A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair
Abstract
:1. Introduction
1.1. Background: Bone Tissue Regeneration as a Challenging Arena
1.2. The Existing Gold Standard for Large Bone Injuries Treatment: From Conventional to Regenerative Medicine Strategies
1.3. Current Status and Challenges
Materials | Inherent Criticalities | Ref. | |
---|---|---|---|
Metals | Stainless steel and titanium | Biocompatibility: Stainless steel and titanium are considered biocompatible (with a success rate of 90% in in vivo tests), but could give rise to adverse reactions in the body. | [99] |
Biodegradability: Non-biodegradable, i.e., titanium is a non-biodegradable material; it can remain stable in the body for over 20 years without significant degradation. | [100] | ||
Mechanical Characteristics: The rigidity of titanium exceeds that of natural bone tissue. The rigidity of titanium is approximately 110 GPa, compared to 30 GPa of the human bone tissue. The high values of Young’s modulus induce stress shielding. | [93] | ||
Other Characteristics: High thermal conductivity, which can cause damage to surrounding tissues during the application of heat or laser, i.e., the thermal conductivity of stainless steel can range from 15 W/mK to 25 W/mK, while that of titanium can range from 7 W/mK to 22 W/mK. | [101] | ||
Imaging: Can interfere with imaging tests, such as magnetic resonance imaging (MRI) and computerised tomography (CT), making it difficult to assess bone regeneration. | [102] | ||
Magnesium alloys | Biocompatibility: No human studies, tested only on animal models. | [103] | |
Biodegradability: Biodegradable, but the degradation rate depends on the alloy composition and biological environment conditions. Too rapid degradation can cause local inflammation, while too slow degradation can compromise bone regeneration, i.e., the degradation rate of the AZ31 magnesium alloy can be approximately 1.5–2.5 mm/year. | [104] | ||
Mechanical Characteristics: Lower mechanical strength compared to other materials, such as titanium, i.e., the AZ31 magnesium alloy has a tensile strength of approximately 200 MPa. | [104] | ||
Other Characteristics: Prone to rapid corrosion in acidic and saline environments, which can compromise their mechanical strength and stability, i.e., the AZ31 magnesium alloy has a corrosion rate of approximately 0.2 mm/year in physiological solution. | [105] | ||
Imaging: Can interfere with imaging tests, such as magnetic resonance imaging and computerised tomography, due to their low density and high sensitivity to magnetic fields. | [106] | ||
Ceramics | Calcium phosphate ceramics | Biocompatibility: Some calcium phosphate ceramics can cause an inflammatory response in the body, and their biological compatibility depends on the composition of the ceramic and the manufacturing process. | [107,108] |
Biodegradability: Gradually degrades in the body, but too rapid degradation can compromise bone regeneration, i.e., the degradation rate of a calcium phosphate ceramic can be approximately 1–3 µm/day. | [109,110] | ||
Mechanical Characteristics: Brittle materials, can easily fracture under mechanical stress. The compressive strength of a calcium phosphate ceramic can be approximately 150–250 MPa. | [111,112] | ||
Other Characteristics: No osteogenic and osteoinductive properties. | [113] | ||
Imaging: Can interfere with imaging tests, such as magnetic resonance imaging (MRI) and computed tomography (CT), due to their high density. | [114] | ||
Polymers | Synthetic: PEG, polyesters, and polyurethanes | Biocompatibility: Some of the degradation products may cause immunological reactions and osteolysis without chemical reactions. | [97] |
Biodegradability: The degradation rate of synthetic polymers can vary depending on their composition and environmental conditions, i.e., polyethylene glycols (PEG) degrade very slowly and can persist in the body for years, while polyesters such as polylactic acid (PLA) and polyglycolic acid (PGA) can degrade rapidly (6–12 months), but their mechanical stability decreases with degradation. | [115] | ||
Mechanical Characteristics: The mechanical stability and elastic modulus of synthetic polymers can be influenced by their composition and scaffold structure. For example, PLA has an elastic modulus of approximately 2–4 GPa, while PEG has an elastic modulus of approximately 0.1–0.3 GPa. | [116] | ||
Other Characteristics: Polyurethanes have a lower elastic modulus in comparison to native bone, so they are too flexible for load-bearing solutions. | [117] | ||
Imaging: Synthetic polymers can generally be poorly visible in imaging tests, such as magnetic resonance imaging and computed tomography, due to their low density. | [118,119] | ||
Natural: collagen, alginate, hyaluronic acid, and silk | Biocompatibility: Natural polymers are generally well tolerated by the human body (i.e., hyaluronic acid has a cell survival rate of 70–80%), but they may cause immunogenic response and microbial contamination. | [92] | |
Biodegradability: Lack of tunability and an uncontrollable degradation rate. The degradation rate of natural polymers can vary depending on their composition and environmental conditions, i.e., collagen has a degradation rate of about 8 weeks, while alginate has a degradation rate of about 4–6 months. | [120] | ||
Mechanical Characteristics: Weak mechanical strength with respect to the bone load applied. The mechanical stability and elastic modulus of natural polymers can be influenced by their composition and scaffold structure, i.e., collagen has lower mechanical stability compared to other polymers such as PLA and PCL; at the same time, collagen has an elastic modulus of about 0.1–1 GPa, while alginate has an elastic modulus of about 0.01–0.1 GPa. | [121] | ||
Other Characteristics: Difficult to manipulate due to their tendency to swell or break in aqueous solutions. In addition, the formation of a scaffold may require the use of cross-linking agents, such as calcium ions, which can affect the structure and mechanical properties of the polymer, i.e., the formation of a silk scaffold may require the use of cross-linking agents such as ethanol, with a maximum concentration of 70% to prevent material breakdown. | [122] |
2. Bio-Inspired Scaffold Design
Inspirational Sources
3. Bio-Derived Materials
Advances in Bio-Inspired Material Choice
4. Digital Fabrication
4.1. Advances in Digital Design of Architected Shapes
4.2. Advances in Digital Fabrication Techniques
5. Advanced Numerical Modelling for a Novel Triad of Bio-Inspiration, Digitalisation, and Renewability in Bone Repair
5.1. Numerical Modelling of Bone–Scaffold Interaction
5.2. Advances in Validation Strategies
6. Conclusions
7. Future Trends in Personalised Bone Repair
