Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study
Abstract
:1. Introduction
sFRC | everX Posterior (EXP) | everX Flow (EXF) | ||
Launched globally | 2013 | 2019 | ||
Cure depth | 4 mm | 5.5 mm | ||
% of fibres (w/w) | E-glass fibres 5–15% | E-glass fibres 25% | ||
% of particle fillers (w/w) | Barium glass: 60–70% Silicon dioxide: 1–5% | Barium glass: 42–52% Silicon dioxide: Trace | ||
% of resin matrix (w/w) | Bis-GMA: 10–20% TEGDMA: 5–10% | Bis-MEPP 15–25% TEGDMA: 1–10% UDMA: 1–10% | ||
Fibre length | 800 µm | 140 µm | ||
Fibre diameter | 17 µm | 6 µm | ||
Indications | Dentine replacement in large posterior cavities | |||
Endodontically treated teeth | ||||
Cavities with missing cusps | ||||
Dentine replacement in small cavities | ||||
Core build-up | ||||
GC manufacturer [8], Lassila et al., 2020 [24] |
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eltahlah, D.; Lynch, C.D.; Chadwick, B.L.; Blum, I.R.; Wilson, N.H. An update on the reasons for placement and replacement of direct restorations. J. Dent. 2018, 72, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Kopperud, S.E.; Tveit, A.B.; Gaarden, T.; Sandvik, L.; Espelid, I. Longevity of posterior dental restorations and reasons for failure. Eur. J. Oral Sci. 2012, 120, 539–548. [Google Scholar] [CrossRef] [PubMed]
- de Moura, R.C.; Santos, P.S.; Matias, P.; Vitali, F.C.; Hilgert, L.A.; Cardoso, M.; Massignan, C. Knowledge, attitudes, and practice of dentists on Minimal Intervention Dentistry: A systematic review and meta-analysis. J. Dent. 2023, 132, 104484. [Google Scholar] [CrossRef]
- Fráter, M.; Forster, A. New generation of short-fiber reinforced composite restorations of the posterior dentition. Int. Dent.–Afr. Edit. 2018, 9, 7–8. [Google Scholar]
- Goswami, S. Biomimetic dentistry. J. Oral Res. Rev. 2018, 10, 28. [Google Scholar] [CrossRef]
- Keulemans, F.; Garoushi, S.; Lassila, L. Fillings and core build-ups. In Clinical Guide to Principles of Fiber-Reinforced Composites in Dentistry; Vallittu, P., Özcan, M., Eds.; Woodhead Publishing: Oxford, UK, 2017. [Google Scholar]
- GC Manufacturer. A World of Proof Discover the Power of Fibres. 2020. Available online: https://europe.gc.dental/sites/europe.gc.dental/files/products/downloads/everxflow/reference/REF_World_of_Proof_-_Study_Compilation.pdf (accessed on 20 August 2024).
- Vallittu, P.K. High-aspect ratio fillers: Fiber-reinforced composites and their anisotropic properties. Dent. Mater. 2015, 31, 1–7. [Google Scholar] [CrossRef]
- Lassila, L.; Sailynoja, E.; Prinssi, R.; Vallittu, P.K.; Garoushi, S. Fracture behavior of Bi-structure fiber-reinforced composite restorations. J. Mech. Behav. Biomed. Mater. 2020, 101, 103444. [Google Scholar] [CrossRef]
- Garoushi, S.; Tanner, J.; Vallittu, P.; Lassila, L. Preliminary clinical evaluation of short fiber-reinforced composite resin in posterior teeth: 12-months report. Open Dent. J. 2012, 6, 41–45. [Google Scholar] [CrossRef]
- Magne, P.; Boff, L.L.; Oderich, E.; Cardoso, A.C. Computer-aided-design/computer-assisted-manufactured adhesive restoration of molars with a compromised cusp: Effect of fiber-reinforced immediate dentin sealing and cusp overlap on fatigue strength. J. Esthet. Restor. Dent. 2012, 24, 135–146. [Google Scholar] [CrossRef]
- Lassila, L.; Keulemans, F.; Sailynoja, E.; Vallittu, P.K.; Garoushi, S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent. Mater. 2018, 34, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Garoushi, S.K.; Vallittu, P.K.; Wakabayashi, N.; Takahashi, H.; Lassila, L.V. Fracture behavior of single-structure fiber-reinforced composite restorations. Acta Biomater. Odontol. Scand. 2016, 2, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R.; Valceanu, A.S.; Huth, K.C. Fracture toughness of dental restorative materials. Clin. Oral Investig. 2012, 16, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Ferracane, J.L. Comparison of four modes of fracture toughness testing for dental composites. Dent. Mater. 1996, 12, 38–43. [Google Scholar] [CrossRef]
