | 1.17 | 29.9 | 0.63 | 16.14 |
CFO 90 | 1.5 | 39.2 | 1.1 | 29.35 | 1.46 | 38.5 | 1.22 | 32 |
CFO 70 | 2.53 | 63.8 | 2.07 | 52.2 | 2.6 | 66.7 | 2.22 | 55.84 |
CFO 50 | 3.6 | 91.1 | 1.87 | 47.1 | 3.9 | 113 | 2.7 | 68 |
CFO 30 | 4.52 | 117.37 | 2.24 | 58.4 | 4.6 | 120.1 | 3.56 | 92.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, M.; Zhitomirsky, I. Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage. Materials 2024, 17, 5249. https://doi.org/10.3390/ma17215249
Awad M, Zhitomirsky I. Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage. Materials. 2024; 17(21):5249. https://doi.org/10.3390/ma17215249
Chicago/Turabian StyleAwad, Mahmoud, and Igor Zhitomirsky. 2024. "Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage" Materials 17, no. 21: 5249. https://doi.org/10.3390/ma17215249
APA StyleAwad, M., & Zhitomirsky, I. (2024). Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage. Materials, 17(21), 5249. https://doi.org/10.3390/ma17215249