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hak, D.J.; Fitzpatrick, D.; Bishop, J.A.; Marsh, J.L.; Tilp, S.; Schnettler, R.; Simpson, H.; Alt, V. Delayed Union and Nonunions: Epidemiology, Clinical Issues, and Financial Aspects. Injury 2014, 45, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Wähnert, D.; Greiner, J.; Brianza, S.; Kaltschmidt, C.; Vordemvenne, T.; Kaltschmidt, B. Strategies to Improve Bone Healing: Innovative Surgical Implants Meet Nano-/Micro-Topography of Bone Scaffolds. Biomedicines 2021, 9, 746. [Google Scholar] [CrossRef]
- Zura, R.; Xiong, Z.; Einhorn, T.; Watson, J.T.; Ostrum, R.F.; Prayson, M.J.; Della Rocca, G.J.; Mehta, S.; McKinley, T.; Wang, Z.; et al. Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg. 2016, 151, e162775. [Google Scholar] [CrossRef]
- Magida, N.; Myezwa, H.; Mudzi, W. Factors Informing the Development of a Clinical Pathway and Patients’ Quality of Life after a Non-Union Fracture of the Lower Limb. Healthcare 2023, 11, 1810. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Yang, F.; Wang, Q.; Li, Z.; Yuan, B.; Peng, C.; Ren, G.; Wang, Z.; Cui, Y.; Wang, Y.; et al. Material-Based Therapy for Bone Nonunion. Mater. Des. 2019, 183, 108161. [Google Scholar] [CrossRef]
- Bell, A.; Templeman, D.; Weinlein, J.C. Nonunion of the Femur and Tibia: An Update. Orthop. Clin. N. Am. 2016, 47, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Ekegren, C.; Edwards, E.; de Steiger, R.; Gabbe, B. Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture. Int. J. Environ. Res. Public Health 2018, 15, 2845. [Google Scholar] [CrossRef]
- Elliott, D.S.; Newman, K.J.H.; Forward, D.P.; Hahn, D.M.; Ollivere, B.; Kojima, K.; Handley, R.; Rossiter, N.D.; Wixted, J.J.; Smith, R.M.; et al. A Unified Theory of Bone Healing and Nonunion. Bone Jt. J. 2016, 98-B, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Buccino, F.; Bagherifard, S.; D’Amico, L.; Zagra, L.; Banfi, G.; Tromba, G.; Vergani, L.M. Assessing the Intimate Mechanobiological Link between Human Bone Micro-Scale Trabecular Architecture and Micro-Damages. Eng. Fract. Mech. 2022, 270, 108582. [Google Scholar] [CrossRef]
- Colombo, C.; Libonati, F.; Rinaudo, L.; Bellazzi, M.; Ulivieri, F.M.; Vergani, L. A New Finite Element Based Parameter to Predict Bone Fracture. PLoS ONE 2019, 14, e0225905. [Google Scholar] [CrossRef]
- Piccirilli, E.; Cariati, I.; Primavera, M.; Triolo, R.; Gasbarra, E.; Tarantino, U. Augmentation in Fragility Fractures, Bone of Contention: A Systematic Review. BMC Musculoskelet. Disord. 2022, 23, 1046. [Google Scholar] [CrossRef] [PubMed]
- Odén, A.; McCloskey, E.V.; Kanis, J.A.; Harvey, N.C.; Johansson, H. Burden of High Fracture Probability Worldwide: Secular Increases 2010–2040. Osteoporos. Int. 2015, 26, 2243–2248. [Google Scholar] [CrossRef]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The Recent Prevalence of Osteoporosis and Low Bone Mass in the United States Based on Bone Mineral Density at the Femoral Neck or Lumbar Spine. J. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef]
- Center, J.R.; Nguyen, T.V.; Schneider, D.; Sambrook, P.N.; Eisman, J.A. Mortality after All Major Types of Osteoporotic Fracture in Men and Women: An Observational Study. Lancet 1999, 353, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Yu, Q. Primary Osteoporosis in Postmenopausal Women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Willers, C.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Borgström, F.; Kanis, J.A. Osteoporosis in Europe: A Compendium of Country-Specific Reports. Arch. Osteoporos. 2022, 17, 23. [Google Scholar] [CrossRef]
- Prommik, P.; Tootsi, K.; Saluse, T.; Märtson, A.; Kolk, H. Nonoperative Hip Fracture Management Practices and Patient Survival Compared to Surgical Care: An Analysis of Estonian Population-Wide Data. Arch. Osteoporos. 2021, 16, 101. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Zhang, D.; Ye, D.; Zhou, Y.; Qin, J.; Zhang, Y. The Prevalence and Treatment Rate Trends of Osteoporosis in Postmenopausal Women. PLoS ONE 2023, 18, e0290289. [Google Scholar] [CrossRef]
- Stewart, S.K. Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malays. Orthop. J. 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Li, G.; Thabane, L.; Papaioannou, A.; Ioannidis, G.; Levine, M.A.H.; Adachi, J.D. An Overview of Osteoporosis and Frailty in the Elderly. BMC Musculoskelet. Disord. 2017, 18, 46. [Google Scholar] [CrossRef]
- Putra, N.E.; Zhou, J.; Zadpoor, A.A. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv. Healthc. Mater. 2023, 13, 2301837. [Google Scholar] [CrossRef] [PubMed]
- Kloen, P.; Loots, G.G.; Hamdy, R.C.; Smit, T.H. Bridging the Gap: Compressing Non-Unions for Proper Cellular Signaling. Med. Hypotheses 2022, 160, 110794. [Google Scholar] [CrossRef]
- Frölke, J.P.M.; Patka, P. Definition and Classification of Fracture Non-Unions. Injury 2007, 38, S19–S22. [Google Scholar] [CrossRef] [PubMed]
- Shon, O.J.; Lee, M.-H.; Ahn, H.S. Non-Operative Treatment of Nonunion. J. Korean Fract. Soc. 2014, 27, 338. [Google Scholar] [CrossRef]
- Buccino, F.; Zagra, L.; Savadori, P.; Galluzzo, A.; Colombo, C.; Grossi, G.; Banfi, G.; Vergani, L.M. Mapping Local Mechanical Properties of Human Healthy and Osteoporotic Femoral Heads. Materialia 2021, 20, 101229. [Google Scholar] [CrossRef]
- Vellwock, A.E.; Vergani, L.; Libonati, F. A Multiscale XFEM Approach to Investigate the Fracture Behavior of Bio-Inspired Composite Materials. Compos. B Eng. 2018, 141, 258–264. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Niu, Y.; Du, T.; Liu, Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J. Funct. Biomater. 2023, 14, 212. [Google Scholar] [CrossRef] [PubMed]
- Florencio-Silva, R.; Sasso, G.R.d.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed. Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef]
- Sheen, J.R.; Mabrouk, A.; Garla, V.V. Fracture Healing Overview; StatPearls: Tampa/St. Petersburg, FL, USA, 2023. [Google Scholar]
- Watanabe, H.; Maishi, N.; Hoshi-Numahata, M.; Nishiura, M.; Nakanishi-Kimura, A.; Hida, K.; Iimura, T. Skeletal-Vascular Interactions in Bone Development, Homeostasis, and Pathological Destruction. Int. J. Mol. Sci. 2023, 24, 10912. [Google Scholar] [CrossRef]
- Watson, E.C.; Adams, R.H. Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harb. Perspect. Med. 2018, 8, a031559. [Google Scholar] [CrossRef] [PubMed]
- Bottlang, M.; Doornink, J.; Lujan, T.J.; Fitzpatrick, D.C.; Marsh, J.L.; Augat, P.; von Rechenberg, B.; Lesser, M.; Madey, S.M. Effects of Construct Stiffness on Healing of Fractures Stabilized with Locking Plates. J. Bone Jt. Surg. 2010, 92, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lafuente-Gracia, L.; Borgiani, E.; Nasello, G.; Geris, L. Towards in Silico Models of the Inflammatory Response in Bone Fracture Healing. Front. Bioeng. Biotechnol. 2021, 9, 703725. [Google Scholar] [CrossRef] [PubMed]
- Paladini, P.; Pellegrini, A.; Merolla, G.; Campi, F.; Porcellini, G. Treatment of Clavicle Fractures. Transl. Med. UniSa 2012, 2, 47–58. [Google Scholar]
- Babcock, S.; Kellam, J.F. Hip Fracture Nonunions: Diagnosis, Treatment, and Special Considerations in Elderly Patients. Adv. Orthop. 2018, 2018, 1912762. [Google Scholar] [CrossRef]
