Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Thermoplastic Starch
2.2.1. Single-Step Preparation by Solution Casting
2.2.2. Single-Step Preparation by Melt Mixing
2.2.3. Two-Step Preparation by Solution Casting Followed by Melt Mixing
2.3. Characterization of TPS Systems
2.3.1. Light Microscopy
2.3.2. Scanning Electron Microscopy
2.3.3. AFM-in-SEM Microscopy
2.3.4. Wide-Angle X-Ray Scattering (WAXS)
2.3.5. Rheology
2.3.6. Dynamic Mechanical Thermal Analysis
2.3.7. Nanoindentation
3. Results and Discussion
3.1. Optimal Preparation Protocol for TPS
3.2. Impact of Maltodextrin on Structure and Properties of TPS
3.2.1. Crystal Structure of TPS/MD Systems
3.2.2. Rheological Properties of TPS/MD Systems
3.2.3. Thermomechanical Properties of TPS/MD Systems
3.3. Impact of Maltodextrin on Processing and Homogeneity of TPS
3.3.1. Processing Temperatures and Torque Moments
3.3.2. Homogeneity of TPS Systems at Standard Processing Temperature
3.3.3. Homogeneity of TPS Systems at Lower Processing Temperatures
3.4. Benefits and Drawbacks of TPS/MD Systems
3.4.1. Lower Processing Temperature of TPS/MD Systems
3.4.2. Lower Homogeneity and Stiffness of TPS/MD Systems
4. Conclusions
- Maltodextrin acted as a lubricating agent that decreased the viscosity, torque moments, and processing temperatures of TPS/MD systems in comparison with the control, maltodextrin-free samples.
- The desired decrease in TPS/MD processing temperatures was accompanied by a slight decrease in system homogeneity, which was not critical at the macroscale, but it could be detected by multiple microscale techniques, such as LM, PLM, and nanoindentation.
- Further research will be focused on (i) further optimization of the preparation protocol in order to achieve lower processing temperatures while keeping the maximal homogeneity of the prepared material, and (ii) evaluation of the effect of MD addition on the properties of real systems, such as TPS/MD blends for technical applications and TPS/MD-based biodegradable systems for the local release of antibiotics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. AFM-in-SEM of TPS/MD Systems
References
- Krejčíková, S.; Ostafińska, A.; Šlouf, M. Termoplastifikovaný Škrob a Jeho Aplikace. Chem. Listy 2018, 112, 531–537. [Google Scholar]
- Cheng, H.; Chen, L.; McClements, D.J.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Starch-Based Biodegradable Packaging Materials: A Review of Their Preparation, Characterization and Diverse Applications in the Food Industry. Trends Food Sci. Technol. 2021, 114, 70–82. [Google Scholar] [CrossRef]
- Cho, H.S.; Moon, H.S.; Kim, M.; Nam, K.; Kim, J.Y. Biodegradability and Biodegradation Rate of Poly(Caprolactone)-Starch Blend and Poly(Butylene Succinate) Biodegradable Polymer under Aerobic and Anaerobic Environment. Waste Manag. 2011, 31, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Nafchi, A.; Moradpour, M.; Saeidi, M.; Alias, A.K. Thermoplastic Starches: Properties, Challenges, and Prospects. Starch-Stärke 2013, 65, 61–72. [Google Scholar] [CrossRef]
- Garcia, M.A.V.T.; Garcia, C.F.; Faraco, A.A.G. Pharmaceutical and Biomedical Applications of Native and Modified Starch: A Review. Starch-Stärke 2020, 72, 1900270. [Google Scholar] [CrossRef]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef]
