Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Design
2.2. Specimen Preparation
2.3. Testing Setups
2.4. Measurement and Instrumentation
2.5. Double-K Fracture Model
2.6. Boundary Effect Model
3. Results
3.1. Material Characterization
3.2. Failure Pattern
3.3. Crack Initiation Load
3.4. P-CMOD Curves
3.5. Compliance Curve
3.6. Calculated Fracture Toughness by DKFM
3.7. Calculated Fracture Toughness by BEM
4. Discussion
4.1. Comparison with the Literature
4.2. Comparison Between Fracture Models
4.3. Sensitivity of βch and βfic
4.4. Research Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.T.; Zhan, X.W.; Zhu, X.F.; Zhang, W.X. Fatigue evaluation of steel-concrete composite deck in steel truss bridge—A case study. Front. Struct. Civ. Eng. 2022, 16, 1336–1350. [Google Scholar] [CrossRef]
- Riyar, R.L.; Mansi; Bhowmik, S. Fatigue behaviour of plain and reinforced concrete: A systematic review. Theor. Appl. Fract. Mech. 2023, 125, 103867. [Google Scholar] [CrossRef]
- Chen, H.T.; Li, D.W.; Zhang, W.X.; Xie, Y.P. Live load testing on highway composite deck of rail-cum-road bridge. China J. Highw. Transp. 2023, 36, 211–224. [Google Scholar]
- Hu, X.Z.; Wittmann, F.H. Fracture energy and fracture process zone. Mater. Struct. 1992, 25, 319–326. [Google Scholar] [CrossRef]
- Hillerborg, A. Application of the fictitious crack model to different types of materials. Int. J. Fract. 1991, 51, 95–102. [Google Scholar] [CrossRef]
- Guinea, G.V.; Elices, M.; Planas, J. Assessment of the tensile strength through size effect curves. Eng. Fract. Mech. 2000, 65, 189–207. [Google Scholar] [CrossRef]
- Hillerborg, A.; Modéer, M.; Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–782. [Google Scholar] [CrossRef]
- Deng, Z.C. Fracture toughness of high strength concrete. Concrete 1995, 17, 3–5+30. [Google Scholar]
- Shah, S.P. Size-effect method for determining fracture energy and process zone size of concrete. Mater. Struct. 1990, 23, 461–465. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Rahimi, R.S.; Allahyari, H. A new empirical formula for prediction of fracture energy of concrete based on the artificial neural networks. Eng. Fract. Mech. 2017, 186, 466–482. [Google Scholar] [CrossRef]
- Wu, Z.M.; Zhao, G.F. CTODC criteria for crack propagation of concrete. J. Dalian Univ. Technol. 1995, 35, 699–702. [Google Scholar]
- Xu, S.L.; Wang, Q.M.; Lyu, Y.; Li, Q.H.; Reinhardt, H.W. Prediction of fracture parameters of concrete using an artificial neural network approach. Eng. Fract. Mech. 2021, 258, 108090. [Google Scholar] [CrossRef]
- Wu, Z.M.; Yang, S.T.; Hu, X.Z.; Zheng, J.J. An analytical model to predict the effective fracture toughness of concrete for three-point bending notched beams. Eng. Fract. Mech. 2006, 73, 2166–2191. [Google Scholar] [CrossRef]
- RILEM. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 1985, 18, 287–290. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Becq-Giraudon, E. Statistical prediction of fracture parameters of concrete and implications for choice of testing standard. Cem. Concr. Res. 2002, 32, 529–556. [Google Scholar] [CrossRef]
- Hoover, C.G.; Bažant, Z.P.; Vorel, J.; Wendner, R.; Hubler, M.H. Comprehensive concrete fracture tests: Description and results. Eng. Fract. Mech. 2013, 114, 92–103. [Google Scholar] [CrossRef]
- Amparano, F.E.; Xi, Y.P.; Roh, Y.S. Experimental study on the effect of aggregate content on fracture behavior of concrete. Eng. Fract. Mech. 2000, 67, 65–84. [Google Scholar] [CrossRef]
- Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Vaseghi, A.J.; Rabbanifar, S.; Rahmani, E. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete. Cem. Concr. Res. 2014, 66, 75–90. [Google Scholar] [CrossRef]
- Siregar, A.P.N.; Rafiq, M.I.; Mulheron, M. Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Constr. Build. Mater. 2017, 150, 252–259. [Google Scholar] [CrossRef]