- ElHawary, H.; Baradaran, A.; Abi-Rafeh, J.; Vorstenbosch, J.; Xu, L.; Efanov, J.I. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin. Plast. Surg. 2021, 35, 198–203. [Google Scholar] [CrossRef]
- Guo, X.; Song, P.; Li, F.; Yan, Q.; Bai, Y.; He, J.; Che, Q.; Cao, H.; Guo, J.; Su, Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int. J. Nanomed. 2023, 18, 3595–3622. [Google Scholar] [CrossRef]
- Uhthoff, H.K.; Poitras, P.; Backman, D.S. Internal Plate Fixation of Fractures: Short History and Recent Developments. J. Orthop. Sci. 2006, 11, 118–126. [Google Scholar] [CrossRef]
- Hersi, M.; Traversy, G.; Thombs, B.D.; Beck, A.; Skidmore, B.; Groulx, S.; Lang, E.; Reynolds, D.L.; Wilson, B.; Bernstein, S.L.; et al. Effectiveness of Stop Smoking Interventions among Adults: Protocol for an Overview of Systematic Reviews and an Updated Systematic Review. Syst. Rev. 2019, 8, 28. [Google Scholar] [CrossRef]
- Yoshikawa, R.; Katada, J. Effects of Active Smoking on Postoperative Outcomes in Hospitalised Patients Undergoing Elective Surgery: A Retrospective Analysis of an Administrative Claims Database in Japan. BMJ Open 2019, 9, e029913. [Google Scholar] [CrossRef]
- Kim, T.; See, C.W.; Li, X.; Zhu, D. Orthopedic Implants and Devices for Bone Fractures and Defects: Past, Present and Perspective. Eng. Regen. 2020, 1, 6–18. [Google Scholar] [CrossRef]
- Gasser, B.; Boman, B.; Wyder, D.; Schneider, E. Stiffness Characteristics of the Circular Ilizarov Device as Opposed to Conventional External Fixators. J. Biomech. Eng. 1990, 112, 15–21. [Google Scholar] [CrossRef]
- Rozbruch, S.R.; Ilizarov, S. (Eds.) Limb Lengthening and Reconstruction Surgery, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429163760. [Google Scholar]
- Cross, A.R.; Lewis, D.D.; Murphy, S.T.; Rigaud, S.; Madison, J.B.; Kehoe, M.M.; Rapoff, A.J. Effects of Ring Diameter and Wire Tension on the Axial Biomechanics of Four-Ring Circular External Skeletal Fixator Constructs. Am. J. Vet. Res. 2001, 62, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Spiegelberg, B.; Parratt, T.; Dheerendra, S.; Khan, W.; Jennings, R.; Marsh, D. Ilizarov Principles of Deformity Correction. Ann. R. Coll. Surg. Engl. 2010, 92, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, D.; Yao, Y. Experimental Design of Vertical Distraction Osteogenesis Using Simple 3 Screws. J. Craniofac. Surg. 2023, 34, 1599–1604. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Faour, O.; Goff, T.; Kanakaris, N.; Dimitriou, R. Masquelet Technique for the Treatment of Bone Defects: Tips-Tricks and Future Directions. Injury 2011, 42, 591–598. [Google Scholar] [CrossRef]
- Alford, A.I.; Nicolaou, D.; Hake, M.; McBride-Gagyi, S. Masquelet’s Induced Membrane Technique: Review of Current Concepts and Future Directions. J. Orthop. Res. 2021, 39, 707–718. [Google Scholar] [CrossRef]
- Nicholas, R. Ethical Considerations in Allograft Tissue Transplantation. Clin. Orthop. Relat. Res. 2005, 435, 11–16. [Google Scholar] [CrossRef]
- Ostojić, M. Establishment of the Bone Tissue Bank at Mostar University Clinical Hospital. Acta Clin. Croat. 2019, 58, 571–575. [Google Scholar] [CrossRef]
- Delloye, C.; Cornu, O.; Druez, V.; Barbier, O. Bone Allografts. J. Bone Jt. Surg. Br. 2007, 89-B, 574–580. [Google Scholar] [CrossRef]
- Valamvanos, T.-F.; Dereka, X.; Katifelis, H.; Gazouli, M.; Lagopati, N. Recent Advances in Scaffolds for Guided Bone Regeneration. Biomimetics 2024, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.F.; Greene, A.K. Autogenous Bone Graft: Basic Science and Clinical Implications. J. Craniofacial Surg. 2012, 23, 323–327. [Google Scholar] [CrossRef]
- Costantino, P.D.; Hiltzik, D.; Govindaraj, S.; Moche, J. Bone Healing and Bone Substitutes. Facial Plast. Surg. 2002, 18, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Elster, E.A.; Stojadinovic, A.; Forsberg, J.; Shawen, S.; Andersen, R.C.; Schaden, W. Extracorporeal Shock Wave Therapy for Nonunion of the Tibia. J. Orthop. Trauma 2010, 24, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Romeo, P.; Lavanga, V.; Pagani, D.; Sansone, V. Extracorporeal Shock Wave Therapy in Musculoskeletal Disorders: A Review. Med. Princ. Pract. 2014, 23, 7–13. [Google Scholar] [CrossRef]
- Armitage, J.O.; Gale, R.P. Bone Marrow Autotransplantation. Am. J. Med. 1989, 86, 203–206. [Google Scholar] [CrossRef]
- Gulati, S.; Yahalom, J.; Acaba, L.; Reich, L.; Motzer, R.; Crown, J.; Toia, M.; Igarashi, T.; Lemoli, R.; Hanninen, E.; et al. Treatment of Patients with Relapsed and Resistant Non-Hodgkin’s Lymphoma Using Total Body Irradiation, Etoposide, and Cyclophosphamide and Autologous Bone Marrow Transplantation. J. Clin. Oncol. 1992, 10, 936–941. [Google Scholar] [CrossRef]
- Block, J.E. The Role and Effectiveness of Bone Marrow in Osseous Regeneration. Med. Hypotheses 2005, 65, 740–747. [Google Scholar] [CrossRef]
- McLain, R.F.; Fleming, J.E.; Boehm, C.A.; Muschler, G.F. Aspiration of Osteoprogenitor Cells for Augmenting Spinal Fusion. J. Bone Jt. Surg. 2005, 87, 2655–2661. [Google Scholar] [CrossRef]
- Hernigou, P.; Desroches, A.; Queinnec, S.; Flouzat Lachaniette, C.H.; Poignard, A.; Allain, J.; Chevallier, N.; Rouard, H. Morbidity of Graft Harvesting versus Bone Marrow Aspiration in Cell Regenerative Therapy. Int. Orthop. 2014, 38, 1855–1860. [Google Scholar] [CrossRef]
- Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives. Mater. Sci. Eng. C 2017, 78, 1246–1262. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.E.; Leeflang, M.A.; Taheri, P.; Fratila-Apachitei, L.E.; Mol, J.M.C.; Zhou, J.; Zadpoor, A.A. Extrusion-Based 3D Printing of Ex Situ-Alloyed Highly Biodegradable MRI-Friendly Porous Iron-Manganese Scaffolds. Acta Biomater. 2021, 134, 774–790. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.E.; Borg, K.G.N.; Diaz-Payno, P.J.; Leeflang, M.A.; Klimopoulou, M.; Taheri, P.; Mol, J.M.C.; Fratila-Apachitei, L.E.; Huan, Z.; Chang, J.; et al. Additive Manufacturing of Bioactive and Biodegradable Porous Iron-Akermanite Composites for Bone Regeneration. Acta Biomater. 2022, 148, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Kooner, S.; Hewison, C.; Sridharan, S.; Lui, J.; Matthewson, G.; Johal, H.; Clark, M. Waste and Recycling among Orthopedic Subspecialties. Can. J. Surg. 2020, 63, E278–E283. [Google Scholar] [CrossRef]
- Suamte, L.; Tirkey, A.; Babu, P.J. Design of 3D Smart Scaffolds Using Natural, Synthetic and Hybrid Derived Polymers for Skin Regenerative Applications. Smart Mater. Med. 2023, 4, 243–256. [Google Scholar] [CrossRef]
- Zahouani, H.; Pailler-Mattei, C.; Sohm, B.; Vargiolu, R.; Cenizo, V.; Debret, R. Characterization of the Mechanical Properties of a Dermal Equivalent Compared with Human Skin In Vivo by Indentation and Static Friction Tests. Ski. Res. Technol. 2009, 15, 68–76. [Google Scholar] [CrossRef]
- Turner, C.H.; Rho, J.; Takano, Y.; Tsui, T.Y.; Pharr, G.M. The Elastic Properties of Trabecular and Cortical Bone Tissues Are Similar: Results from Two Microscopic Measurement Techniques. J. Biomech. 1999, 32, 437–441. [Google Scholar] [CrossRef]