- Agarwal, S.; Singhal, S.; Godiya, C.B.; Kumar, S. Prospects and Applications of Starch Based Biopolymers. Int. J. Environ. Anal. Chem. 2023, 103, 6907–6926. [Google Scholar] [CrossRef]
- Shi, X.; Zhong, Q.; Zhang, S. Starch-Calcium Inclusion Complexes: Optimizing Transparency, Anti-Fogging, and Fluorescence in Thermoplastic Starch. Carbohydr. Polym. 2024, 348, 122842. [Google Scholar] [CrossRef]
- Tesfaye, T.; Gibril, M.; Sithole, B.; Ramjugernath, D.; Chavan, R.; Chunilall, V.; Gounden, N. Valorisation of Avocado Seeds: Extraction and Characterisation of Starch for Textile Applications. Clean Technol. Environ. Policy 2018, 20, 2135–2154. [Google Scholar] [CrossRef]
- Infante, V.H.P.; Calixto, L.S.; Campos, P.M.B.G.M. Application of Tapioca and Corn Starches as an Alternative for Synthetic Polymers in Cosmetic Products. Braz. J. Pharm. Sci. 2024, 60, e20124. [Google Scholar] [CrossRef]
- Nallasamy, P.; Ramalingam, T.; Nooruddin, T.; Shanmuganathan, R.; Arivalagan, P.; Natarajan, S. Polyherbal Drug Loaded Starch Nanoparticles as Promising Drug Delivery System: Antimicrobial, Antibiofilm and Neuroprotective Studies. Process Biochem. 2020, 92, 355–364. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Nallasamy, P.K.; Suganthy, N.; Kesika, P.; Chaiyasut, C. Pharmaceutical and Biomedical Applications of Starch-Based Drug Delivery System: A Review. J. Drug Deliv. Sci. Technol. 2022, 77, 103890. [Google Scholar] [CrossRef]
- Abd El-Ghany, N.A.; Abdel Aziz, M.S.A.; Abdel-Aziz, M.M.; Mahmoud, Z. Antimicrobial and Swelling Behaviors of Novel Biodegradable Corn Starch Grafted/Poly(4-Acrylamidobenzoic Acid) Copolymers. Int. J. Biol. Macromol. 2019, 134, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Alp, E.; Damkaci, F.; Guven, E.; Tenniswood, M. Starch Nanoparticles for Delivery of the Histone Deacetylase Inhibitor CG-1521 in Breast Cancer Treatment. Int. J. Nanomed. 2019, 14, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Whulanza, Y.; Taufiqurrakhman, M.; Supriadi, S.; Chalid, M.; Kreshanti, P.; Azadi, A. PLA-Sago Starch Implants: The Optimization of Injection Molding Parameter and Plasticizer Material Compositions. Appl. Sci. 2024, 14, 1683. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Zhang, X.-Q.; Zhang, X.-Y.; Yang, B.; Wang, K.; Wang, S.-Q.; Yuan, J.-Y.; Tao, L.; Wei, Y. Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. J. Nanosci. Nanotechnol. 2018, 18, 2345–2351. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, D.; Liu, M.; Fu, L.; Wan, Q.; Mao, L.; Dai, Y.; Wen, Y.; Zhang, X.; Wei, Y. Room Temperature Preparation of Fluorescent Starch Nanoparticles from Starch-Dopamine Conjugates and Their Biological Applications. Mater. Sci. Eng. C 2018, 82, 204–209. [Google Scholar] [CrossRef]
- Montilla-Buitrago, C.E.; Gómez-López, R.A.; Solanilla-Duque, J.F.; Serna-Cock, L.; Villada-Castillo, H.S. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review. Starch-Stärke 2021, 73, 2100060. [Google Scholar] [CrossRef]