- Hu, S.W.; Fan, B. Study on the bilinear softening mode and fracture parameters of concrete in low temperature environments. Eng. Fract. Mech. 2019, 211, 1–16. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Qiao, Y.M.; Hu, S.W. Determining concrete fracture parameters using three-point bending beams with various specimen spans. Theor. Appl. Fract. Mech. 2020, 107, 102465. [Google Scholar] [CrossRef]
- Yang, S.T.; Wang, M.X.; Lan, T.; Liu, S.T.; Sun, Z.K. Fracture model for predicting tensile strength and fracture toughness of concrete under different loading rates. Constr. Build. Mater. 2023, 365, 129978. [Google Scholar] [CrossRef]
- Guan, J.F.; Song, Z.K.; Zhang, M.; Yao, X.H.; Li, L.L.; Hu, S.N. Concrete fracture considering aggregate grading. Theor. Appl. Fract. Mech. 2021, 112, 102833. [Google Scholar] [CrossRef]
- Yang, S.T.; Zhang, X.S.; Yu, M.; Yao, J. An analytical approach to predict fracture parameters of coral aggregate concrete immersed in seawater. Ocean Eng. 2019, 191, 106508. [Google Scholar] [CrossRef]
- Yang, S.T.; Li, L.Z.; Sun, Z.K.; Wang, J.H.; Guo, Q.H.; Yang, Y.S. A closed-form fracture model to predict tensile strength and fracture toughness of alkali-activated slag and fly ash blended concrete made by sea sand and recycled coarse aggregate. Constr. Build. Mater. 2021, 300, 123976. [Google Scholar] [CrossRef]
- Yang, S.T.; Lan, T.; Sun, Z.K.; Xu, M.Q.; Wang, M.X.; Feng, Y.D. A predictive model to determine tensile strength and fracture toughness of 3D printed fiber reinforced concrete loaded in different directions. Theor. Appl. Fract. Mech. 2022, 119, 103309. [Google Scholar] [CrossRef]
- Guo, Y.C.; Pan, H.M.; Shen, A.Q.; Zhao, Z.H.; Wu, H.S.; Li, Z.N. Fracture properties of basalt-fiber-reinforced bridge concrete under dynamic fatigue loading. Structures 2023, 56, 105018. [Google Scholar] [CrossRef]
- Zhao, X.X.; Wei, H.; Wu, T.; Zhang, T.; Ren, W.T. Analysis of fracture mechanism and fracture energy prediction of lightweight aggregate concrete. Eng. Fract. Mech. 2024, 303, 110142. [Google Scholar] [CrossRef]
- Wu, Z.M.; Zhao, G.F.; Huang, C.K. Investigation of fatigue fracture properties of concrete. China Civil Eng. J. 1995, 28, 59–65. [Google Scholar]
- Xu, S.L.; Reinhardt, H.W. Determination of double K criterion for crack propagation in quasi brittle fracture, part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. Int. J. Fract. 1999, 98, 151–177. [Google Scholar] [CrossRef]
- Wu, Z.M.; Xu, S.L.; Ding, Y.N.; Lu, X.J.; Liu, J.Y.; Ding, S.G. The double-k fracture parameter of concrete for non-standard three point bending beam specimens. Eng. Sci. 2001, 3, 76–81. [Google Scholar]
- Hu, X.Z.; Duan, K. Size effect and quasi-brittle fracture: The role of FPZ. Int. J. Fract. 2008, 154, 3–14. [Google Scholar] [CrossRef]
- Chen, Y.; Han, X.Y.; Hu, X.Z.; Li, Q.B. Design of concrete fracture property by average aggregate size. Cem. Concr. Compos. 2021, 122, 104105. [Google Scholar] [CrossRef]
- Wang, Y.S.; Hu, X.Z. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples. Rock Mech. Rock Eng. 2017, 50, 17–28. [Google Scholar] [CrossRef]
- Chen, Y.; Han, X.Y.; Hu, X.Z.; Zhu, W.C. Statistics-assisted fracture modelling of small un-notched and large notched sandstone specimens with specimen-size/grain-size ratio from 30 to 900. Eng. Fract. Mech. 2020, 235, 107134. [Google Scholar] [CrossRef]
- Wang, B.H.; Hu, X.Z.; Shao, Y.H.; Xu, O.M.; Lu, P.M.; Li, K.X. Modelling and testing of temperature dependent strength and toughness of asphalt concrete from 10 °C to + 23 °C using small notched beams. Constr. Build. Mater. 2021, 294, 123580. [Google Scholar] [CrossRef]
- Xiao, K. Experimental Studies on Mode I Fracture of Fully-Graded Concrete and Numerical Simulation on Complete Process of Cracking. Master’s Thesis, Dalian University of Technology, Dalian, China, 2012. [Google Scholar]
- Guinea, G.V.; Pastor, J.Y.; Planas, J.; Elices, M. Stress intensity factor, compliance and CMOD for a general three-point beam. Int. J. Fract. 1998, 39, 103–116. [Google Scholar] [CrossRef]
- GB/T 50081; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
- GB 50010; Code for Design of Concrete Structures. China Architecture & Building Press: Beijing, China, 2015.