- Lotz, J.C.; Gerhart, T.N.; Hayes, W.C. Mechanical Properties of Trabecular Bone from the Proximal Femur. J. Comput. Assist. Tomogr. 1990, 14, 107–114. [Google Scholar] [CrossRef]
- Oftadeh, R.; Perez-Viloria, M.; Villa-Camacho, J.C.; Vaziri, A.; Nazarian, A. Biomechanics and Mechanobiology of Trabecular Bone: A Review. J. Biomech. Eng. 2015, 137, 010802–01080215. [Google Scholar] [CrossRef]
- Sparks, D.S.; Savi, F.M.; Saifzadeh, S.; Schuetz, M.A.; Wagels, M.; Hutmacher, D.W. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies—A Quest for Regenerative Matching Axial Vascularization. Front. Bioeng. Biotechnol. 2020, 7, 448. [Google Scholar] [CrossRef]
- Zhou, J.; See, C.W.; Sreenivasamurthy, S.; Zhu, D. Customized Additive Manufacturing in Bone Scaffolds—The Gateway to Precise Bone Defect Treatment. Research 2023, 6, 0239. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Du, X.; Kim, I.; Ferguson, S.J. Scaffolds for Bone-Tissue Engineering. Matter 2022, 5, 2722–2759. [Google Scholar] [CrossRef]
- Vach Agocsova, S.; Culenova, M.; Birova, I.; Omanikova, L.; Moncmanova, B.; Danisovic, L.; Ziaran, S.; Bakos, D.; Alexy, P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. Materials 2023, 16, 4267. [Google Scholar] [CrossRef]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials 2019, 12, 568. [Google Scholar] [CrossRef]
- Brachet, A.; Bełżek, A.; Furtak, D.; Geworgjan, Z.; Tulej, D.; Kulczycka, K.; Karpiński, R.; Maciejewski, M.; Baj, J. Application of 3D Printing in Bone Grafts. Cells 2023, 12, 859. [Google Scholar] [CrossRef] [PubMed]
- Barbour, S.A.; King, W. The Safe and Effective Use of Allograft Tissue—An Update. Am. J. Sports Med. 2003, 31, 791–797. [Google Scholar] [CrossRef]
- Codrea, C.I.; Croitoru, A.-M.; Constantin Baciu, C.; Melinescu, A.; Ficai, D.; Fruth, V.; Ficai, A. Clinical Medicine Advances in Osteoporotic Bone Tissue Engineering. J. Clin. Med. 2021, 10, 253. [Google Scholar] [CrossRef]
- Lichte, P.; Pape, H.C.; Pufe, T.; Kobbe, P.; Fischer, H. Scaffolds for Bone Healing: Concepts, Materials and Evidence. Injury 2011, 42, 569–573. [Google Scholar] [CrossRef]
- Donnaloja, F.; Jacchetti, E.; Soncini, M.; Raimondi, M.T. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers 2020, 12, 905. [Google Scholar] [CrossRef]
- Wei, S.; Ma, J.-X.; Xu, L.; Gu, X.-S.; Ma, X.-L. Biodegradable Materials for Bone Defect Repair. Mil. Med. Res. 2020, 7, 54. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [PubMed]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium Phosphates in Biomedical Applications: Materials for the Future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Samavedi, S.; Whittington, A.R.; Goldstein, A.S. Calcium Phosphate Ceramics in Bone Tissue Engineering: A Review of Properties and Their Influence on Cell Behavior. Acta Biomater. 2013, 9, 8037–8045. [Google Scholar] [CrossRef] [PubMed]
- van Hengel, I.A.J.; Putra, N.E.; Tierolf, M.W.A.M.; Minneboo, M.; Fluit, A.C.; Fratila-Apachitei, L.E.; Apachitei, I.; Zadpoor, A.A. Biofunctionalization of Selective Laser Melted Porous Titanium Using Silver and Zinc Nanoparticles to Prevent Infections by Antibiotic-Resistant Bacteria. Acta Biomater. 2020, 107, 325–337. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Vahabi, H.; Rabiee, N.; Rabiee, M.; Bagherzadeh, M.; Saeb, M.R. Green Composites in Bone Tissue Engineering. Emergent Mater. 2022, 5, 603–620. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Kundu, B.; Naskar, D.; Kim, H.-W.; Maiti, T.K.; Bhattacharya, D.; Kundu, S.C. Silk Scaffolds in Bone Tissue Engineering: An Overview. Acta Biomater. 2017, 63, 1–17. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef]
- Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk Fibroin Biomaterials for Tissue Regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef]
- Sudhakar, K.; Ji, S.M.; Kummara, M.R.; Han, S.S. Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics 2022, 14, 2235. [Google Scholar] [CrossRef]
- Yamada, S. Osteoclastic Resorption of Calcium Phosphate Ceramics with Different Hydroxyapatite/β-Tricalcium Phosphate Ratios. Biomaterials 1997, 18, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef] [PubMed]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent Advances in Biodegradable Polymers for Sustainable Applications. Npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A Review on Degradation Mechanisms of Polylactic Acid: Hydrolytic, Photodegradative, Microbial, and Enzymatic Degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Anderson, J.M.; Shive, M.S. Biodegradation and Biocompatibility of PLA and PLGA Microspheres. Adv. Drug Deliv. Rev. 2012, 64, 72–82. [Google Scholar] [CrossRef]
- Jiao, C.; Xie, D.; He, Z.; Liang, H.; Shen, L.; Yang, Y.; Tian, Z.; Wu, G.; Wang, C. Additive Manufacturing of Bio-Inspired Ceramic Bone Scaffolds: Structural Design, Mechanical Properties and Biocompatibility. Mater. Des. 2022, 217, 110610. [Google Scholar] [CrossRef]
- García-Gareta, E.; Coathup, M.J.; Blunn, G.W. Osteoinduction of Bone Grafting Materials for Bone Repair and Regeneration. Bone 2015, 81, 112–121. [Google Scholar] [CrossRef]
- Glenske, K.; Donkiewicz, P.; Köwitsch, A.; Milosevic-Oljaca, N.; Rider, P.; Rofall, S.; Franke, J.; Jung, O.; Smeets, R.; Schnettler, R.; et al. Applications of Metals for Bone Regeneration. Int. J. Mol. Sci. 2018, 19, 826. [Google Scholar] [CrossRef]
- AL-Mangour, B.; Vo, P.; Mongrain, R.; Irissou, E.; Yue, S. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications. J. Therm. Spray Technol. 2014, 23, 641–652. [Google Scholar] [CrossRef]
- Brink, J.; Meraw, S.J.; Sarment, D.P. Influence of Implant Diameter on Surrounding Bone. Clin. Oral Implant. Res. 2007, 18, 563–568. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and Its Alloys as Orthopedic Biomaterials: A Review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Al-Sherify, Z.F.; Dawood, N.M.; Khulief, Z.T. Review about the Corrosion Behavior of Magnesium Alloys for Biomedical Applications. AIP Conf. Proc. 2022, 2450, 020021. [Google Scholar]
- Antoniac, I.; Miculescu, M.; Mănescu Păltânea, V.; Stere, A.; Quan, P.H.; Păltânea, G.; Robu, A.; Earar, K. Magnesium-Based Alloys Used in Orthopedic Surgery. Materials 2022, 15, 1148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, W.; Liu, J.; Wang, L.; Tang, Y.; Wang, K. A Review on Magnesium Alloys for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 953344. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Minaychev, V.V.; Smirnova, P.V.; Kobyakova, M.I.; Teterina, A.Y.; Smirnov, I.V.; Skirda, V.D.; Alexandrov, A.S.; Gafurov, M.R.; Shlykov, M.A.; Pyatina, K.V.; et al. Low-Temperature Calcium Phosphate Ceramics Can Modulate Monocytes and Macrophages Inflammatory Response In Vitro. Biomedicines 2024, 12, 263. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kuhn, L.T. Design and Characterization of Calcium Phosphate Ceramic Scaffolds for Bone Tissue Engineering. Dent. Mater. 2016, 32, 43–53. [Google Scholar] [CrossRef]