- Da Róz, A.L.; Carvalho, A.J.F.D.; Gandini, A.; Curvelo, A.A.D.S. The Effect of Plasticizers on Thermoplastic Starch Compositions Obtained by Melt Processing. Carbohydr. Polym. 2006, 63, 417–424. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Ashogbon, A.O.; Kumar, M. Recent Advances in Thermoplastic Starches for Food Packaging: A Review. Food Packag. Shelf Life 2021, 30, 100743. [Google Scholar] [CrossRef]
- Gajdosova, V.; Strachota, B.; Strachota, A.; Michalkova, D.; Krejcikova, S.; Fulin, P.; Nyc, O.; Brinek, A.; Zemek, M.; Slouf, M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials 2022, 15, 1101. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, A.; Sarazin, P.; Favis, B.D. High Molecular Weight Plasticizers in Thermoplastic Starch/Polyethylene Blends. J. Mater. Sci. 2013, 48, 1799–1811. [Google Scholar] [CrossRef]
- Battegazzore, D.; Bocchini, S.; Nicola, G.; Martini, E.; Frache, A. Isosorbide, a Green Plasticizer for Thermoplastic Starch That Does Not Retrogradate. Carbohydr. Polym. 2015, 119, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.P.; Dufresne, A. Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules 2002, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.D.M.; Da Róz, A.L.; Carvalho, A.J.F.D.; Curvelo, A.A.D.S. The Effect of Glycerol/Sugar/Water and Sugar/Water Mixtures on the Plasticization of Thermoplastic Cassava Starch. Carbohydr. Polym. 2007, 69, 619–624. [Google Scholar] [CrossRef]
- Gao, W.; Liu, P.; Li, X.; Qiu, L.; Hou, H.; Cui, B. The Co-Plasticization Effects of Glycerol and Small Molecular Sugars on Starch-Based Nanocomposite Films Prepared by Extrusion Blowing. Int. J. Biol. Macromol. 2019, 133, 1175–1181. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.; Zhang, Z.; Ye, C.; Chen, Y.; Wei, P.; Wang, Y.; Xia, Y. Thermoplastic Starch Plasticized by Polymeric Ionic Liquid. Eur. Polym. J. 2021, 148, 110367. [Google Scholar] [CrossRef]
- Van Soest, J.J.; Kortleve, P.M. The Influence of Maltodextrins on the Structure and Properties of Compression-Molded Starch Plastic Sheets. J. Appl. Polym. Sci. 1999, 74, 2207–2219. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Jia, L.; Niu, C.; Hu, Z.; Wu, C.; Zhang, S.; Ren, J.; Qin, G.; Zhang, G.; et al. Effect of Functional Groups of Plasticizers on Starch Plasticization. Colloid Polym. Sci. 2024, 302, 1323–1335. [Google Scholar] [CrossRef]
- Niazi, M.B.K.; Zijlstra, M.; Broekhuis, A.A. Spray Drying Thermoplastic Starch Formulations: Need for Processing Aids and Plasticizers? Eur. Polymer. J. 2013, 49, 1861–1870. [Google Scholar] [CrossRef]
- Nevoralová, M.; Koutný, M.; Ujčić, A.; Horák, P.; Kredatusová, J.; Šerá, J.; Růžek, L.; Růžková, M.; Krejčíková, S.; Šlouf, M.; et al. Controlled Biodegradability of Functionalized Thermoplastic Starch Based Materials. Polym. Degrad. Stab. 2019, 170, 108995. [Google Scholar] [CrossRef]
- Smits, A.L.M.; Kruiskamp, P.H.; van Soest, J.J.G.; Vliegenthart, J.F.G. The Influence of Various Small Plasticisers and Malto-Oligosaccharides on the Retrogradation of (Partly) Gelatinised Starch. Carbohydr. Polym. 2003, 51, 417–424. [Google Scholar] [CrossRef]
- Ostafińska, A.; Mikešová, J.; Krejčíková, S.; Nevoralová, M.; Šturcová, A.; Zhigunov, A.; Michálková, D.; Šlouf, M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017, 101, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Ujcic, A.; Krejcikova, S.; Nevoralova, M.; Zhigunov, A.; Dybal, J.; Krulis, Z.; Fulin, P.; Nyc, O.; Slouf, M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020, 7, 9. [Google Scholar] [CrossRef]