- Sakaguchi, R.; Ferracane, J.; Powers, J. Craig’s Restorative Dental Materials—E-Book, 14th ed.; Mosby: St. Louis, MO, USA, 2019. [Google Scholar]
- Garoushi, S.; Vallittu, P.K.; Lassila, L. Mechanical Properties and Wear of Five Commercial Fibre-Reinforced Filling Materials. Chin. J. Dent. Res. Off. J. Sci. Sect. Chin. Stomatol. Assoc. (CSA) 2017, 20, 137–143. [Google Scholar]
- Vaidya, A.; Pathak, K. 17—Mechanical stability of dental materials. In Applications of Nanocomposite Materials in Dentistry; Asiri, A.M., Inamuddin, Mohammad, A., Eds.; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Bijelic-Donova, J.; Garoushi, S.; Lassila, L.V.J.; Keulemans, F.; Vallittu, P.K. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J. Dent. 2016, 52, 70–78. [Google Scholar] [CrossRef]
- Bijelic-Donova, J.; Garoushi, S.; Vallittu, P.K.; Lassila, L.V.J. Mechanical properties, fracture resistance, and fatigue limits of short fiber reinforced dental composite resin. J. Prosthet. Dent. 2016, 115, 95–102. [Google Scholar] [CrossRef]
- Huang, Q.; Qin, W.; Garoushi, S.; He, J.; Lin, Z.; Liu, F.; Vallittu, P.K.; Lassila, L.V.J. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite. Dent. Mater. J. 2018, 37, 95–103. [Google Scholar] [CrossRef]
- Lassila, L.; Garoushi, S.; Vallittu, P.K.; Sailynoja, E. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J. Mech. Behav. Biomed. Mater. 2016, 60, 331–338. [Google Scholar] [CrossRef]
- Lassila, L.; Keulemans, F.; Vallittu, P.K.; Garoushi, S. Characterization of restorative short-fiber reinforced dental composites. Dent. Mater. J. 2020, 39, 992–999. [Google Scholar] [CrossRef]
- Suzaki, N.; Yamaguchi, S.; Hirose, N.; Tanaka, R.; Takahashi, Y.; Imazato, S.; Hayashi, M. Evaluation of physical properties of fiber-reinforced composite resin. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2020, 36, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite. Dent. Mater. J. 2016, 35, 418–424. [Google Scholar] [CrossRef]
- El Mowafy, O.M.; Watts, D.C. Fracture toughness of human dentin. J. Dent. Res. 1986, 65, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Imbeni, V.; Nalla, R.K.; Bosi, C.; Kinney, J.H.; Ritchie, R.O. In vitro fracture toughness of human dentin. J. Biomed. Mater. Res. A 2003, 66, 1–9. [Google Scholar] [CrossRef]
- Iwamoto, N.; Ruse, N.D. Fracture toughness of human dentin. J. Biomed. Mater. Res. A 2003, 66, 507–512. [Google Scholar] [CrossRef]
- Petersen, R.C. Discontinuous fiber-reinforced composites above critical length. J. Dent. Res. 2005, 84, 365–370. [Google Scholar] [CrossRef]
- Garoushi, S.; Sailynoja, E.; Vallittu, P.K.; Lassila, L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent. Mater. 2013, 29, 835–841. [Google Scholar] [CrossRef]
- Garoushi, S.K.; Hatem, M.; Lassila, L.V.J.; Vallittu, P.K. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomater. Odontol. Scand. 2015, 1, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.K.; Vallittu, P.K.; Lassila, L.V. Short glass fiber-reinforced composite with a semi-interpenetrating polymer network matrix for temporary crowns and bridges. J. Contemp. Dent. Pract. 2008, 9, 14–21. [Google Scholar] [CrossRef]
- Garoushi, S.; Sungur, S.; Boz, Y.; Ozkan, P.; Vallittu, P.K.; Uctasli, S.; Lassila, L. Influence of short-fiber composite base on fracture behavior of direct and indirect restorations. Clin. Oral Investig. 2021, 25, 4543–4552. [Google Scholar] [CrossRef]