- Huang, X.; Lou, Y.; Duan, Y.; Liu, H.; Tian, J.; Shen, Y.; Wei, X. Biomaterial Scaffolds in Maxillofacial Bone Tissue Engineering: A Review of Recent Advances. Bioact. Mater. 2024, 33, 129–156. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef]
- Darghiasi, S.F.; Farazin, A.; Ghazali, H.S. Design of Bone Scaffolds with Calcium Phosphate and Its Derivatives by 3D Printing: A Review. J. Mech. Behav. Biomed. Mater. 2024, 151, 106391. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Bioceramics of Calcium Orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhang, T.; Di, L.; Xu, D.-M.; Xu, D.-H.; Yang, D.-A. Morphological and Histological Analysis on the in Vivo Degradation of Poly (Propylene Fumarate)/(Calcium Sulfate/β-Tricalcium Phosphate). Biomed. Microdevices 2011, 13, 623–631. [Google Scholar] [CrossRef]
- Middleton, J.C.; Tipton, A.J. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef]
- Hollister, S.J. Porous Scaffold Design for Tissue Engineering. Nat. Mater. 2005, 4, 518–524. [Google Scholar] [CrossRef]
- Wendels, S.; Avérous, L. Biobased Polyurethanes for Biomedical Applications. Bioact. Mater. 2021, 6, 1083–1106. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ding, D. Conjugated Polymers for In Vivo Fluorescence Imaging. In Conjugated Polymers for Biological and Biomedical Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 87–109. [Google Scholar]
- Kim, S.; Lim, C.-K.; Na, J.; Lee, Y.-D.; Kim, K.; Choi, K.; Leary, J.F.; Kwon, I.C. Conjugated Polymer Nanoparticles for Biomedical in Vivo Imaging. Chem. Commun. 2010, 46, 1617. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Z.; Wu, H.; Li, W.; Zheng, L.; Zhao, J. Collagen-Alginate as Bioink for Three-Dimensional (3D) Cell Printing Based Cartilage Tissue Engineering. Mater. Sci. Eng. C 2018, 83, 195–201. [Google Scholar] [CrossRef]
- Rico-Llanos, G.A.; Borrego-González, S.; Moncayo-Donoso, M.; Becerra, J.; Visser, R. Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers 2021, 13, 599. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Dai, F.; Zhang, H.; Ni, B.; Zhou, W.; Yang, X.; Wu, Y. Preparation and Characterization of Silk Fibroin as a Biomaterial with Potential for Drug Delivery. J. Transl. Med. 2012, 10, 117. [Google Scholar] [CrossRef]
- Patterson, J.; Martino, M.M.; Hubbell, J.A. Biomimetic Materials in Tissue Engineering. Mater. Today 2010, 13, 14–22. [Google Scholar] [CrossRef]
- Minardi, S.; Corradetti, B.; Taraballi, F.; Sandri, M.; van Eps, J.; Cabrera, F.J.; Weiner, B.K.; Tampieri, A.; Tasciotti, E. Evaluation of the Osteoinductive Potential of a Bio-Inspired Scaffold Mimicking the Osteogenic Niche for Bone Augmentation. Biomaterials 2015, 62, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Moreno, D.; Yang, M.; Wood, K.L. Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy. J. Mech. Des. 2014, 136, 111102. [Google Scholar] [CrossRef]
- Kim, H.N.; Jiao, A.; Hwang, N.S.; Kim, M.S.; Kang, D.H.; Kim, D.-H.; Suh, K.-Y. Nanotopography-Guided Tissue Engineering and Regenerative Medicine. Adv. Drug Deliv. Rev. 2013, 65, 536–558. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Mussi, V.; Vena, P.; Libonati, F.; Vergani, L.; Strano, M. Mimicking the Loading Adaptation of Bone Microstructure with Aluminum Foams. Mater. Des. 2017, 126, 207–218. [Google Scholar] [CrossRef]
- Park, J.Y.; Park, S.H.; Kim, M.G.; Park, S.-H.; Yoo, T.H.; Kim, M.S. Biomimetic Scaffolds for Bone Tissue Engineering. Adv. Exp. Med. Biol. 2018, 1064, 109–121. [Google Scholar] [CrossRef]
- Raucci, M.G.; Guarino, V.; Ambrosio, L. Biomimetic Strategies for Bone Repair and Regeneration. J. Funct. Biomater. 2012, 3, 688–705. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Pina, S.; Ribeiro, V.P.; Marques, C.F.; Maia, F.R.; Silva, T.H.; Reis, R.L.; Oliveira, J.M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials 2019, 12, 1824. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, W.; Bai, H. Silk-Based Bioinspired Structural and Functional Materials. iScience 2022, 25, 103940. [Google Scholar] [CrossRef]
- Mirkhalaf, M.; Men, Y.; Wang, R.; No, Y.; Zreiqat, H. Personalized 3D Printed Bone Scaffolds: A Review. Acta Biomater. 2023, 156, 110–124. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Bai, X.; Xiao, Y.; Che, J. Bio-Inspired Composite by Hydroxyapatite Mineralization on (Bis)Phosphonate-Modified Cellulose-Alginate Scaffold for Bone Tissue Engineering. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 127958. [Google Scholar] [CrossRef]
- Castillo-Paz, A.M.; Cañon-Davila, D.F.; Londoño-Restrepo, S.M.; Jimenez-Mendoza, D.; Pfeiffer, H.; Ramírez-Bon, R.; Rodriguez-Garcia, M.E. Fabrication and Characterization of Bioinspired Nanohydroxyapatite Scaffolds with Different Porosities. Ceram. Int. 2022, 48, 32173–32184. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Liu, Z.; Wang, Y.; Dong, W.; Zhao, S.; Sun, D. Biomimetic Design Strategy of Complex Porous Structure Based on 3D Printing Ti-6Al-4V Scaffolds for Enhanced Osseointegration. Mater. Des. 2022, 218, 110721. [Google Scholar] [CrossRef]
- Muthusamy, S.; Mahendiran, B.; Nithiya, P.; Selvakumar, R.; Krishnakumar, G.S. Functionalization of Biologically Inspired Scaffold through Selenium and Gallium Ion Doping to Promote Bone Regeneration. J. Drug Deliv. Sci. Technol. 2023, 79, 104011. [Google Scholar] [CrossRef]
- González, S.G.; Vlad, M.D.; López, J.L.; Aguado, E.F. Novel Bio-Inspired 3D Porous Scaffold Intended for Bone-Tissue Engineering: Design and in Silico Characterisation of Histomorphometric, Mechanical and Mass-Transport Properties. Mater. Des. 2023, 225, 111467. [Google Scholar] [CrossRef]
- Xin, H.; Shi, Q.; Ning, X.; Chen, Y.; Jia, X.; Zhang, Z.; Zhu, S.; Li, Y.; Liu, F.; Kong, L. Biomimetic Mineralized Fiber Bundle-Inspired Scaffolding Surface on Polyetheretherketone Implants Promotes Osseointegration. Macromol. Biosci. 2023, 23, e2200436. [Google Scholar] [CrossRef]
- Ledda, M.; Merco, M.; Sciortino, A.; Scatena, E.; Convertino, A.; Lisi, A.; Del Gaudio, C. Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering. Int. J. Mol. Sci. 2022, 23, 5383. [Google Scholar] [CrossRef]
- de Wildt, B.W.M.; van der Meijden, R.; Bartels, P.A.A.; Sommerdijk, N.A.J.M.; Akiva, A.; Ito, K.; Hofmann, S. Bioinspired Silk Fibroin Mineralization for Advanced In Vitro Bone Remodeling Models. Adv. Funct. Mater. 2022, 32, 2206992. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Zhang, H.; Wang, X.; Chen, T.; Wu, Y.; Xu, X.; Yang, S.; Ji, P.; Song, J. Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration. Adv. Healthc. Mater. 2022, 11, e2102807. [Google Scholar] [CrossRef]
- Leblanc Latour, M.; Tarar, M.; Hickey, R.J.; Cuerrier, C.M.; Catelas, I.; Pelling, A.E. Decellularized Apple-Derived Scaffolds for Bone Tissue Engineering In Vitro and In Vivo. J. Vis. Exp. 2024, 204, e65226. [Google Scholar] [CrossRef]
- Lin, A.Y.M.; Meyers, M.A.; Vecchio, K.S. Mechanical Properties and Structure of Strombus Gigas, Tridacna Gigas, and Haliotis Rufescens Sea Shells: A Comparative Study. Mater. Sci. Eng. C 2006, 26, 1380–1389. [Google Scholar] [CrossRef]