- Štícha, R.; Fulín, P.; Nyč, O.; Gajdošová, V.; Pokorný, D.; Šlouf, M. Antimicrobial Activity of the Most Common Antibiotic-Releasing Systems Employed in Current Orthopedic Surgery: In Vitro Study. Acta Chir. Orthop. Traumatol. Cechoslov. 2023, 90, 188–197. [Google Scholar] [CrossRef]
- Ujcic, A.; Nevoralova, M.; Dybal, J.; Zhigunov, A.; Kredatusova, J.; Krejcikova, S.; Fortelny, I.; Slouf, M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019, 6, 284. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Ocelić Bulatović, V.; Mandić, L.; Turković, A.; Kučić Grgić, D.; Jozinović, A.; Zovko, R.; Govorčin Bajsić, E. Environmentally Friendly Packaging Materials Based on Thermoplastic Starch. Chem. Biochem. Eng. Q. 2019, 33, 347–361. [Google Scholar] [CrossRef]
- Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M. Preparation and Characterization of Thermoplastic Starch and Cellulose Nanofibers as Green Nanocomposites: Extrusion Processing. Int. J. Biol. Macromol. 2018, 112, 442–447. [Google Scholar] [CrossRef]
- Son, D.; Lee, J.; Kim, S.K.; Hong, J.; Jung, H.; Shim, J.K.; Kang, D. Effect of Cellulose Nanofiber-Montmorillonite Hybrid Filler on the Melt Blending of Thermoplastic Starch Composites. Int. J. Biol. Macromol. 2024, 254, 127236. [Google Scholar] [CrossRef]
- Slouf, M.; Lednicky, F.; Wandrol, P.; Vackova, T. Polymer surface morphology: Characterization by electron microscopies. In Polymer Surface Characterization; Sabbatini, L., Ed.; Walter de Gruyter: Berlin, Germany, 2022; pp. 169–205. ISBN 978-3-11-027508-7. [Google Scholar]
- van Soest, J.J.; Vliegenthart, J.F. Crystallinity in Starch Plastics: Consequences for Material Properties. Trends Biotechnol. 1997, 15, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.; Liu, J.; Xie, F.; Chen, L. Supramolecular Structure of A- and B-Type Granules of Wheat Starch. Food Hydrocoll. 2013, 31, 68–73. [Google Scholar] [CrossRef]
- Gamarano, D.D.S.; Pereira, I.M.; Da Silva, M.C.; Mottin, A.C.; Ayres, E. Crystal Structure Transformations in Extruded Starch Plasticized with Glycerol and Urea. Polym. Bull. 2020, 77, 4971–4992. [Google Scholar] [CrossRef]
- Castillo, L.A.; López, O.V.; García, M.A.; Barbosa, S.E.; Villar, M.A. Crystalline Morphology of Thermoplastic Starch/Talc Nanocomposites Induced by Thermal Processing. Heliyon 2019, 5, e01877. [Google Scholar] [CrossRef] [PubMed]
- Slouf, M.; Mikesova, J.; Fencl, J.; Stara, H.; Baldrian, J.; Horak, Z. Impact of Dose-Rate on Rheology, Structure and Wear of Irradiated UHMWPE. J. Macromol. Sci. Part B 2009, 48, 587–603. [Google Scholar] [CrossRef]
- Matějka, L.; Janata, M.; Pleštil, J.; Zhigunov, A.; Šlouf, M. Self-Assembly of POSS-Containing Block Copolymers: Fixing the Hierarchical Structure in Networks. Polymer 2014, 55, 126–136. [Google Scholar] [CrossRef]
- Viguié, J.; Molina-Boisseau, S.; Dufresne, A. Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromol. Biosci. 2007, 7, 1206–1216. [Google Scholar] [CrossRef]