- Magne, P.; Milani, T. Short-fiber Reinforced MOD Restorations of Molars with Severely Undermined Cusps. J. Adhes Dent. 2023, 25, 99–106. [Google Scholar] [PubMed]
- Manhart, J.; Kunzelmann, K.H.; Chen, H.Y.; Hickel, R. Mechanical properties and wear behavior of light-cured packable composite resins. Dent. Mater. 2000, 16, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Magne, P. Composite resins and bonded porcelain: The post amalgam era. CDA J. 2006, 34, 135–147. [Google Scholar]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Watanabe, H.; Johnson, W.W.; Latta, M.A.; Miyazaki, M. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. Eur. J. Oral Sci. 2016, 124, 480–489. [Google Scholar] [CrossRef]
- Magne, P.; Belser, U. Biomimetic Restorative Dentistry, 2nd ed.; Quintessence Publishing: Berlin, Germany; Chicago, IL, USA, 2022. [Google Scholar]
- ISO4049; BS EN ISO 4049:2019: Dentistry. Polymer-Based Restorative Materials. British Standards Institute: London, UK, 2019.
- GC Manufacturer. Strong to the Core. 2020. Available online: https://www.gc.dental/europe/sites/europe.gc.dental/files/products/downloads/everxflow/manual/MAN_Comprehensive_Guide.pdf (accessed on 20 August 2024).
- ISO23146; BS EN ISO 23146:2016: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics). Test Methods for Fracture Toughness of Monolithic Ceramics. Single-Edge V-Notch Beam (SEVNB) Method. British Standards Institute: London, UK, 2016.
- ISO20795-1; BS EN ISO 20795-1:2013: Dentistry. Base Polymers: Denture Base Polymers. British Standards Institute: London, UK, 2013.
- Abdul-Monem, M.M.; El-Gayar, I.L.; Al-Abbassy, F.H. Effect of aging on the flexural strength and fracture toughness of a fiber reinforced composite resin versus two nanohybrid composite resins. Alex. Dent. J. 2016, 41, 328–335. [Google Scholar] [CrossRef]
- Abouelleil, H.; Pradelle, N.; Villat, C.; Attik, N.; Colon, P.; Grosgogeat, B. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites. Restor. Dent. Endod. 2015, 40, 262–270. [Google Scholar] [CrossRef]
- Alshabib, A.; Silikas, N.; Watts, D.C. Hardness and fracture toughness of resin-composite materials with and without fibers. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2019, 35, 1194–1203. [Google Scholar] [CrossRef]
= Fracture toughness | Pmax = max load exerted on the specimen at fracture in Newtons (N) | L = length span | b = width | h = height | a = crack length |
where | |||||
and = the geometrical function dependent on | |||||
ISO20795-1 [43] |
Depth (mm) | ||||
---|---|---|---|---|
Material | 2 | 3 | 4 | Material Mean |
everX Flow (EXF) | 2.72 (0.37) | 2.36 (0.37) | 2.41 (0.36) | 2.49 (0.39) |
n = 10 | n = 10 | n = 10 | n = 30 | |
everX Posterior (EXP) | 1.90 (0.19) | 2.16 (0.29) | 2.31 (0.23) | 2.13 (0.29) |
n = 10 | n = 10 | n = 10 | n = 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamourieh, N.; Faigenblum, M.; Blizard, R.; Leung, A.; Fine, P. Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study. Materials 2024, 17, 5368. https://doi.org/10.3390/ma17215368
Kamourieh N, Faigenblum M, Blizard R, Leung A, Fine P. Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study. Materials. 2024; 17(21):5368. https://doi.org/10.3390/ma17215368
Chicago/Turabian StyleKamourieh, Noor, Maurice Faigenblum, Robert Blizard, Albert Leung, and Peter Fine. 2024. "Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study" Materials 17, no. 21: 5368. https://doi.org/10.3390/ma17215368
APA StyleKamourieh, N., Faigenblum, M., Blizard, R., Leung, A., & Fine, P. (2024). Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study. Materials, 17(21), 5368. https://doi.org/10.3390/ma17215368