- Gentili, C.; Palamà, M.E.F.; Sexton, G.; Maybury, S.; Shanahan, M.; Omowunmi-Kayode, Y.Y.; Martin, J.; Johnson, M.; Thompson, K.; Clarkin, O.; et al. Sustainably Cultured Coral Scaffold Supports Human Bone Marrow Mesenchymal Stromal Cell Osteogenesis. Regen. Ther. 2024, 26, 366–381. [Google Scholar] [CrossRef]
- Devi GV, Y.; Nagendra, A.H.; Shenoy, P.S.; Chatterjee, K.; Venkatesan, J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar. Drugs 2022, 20, 589. [Google Scholar] [CrossRef]
- Ji, H.; Li, X.; Chen, D. Cymbiola Nobilis Shell: Toughening Mechanisms in a Crossed-Lamellar Structure. Sci. Rep. 2017, 7, 40043. [Google Scholar] [CrossRef]
- Milazzo, L.; Vulcano, F.; Macioce, G.; Marziali, G.; Iosi, F.; Bertuccini, L.; Falchi, M.; Rech, F.; Giampaolo, A.; Pecci, R.; et al. Silk Fibroin Scaffolds as Biomaterials for 3D Mesenchymal Stromal Cells Cultures. Appl. Sci. 2021, 11, 11345. [Google Scholar] [CrossRef]
- Rahman, M.; Dip, T.M.; Nur, M.G.; Padhye, R.; Houshyar, S. Fabrication of Silk Fibroin-Derived Fibrous Scaffold for Biomedical Frontiers. Macromol. Mater. Eng. 2024, 309, 2300422. [Google Scholar] [CrossRef]
- Contessi Negrini, N.; Toffoletto, N.; Farè, S.; Altomare, L. Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and Tendon Tissue Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 723. [Google Scholar] [CrossRef]
- Wei, K.; Kim, B.-S.; Kim, I.-S. Fabrication and Biocompatibility of Electrospun Silk Biocomposites. Membranes 2011, 1, 275–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, M.; Yang, C.; Pan, Y.; Ji, S.; Han, N.; Sun, G. Biomaterials for Bone Defect Repair: Types, Mechanisms and Effects. Int. J. Artif. Organs 2024, 47, 75–84. [Google Scholar] [CrossRef]
- Manohar, S.S.; Das, C.; Kakati, V. Bone Tissue Engineering Scaffolds: Materials and Methods. 3D Print. Addit. Manuf. 2024, 11, 347–362. [Google Scholar] [CrossRef]
- Pais, A.I.; Alves, J.L.; Belinha, J. A Bio-Inspired Remodelling Algorithm Combined with a Natural Neighbour Meshless Method to Obtain Optimized Functionally Graded Materials. Eng. Anal. Bound. Elem. 2022, 135, 145–155. [Google Scholar] [CrossRef]
- Song, X.; Li, X.; Wang, F.; Wang, L.; Lv, L.; Xie, Q.; Zhang, X.; Shao, X. Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 832727. [Google Scholar] [CrossRef] [PubMed]
- Safiaghdam, H.; Nokhbatolfoghahaei, H.; Khojasteh, A. Therapeutic Metallic Ions in Bone Tissue Engineering: A Systematic Review of The Literature. Iran. J. Pharm. Res. 2019, 18, 101–118. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Wang, M.; Backman, L.J.; Chen, J. Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2022, 8, 2321–2335. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, S.; Zheng, Z.; Li, J. Fabrication of Biologically Inspired Electrospun Collagen/Silk Fibroin/Bioactive Glass Composited Nanofibrous Scaffold to Accelerate the Treatment Efficiency of Bone Repair. Regen. Ther. 2022, 21, 122–138. [Google Scholar] [CrossRef]
- Kumar, N.; Saraber, P.; Ding, Z.; Kusumbe, A.P. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front. Immunol. 2021, 12, 798211. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, Q.; Cai, Y.; Chen, Q.; Guo, X.; Li, Z. Mechanical–Chemical Coupled Modeling of Bone Regeneration within a Biodegradable Polymer Scaffold Loaded with VEGF. Biomech. Model. Mechanobiol. 2020, 19, 2285–2306. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, M.P. Advanced Triboelectric Applications of Biomass-Derived Materials: A Comprehensive Review. Materials 2024, 17, 1964. [Google Scholar] [CrossRef]
- Bahraminasab, M. Challenges on Optimization of 3D-Printed Bone Scaffolds. Biomed. Eng. Online 2020, 19, 69. [Google Scholar] [CrossRef]
- Pupilli, F.; Ruffini, A.; Dapporto, M.; Tavoni, M.; Tampieri, A.; Sprio, S. Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics 2022, 7, 112. [Google Scholar] [CrossRef]
- Jin, J.; Wang, D.; Qian, H.; Ruan, C.; Yang, Y.; Li, D.; Wang, G.; Zhu, X.; Hu, Y.; Lei, P. Precision Pore Structure Optimization of Additive Manufacturing Porous Tantalum Scaffolds for Bone Regeneration: A Proof-of-Concept Study. Biomaterials 2025, 313, 122756. [Google Scholar] [CrossRef] [PubMed]
- Sprio, S.; Fricia, M.; Maddalena, G.F.; Nataloni, A.; Tampieri, A. Osteointegration in Cranial Bone Reconstruction: A Goal to Achieve. J. Appl. Biomater. Funct. Mater. 2016, 14, e470–e476. [Google Scholar] [CrossRef]
- Chang, B.S.; Lee, C.K.; Hong, K.S.; Youn, H.J.; Ryu, H.S.; Chung, S.S.; Park, K.W. Osteoconduction at Porous Hydroxyapatite with Various Pore Configurations. Biomaterials 2000, 21, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Sprio, S.; Sandri, M.; Iafisco, M.; Panseri, S.; Filardo, G.; Kon, E.; Marcacci, M.; Tampieri, A. Composite Biomedical Foams for Engineering Bone Tissue. In Biomedical Foams for Tissue Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 249–280. [Google Scholar]
- Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Z.; Wang, X.; Liu, X.; He, W.; Li, Y.; Wu, D.; Wu, S. Personalized PLGA/BCL Scaffold with Hierarchical Porous Structure Resembling Periosteum-Bone Complex Enables Efficient Repair of Bone Defect. Adv. Sci. 2024, 11, e2401589. [Google Scholar] [CrossRef]
- Shao, X.; Wu, Y.; Ding, M.; Chen, X.; Zhou, T.; Huang, C.; Wang, X.; Zong, C.; Liu, Y.; Tian, L.; et al. Strong and Tough β-TCP/PCL Composite Scaffolds with Gradient Structure for Bone Tissue Engineering: Development and Evaluation. Ceram. Int. 2024, 50, 31905–31917. [Google Scholar] [CrossRef]
- Blair, H.C.; Larrouture, Q.C.; Li, Y.; Lin, H.; Beer-Stoltz, D.; Liu, L.; Tuan, R.S.; Robinson, L.J.; Schlesinger, P.H.; Nelson, D.J. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. Tissue Eng. Part B Rev. 2017, 23, 268–280. [Google Scholar] [CrossRef]
- Echave, M.C.; Erezuma, I.; Golafshan, N.; Castilho, M.; Kadumudi, F.B.; Pimenta-Lopes, C.; Ventura, F.; Pujol, A.; Jimenez, J.J.; Camara, J.A.; et al. Bioinspired Gelatin/Bioceramic Composites Loaded with Bone Morphogenetic Protein-2 (BMP-2) Promote Osteoporotic Bone Repair. Mater. Sci. Eng. C 2021, 134, 112539. [Google Scholar] [CrossRef]
- Germain, L.; Fuentes, C.A.; van Vuure, A.W.; des Rieux, A.; Dupont-Gillain, C. 3D-Printed Biodegradable Gyroid Scaffolds for Tissue Engineering Applications. Mater. Des. 2018, 151, 113–122. [Google Scholar] [CrossRef]
- Pu, X.; Tong, L.; Wang, X.; Liu, Q.; Chen, M.; Li, X.; Lu, G.; Lan, W.; Li, Q.; Liang, J.; et al. Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction. ACS Appl. Mater. Interfaces 2022, 14, 20591–20602. [Google Scholar] [CrossRef]
- Toosi, S.; Javid-Naderi, M.J.; Tamayol, A.; Ebrahimzadeh, M.H.; Yaghoubian, S.; Mousavi Shaegh, S.A. Additively Manufactured Porous Scaffolds by Design for Treatment of Bone Defects. Front. Bioeng. Biotechnol. 2024, 11, 1252636. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gong, T.; Yang, Z.; Zhu, H.; Liu, Y.; Wu, C. Designing Anisotropic Porous Bone Scaffolds Using a Self-Learning Convolutional Neural Network Model. Front. Bioeng. Biotechnol. 2022, 10, 973275. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Pan, W.; Liu, B.; Lu, P.; Lin, H.; Huang, J. Gradient Anisotropic Design of Voronoi Porous Structures. Int. J. Mech. Sci. 2024, 278, 109484. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, J.; Chen, J.; Liu, Y.; Wang, H. Application of Additively Manufactured Bone Scaffold: A Systematic Review. Biofabrication 2024, 16, 022007. [Google Scholar] [CrossRef]