- Sessini, V.; Raquez, J.; Lourdin, D.; Maigret, J.; Kenny, J.M.; Dubois, P.; Peponi, L. Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromol. Chem. Phys. 2017, 218, 1700388. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Q.; Ding, T.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci. 2007, 103, 574–586. [Google Scholar] [CrossRef]
- Angellier, H.; Molina-Boisseau, S.; Dole, P.; Dufresne, A. Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules 2006, 7, 531–539. [Google Scholar] [CrossRef]
- Lendvai, L.; Karger-Kocsis, J.; Kmetty, Á.; Drakopoulos, S.X. Production and Characterization of Microfibrillated Cellulose-reinforced Thermoplastic Starch Composites. J. Appl. Polym. Sci. 2016, 133, 42397. [Google Scholar] [CrossRef]
- Sessini, V.; Arrieta, M.P.; Fernández-Torres, A.; Peponi, L. Humidity-Activated Shape Memory Effect on Plasticized Starch-Based Biomaterials. Carbohydr. Polym. 2018, 179, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, B.A.; Rosano, M.B. A Holistic Approach to Energy Efficiency Assessment in Plastic Processing. J. Clean. Prod. 2016, 118, 19–28. [Google Scholar] [CrossRef]
- Abeykoon, C.; McMillan, A.; Nguyen, B.K. Energy Efficiency in Extrusion-Related Polymer Processing: A Review of State of the Art and Potential Efficiency Improvements. Renew. Sustain. Energy Rev. 2021, 147, 111219. [Google Scholar] [CrossRef]
- Chronakis, I.S. On the Molecular Characteristics, Compositional Properties, and Structural-Functional Mechanisms of Maltodextrins: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 599–637. [Google Scholar] [CrossRef]
- Juszczak, L.; Gałkowska, D.; Witczak, T.; Fortuna, T. Effect of Maltodextrins on the Rheological Properties of Potato Starch Pastes and Gels. Int. J. Food Sci. 2013, 2013, 869362. [Google Scholar] [CrossRef]
Sample ID | Sample Composition * | Starch/Glycerol (v/v Ratio) ** | Starch/Water (w/w Ratio) *** |
---|---|---|---|
TPS/0MD | TPS | 7/3 | 1/6 |
TPS/TiO2 | TPS/TiO2 (3%) | 7/3 | 1/6 |
TPS/5MD | TPS/MD (5%) | 7/3 | 1/6 |
TPS/5MD/TiO2 | TPS/MD (5%)/TiO2 (3%) | 7/3 | 1/6 |
TPS/10MD | TPS/MD (10%) | 7/3 | 1/6 |
TPS/10MD/TiO2 | TPS/MD (10%)/TiO2 (3%) | 7/3 | 1/6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, L.; Kouka, S.; Gajdosova, V.; Strachota, B.; Konefał, M.; Pokorny, V.; Pavlova, E.; Stary, Z.; Lukes, J.; Patocka, M.; et al. Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties. Materials 2024, 17, 5474. https://doi.org/10.3390/ma17225474
Rana L, Kouka S, Gajdosova V, Strachota B, Konefał M, Pokorny V, Pavlova E, Stary Z, Lukes J, Patocka M, et al. Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties. Materials. 2024; 17(22):5474. https://doi.org/10.3390/ma17225474
Chicago/Turabian StyleRana, Lata, Saffana Kouka, Veronika Gajdosova, Beata Strachota, Magdalena Konefał, Vaclav Pokorny, Ewa Pavlova, Zdenek Stary, Jaroslav Lukes, Marek Patocka, and et al. 2024. "Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties" Materials 17, no. 22: 5474. https://doi.org/10.3390/ma17225474
APA StyleRana, L., Kouka, S., Gajdosova, V., Strachota, B., Konefał, M., Pokorny, V., Pavlova, E., Stary, Z., Lukes, J., Patocka, M., Hegrova, V., Fortelny, I., & Slouf, M. (2024). Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties. Materials, 17(22), 5474. https://doi.org/10.3390/ma17225474