- Mohammed, A.; Jiménez, A.; Bidare, P.; Elshaer, A.; Memic, A.; Hassanin, H.; Essa, K. Review on Engineering of Bone Scaffolds Using Conventional and Additive Manufacturing Technologies. 3D Print. Addit. Manuf. 2024, 11, 1418–1440. [Google Scholar] [CrossRef]
- Pobloth, A.-M.; Checa, S.; Razi, H.; Petersen, A.; Weaver, J.C.; Schmidt-Bleek, K.; Windolf, M.; Tatai, A.Á.; Roth, C.P.; Schaser, K.-D.; et al. Mechanobiologically Optimized 3D Titanium-Mesh Scaffolds Enhance Bone Regeneration in Critical Segmental Defects in Sheep. Sci. Transl. Med. 2018, 10, eaam8828. [Google Scholar] [CrossRef]
- Kumar, P.; Shamim; Muztaba, M.; Ali, T.; Bala, J.; Sidhu, H.S.; Bhatia, A. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review. Ann. Biomed. Eng. 2024, 52, 1184–1194. [Google Scholar] [CrossRef]
- Peng, X.; Kuang, X.; Roach, D.J.; Wang, Y.; Hamel, C.M.; Lu, C.; Qi, H.J. Integrating Digital Light Processing with Direct Ink Writing for Hybrid 3D Printing of Functional Structures and Devices. Addit. Manuf. 2021, 40, 101911. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2022, 15, 65. [Google Scholar] [CrossRef]
- Bhushan, B.; Caspers, M. An Overview of Additive Manufacturing (3D Printing) for Microfabrication. Microsyst. Technol. 2017, 23, 1117–1124. [Google Scholar] [CrossRef]
- Hwang, H.H.; Zhu, W.; Victorine, G.; Lawrence, N.; Chen, S. 3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches. Small Methods 2018, 2, 1700277. [Google Scholar] [CrossRef]
- Li, H.-W.; Kang, D.-J.; Blamire, M.G.; Huck, W.T.S. Focused Ion Beam Fabrication of Silicon Print Masters. Nanotechnology 2003, 14, 220–223. [Google Scholar] [CrossRef]
- Kushwaha, A.K.; Rahman, M.H.; Slater, E.; Patel, R.; Evangelista, C.; Austin, E.; Tompkins, E.; McCarroll, A.; Rajak, D.K.; Menezes, P.L. Powder Bed Fusion–Based Additive Manufacturing: SLS, SLM, SHS, and DMLS. In Tribology of Additively Manufactured Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–37. [Google Scholar]
- Perez, R.A.; Mestres, G. Role of Pore Size and Morphology in Musculo-Skeletal Tissue Regeneration. Mater. Sci. Eng. C 2016, 61, 922–939. [Google Scholar] [CrossRef]
- Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioact. Mater. 2018, 3, 278–314. [Google Scholar] [CrossRef]
- Shabana, A.A. Computational Geometry and Finite Element Analysis. In Computational Continuum Mechanics; Wiley: Hoboken, NJ, USA, 2018; pp. 261–277. [Google Scholar]
- Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; et al. Integrating Machine Learning and Multiscale Modeling—Perspectives, Challenges, and Opportunities in the Biological, Biomedical, and Behavioral Sciences. NPJ Digit. Med. 2019, 2, 115. [Google Scholar] [CrossRef]
- Arabnejad Khanoki, S.; Pasini, D. Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants with Functionally Graded Cellular Material. J. Biomech. Eng. 2012, 134, 031004. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Yu, T.X. Dynamic Behaviors of Bio-Inspired Structures: Design, Mechanisms, and Models. Eng. Struct. 2022, 265, 114490. [Google Scholar] [CrossRef]
- Guven, S.; Chen, P.; Inci, F.; Tasoglu, S.; Erkmen, B.; Demirci, U. Multiscale Assembly for Tissue Engineering and Regenerative Medicine. Trends Biotechnol. 2015, 33, 269–279. [Google Scholar] [CrossRef]
- García-Aznar, J.M.; Nasello, G.; Hervas-Raluy, S.; Pérez, M.Á.; Gómez-Benito, M.J. Multiscale Modeling of Bone Tissue Mechanobiology. Bone 2021, 151, 116032. [Google Scholar] [CrossRef]
- Lerebours, C.; Buenzli, P.R.; Scheiner, S.; Pivonka, P. A Multiscale Mechanobiological Model of Bone Remodelling Predicts Site-Specific Bone Loss in the Femur during Osteoporosis and Mechanical Disuse. Biomech. Model. Mechanobiol. 2016, 15, 43–67. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Entezari, A.; Zheng, K.; Fang, J.; Zreiqat, H.; Steven, G.P.; Swain, M.V.; Li, Q. A Machine Learning-Based Multiscale Model to Predict Bone Formation in Scaffolds. Nat. Comput. Sci. 2021, 1, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Ravanbakhsh, H.; Behbahani, R.; Yazdani Sarvestani, H.; Kiyani, E.; Rahmat, M.; Karttunen, M.; Ashrafi, B. Combining Finite Element and Machine Learning Methods to Predict Structures of Architectured Interlocking Ceramics. Adv. Eng. Mater. 2023, 25, 2201408. [Google Scholar] [CrossRef]
- Buccino, F.; Bunt, A.; Lazell, A.; Vergani, L.M. Mechanical Design Optimization of Prosthetic Hand’s Fingers: Novel Solutions towards Weight Reduction. Materials 2022, 15, 2456. [Google Scholar] [CrossRef]
- Josephson, T.O.; Morgan, E.F. Mechanobiological Optimization of Scaffolds for Bone Tissue Engineering. Biomech. Model. Mechanobiol. 2024. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Lyu, Y.; Cheng, L. On the Various Numerical Techniques for the Optimization of Bone Scaffold. Materials 2023, 16, 974. [Google Scholar] [CrossRef]
- Fantini, M.; Curto, M.; De Crescenzio, F. A Method to Design Biomimetic Scaffolds for Bone Tissue Engineering Based on Voronoi Lattices. Virtual Phys. Prototyp. 2016, 11, 77–90. [Google Scholar] [CrossRef]
- Lei, H.-Y.; Li, J.-R.; Xu, Z.-J.; Wang, Q.-H. Parametric Design of Voronoi-Based Lattice Porous Structures. Mater. Des. 2020, 191, 108607. [Google Scholar] [CrossRef]
- Kechagias, S.; Oosterbeek, R.N.; Munford, M.J.; Ghouse, S.; Jeffers, J.R.T. Controlling the Mechanical Behaviour of Stochastic Lattice Structures: The Key Role of Nodal Connectivity. Addit. Manuf. 2022, 54, 102730. [Google Scholar] [CrossRef]
- Du, Y.; Liang, H.; Xie, D.; Mao, N.; Zhao, J.; Tian, Z.; Wang, C.; Shen, L. Design and Statistical Analysis of Irregular Porous Scaffolds for Orthopedic Reconstruction Based on Voronoi Tessellation and Fabricated via Selective Laser Melting (SLM). Mater. Chem. Phys. 2020, 239, 121968. [Google Scholar] [CrossRef]
- Soize, C. Design Optimization under Uncertainties of a Mesoscale Implant in Biological Tissues Using a Probabilistic Learning Algorithm. Comput. Mech. 2018, 62, 477–497. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Da, D.; Fuge, M.; Rai, R. IH-GAN: A Conditional Generative Model for Implicit Surface-Based Inverse Design of Cellular Structures. Comput. Methods Appl. Mech. Eng. 2022, 396, 115060. [Google Scholar] [CrossRef]
- Heljak, M.K.; Kurzydlowski, K.J.; Swieszkowski, W. Computer Aided Design of Architecture of Degradable Tissue Engineering Scaffolds. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1623–1632. [Google Scholar] [CrossRef] [PubMed]
- Mairpady, A.; Mourad, A.-H.I.; Mozumder, M.S. Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers 2022, 14, 1802. [Google Scholar] [CrossRef]
- Yin, H.; Zheng, X.; Wen, G.; Zhang, C.; Wu, Z. Design Optimization of a Novel Bio-Inspired 3D Porous Structure for Crashworthiness. Compos. Struct. 2021, 255, 112897. [Google Scholar] [CrossRef]
- Carrillo, F.; Roner, S.; von Atzigen, M.; Schweizer, A.; Nagy, L.; Vlachopoulos, L.; Snedeker, J.G.; Fürnstahl, P. An Automatic Genetic Algorithm Framework for the Optimization of Three-Dimensional Surgical Plans of Forearm Corrective Osteotomies. Med. Image Anal. 2020, 60, 101598. [Google Scholar] [CrossRef]
- Chanda, S.; Gupta, S.; Kumar Pratihar, D. A Genetic Algorithm Based Multi-Objective Shape Optimization Scheme for Cementless Femoral Implant. J. Biomech. Eng. 2015, 137, 034502. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, B.; Liu, G.; Tang, Y.; Lu, E.; Xie, K.; Lan, C.; Liu, J.; Qin, Z.; Wang, L. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review. Front. Bioeng. Biotechnol. 2021, 9, 641130. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Liu, Y.; Yan, Z.; Wang, Y.-X. Topological Design of a Trabecular Bone Structure With Morphology and Mechanics Control for Additive Manufacturing. IEEE Access 2021, 9, 11123–11133. [Google Scholar] [CrossRef]
- Lin, C.Y.; Kikuchi, N.; Hollister, S.J. A Novel Method for Biomaterial Scaffold Internal Architecture Design to Match Bone Elastic Properties with Desired Porosity. J. Biomech. 2004, 37, 623–636. [Google Scholar] [CrossRef]
- Guest, J.K.; Prévost, J.H. Design of Maximum Permeability Material Structures. Comput. Methods Appl. Mech. Eng. 2007, 196, 1006–1017. [Google Scholar] [CrossRef]
- Guest, J.K.; Prévost, J.H. Optimizing Multifunctional Materials: Design of Microstructures for Maximized Stiffness and Fluid Permeability. Int. J. Solids Struct. 2006, 43, 7028–7047. [Google Scholar] [CrossRef]
- Cilla, M.; Borgiani, E.; Martínez, J.; Duda, G.N.; Checa, S. Machine Learning Techniques for the Optimization of Joint Replacements: Application to a Short-Stem Hip Implant. PLoS ONE 2017, 12, e0183755. [Google Scholar] [CrossRef] [PubMed]
- XIAO, D.; YANG, Y.; SU, X.; WANG, D.; LUO, Z. Topology Optimization of Microstructure and Selective Laser Melting Fabrication for Metallic Biomaterial Scaffolds. Trans. Nonferrous Met. Soc. China 2012, 22, 2554–2561. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Libonati, F.; Ferrario, D.; Rinaudo, L.; Messina, C.; Ulivieri, F.M.; Cesana, B.M.; Strano, M.; Vergani, L. Determinants of Bone Damage: An Ex-Vivo Study on Porcine Vertebrae. PLoS ONE 2018, 13, e0202210. [Google Scholar] [CrossRef]
- Buenzli, P.R.; Pivonka, P.; Gardiner, B.S.; Smith, D.W.; Dunstan, C.R.; Mundy, G.R. Theoretical Analysis of the Spatio-Temporal Structure of Bone Multicellular Units. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics, Sydney, Australia, 19–23 July 2010; Institute of Physics Publishing: Bristol, UK, 2010; Volume 10, p. 10. [Google Scholar]
- Jilka, R.L. Biology of the Basic Multicellular Unit and the Pathophysiology of Osteoporosis. Med. Pediatr. Oncol. 2003, 41, 182–185. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.; Zhang, Z.; Hong, J.; Zhang, X.; Hao, Y.; Wang, J.; Xie, Q.; Zhang, Y.; Li, H.; et al. Beyond Hype: Unveiling the Real Challenges in Clinical Translation of 3D Printed Bone Scaffolds and the Fresh Prospects of Bioprinted Organoids. J. Nanobiotechnol. 2024, 22, 500. [Google Scholar] [CrossRef]
- Sarkhosh-Inanlou, R.; Shafiei-Irannejad, V.; Azizi, S.; Jouyban, A.; Ezzati-Nazhad Dolatabadi, J.; Mobed, A.; Adel, B.; Soleymani, J.; Hamblin, M.R. Applications of Scaffold-Based Advanced Materials in Biomedical Sensing. TrAC Trends Anal. Chem. 2021, 143, 116342. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, W.; Yang, Z.; He, N.; Chen, F.; Han, X.; Zhou, K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. Adv. Mater. 2024, 36, e2403641. [Google Scholar] [CrossRef]
- Sithole, M.N.; Kumar, P.; Du Toit, L.C.; Erlwanger, K.H.; Ubanako, P.N.; Choonara, Y.E. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies. Int. J. Mol. Sci. 2023, 24, 7611. [Google Scholar] [CrossRef]
- Yu, Y.; Hua, S.; Yang, M.; Fu, Z.; Teng, S.; Niu, K.; Zhao, Q.; Yi, C. Fabrication and Characterization of Electrospinning/3D Printing Bone Tissue Engineering Scaffold. RSC Adv. 2016, 6, 110557–110565. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, C.; Zhang, Z.; Liu, H.; Xu, H.; Peng, Z.; Liu, C.; Li, J.; Wang, C.; Xu, T.; et al. 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration. ACS Appl. Mater. Interfaces 2022, 14, 29506–29520. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, L.; Ji, Y.; Deng, H.; Long, M.; Ge, S.; Su, Y.; Chan, S.Y.; Loh, X.J.; Zhuang, A.; et al. A Non-Invasive Smart Scaffold for Bone Repair and Monitoring. Bioact. Mater. 2023, 19, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Ashammakhi, N.; Hernandez, A.L.; Unluturk, B.D.; Quintero, S.A.; Barros, N.R.; Hoque Apu, E.; Bin Shams, A.; Ostrovidov, S.; Li, J.; Contag, C.; et al. Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Adv. Funct. Mater. 2021, 31, 2104149. [Google Scholar] [CrossRef]
- Cavallo, A.; Beccatelli, M.; Favero, A.; Al Kayal, T.; Seletti, D.; Losi, P.; Soldani, G.; Coppedè, N. A Biocompatible Pressure Sensor Based on a 3D-Printed Scaffold Functionalized with PEDOT:PSS for Biomedical Applications. Org. Electron. 2021, 96, 106204. [Google Scholar] [CrossRef]
3D-Printing Techniques | Resolution | Pros | Cons | Ref. |
---|---|---|---|---|
Based on extrusion or drawing such as direct inkjet, bio-ink, and electrospinning printing. |
| Widely used for printing polymer scaffolds (such as PCL and PLA). | Limited by the shape and diametre of the nozzle. Restricted use due to its ability to effectively extrude material. | [182,183,184] |
Based on photopolymerisation such as stereolithography, digital light processing, and two-photon polymerisation techniques. |
| Creation of patient-specific bio-inspired scaffolds: permit the material to take any shape. | Limited to photosensitive polymers. | [182,185,186] |
Selective sintering, melting, or fusion techniques that use different energy sources (ion beam, laser, electron beam, or thermal sintering). |
| Allow a high degree of control over the final shape of the scaffold. | Limited by the high cost of energy sources. This limit can be overcome by using the binder jet technique, which replaces the energy source with a liquid binder such as water or phosphoric acid. | [187,188] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dei Rossi, G.; Vergani, L.M.; Buccino, F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. Materials 2024, 17, 5305. https://doi.org/10.3390/ma17215305
Dei Rossi G, Vergani LM, Buccino F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. Materials. 2024; 17(21):5305. https://doi.org/10.3390/ma17215305
Chicago/Turabian StyleDei Rossi, Greta, Laura Maria Vergani, and Federica Buccino. 2024. "A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair" Materials 17, no. 21: 5305. https://doi.org/10.3390/ma17215305
APA StyleDei Rossi, G., Vergani, L. M., & Buccino, F. (2024). A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. Materials, 17(21), 5305. https://doi.org/10.3390/ma17215305