- Chamberlain, D.A.; Boswell, L.F. Numerical methods in fracture mechanics. In Fracture Mechanics of Concrete; Wittmann, F.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 503–538. [Google Scholar]
- Li, X.D.; Dong, W.; Wu, Z.M.; Chang, Q.R. Experimental investigation on double-k fracture parameters for small size specimens of concrete. Eng. Mech. 2010, 27, 166–171. [Google Scholar]
- Chen, H.T.; Sun, Z.Y.; Zhang, X.W.; Fan, J.H. Tensile fatigue properties of ordinary plain concrete and reinforced concrete under flexural loading. Materials 2023, 16, 6447. [Google Scholar] [CrossRef]
- Kotz, S.; Read, C.B.; Balakrishnan, N.; Vidakovic, B. Encyclopedia of Statistical Sciences; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Wu, Y.L.; Ma, J.B. Simulation study on fracture failure of concrete beams based on extended finite element method. China Concr. Cem. Prod. 2019, 39, 73–78. [Google Scholar]
Parameters | Cement | Fine Aggregate | Coarse Aggregate | Water | Additive Agent | Mineral Powder | Fly Ash |
---|---|---|---|---|---|---|---|
Properties | P.O 42.5 | Medium sand | Crushed, 5~25 mm | – | STD-PCS | S95 | IIF |
Mass per m3 of concrete (kg/m3) | 347 | 670 | 1048 | 160 | 9.20 | 69 | 46 |
Mix ratio | 1 | 1.93 | 3.02 | 0.46 | 0.03 | 0.20 | 0.13 |
Series | Specimen | Dimension L × H × B (mm) | Initial Notch Size a0 (mm) | Span/Height Ratio S/H | Notch/Height Ratio α0 | Number of Specimens |
---|---|---|---|---|---|---|
PC | JZ-W-2-n | 600 × 200 × 100 | 20 | 2.5 | 0.1 | 6 |
WJ-n | 600 × 200 × 100 | 20 | 2.5 | 0.1 | 6 | |
JZ-W-4-n | 600 × 200 × 100 | 40 | 2.5 | 0.2 | 4 | |
JZ-W-6-n | 600 × 200 × 100 | 60 | 2.5 | 0.3 | 4 | |
JZ-W-8-n | 600 × 200 × 100 | 80 | 2.5 | 0.4 | 4 | |
JZ-W-10-n | 600 × 200 × 100 | 100 | 2.5 | 0.5 | 4 | |
RC | JZ-Y-2-n | 600 × 200 × 100 | 20 | 2.5 | 0.1 | 6 |
Group | Measured Compressive Strength (MPa) | Statistical Characteristics | ||||
---|---|---|---|---|---|---|
Cube 1 | Cube 2 | Cube 3 | Mean Value (MPa) | Standard Deviation (MPa) | Coefficient of Variation | |
1 | 69.8 | 64.80 | 56.4 | 63.67 | 6.77 | 0.11 |
2 | 73.4 | 61.5 | 72.5 | 69.13 | 6.63 | 0.10 |
3 | 63.9 | 65.9 | 60.7 | 63.50 | 2.62 | 0.04 |
Specimen | Peak Load Pu (kN) | Cracking Load Pini1 (kN) | Cracking Load Pini2 (kN) | Averaged Cracking Load Pini (kN) | Pini/Pu | CMODc (mm) | Compliance (mm/N) |
---|---|---|---|---|---|---|---|
JZ-W-2-1 | 24.81 | 11.38 | 14.67 | 13.03 | 0.52 | 0.03 | 8.60 × 10−7 |
JZ-W-2-2 | 24.06 | 12.74 | N.A. 1 | 12.74 | 0.53 | 0.05 | 1.25 × 10−6 |
JZ-W-2-3 | 23.12 | N.A. 1 | 10.10 | 10.10 | 0.44 | 0.04 | 1.20 × 10−6 |
JZ-W-2-4 | 25.59 | 21.97 | 21.06 | 21.51 | 0.84 | 0.05 | 1.22 × 10−6 |
JZ-W-2-5 | 24.04 | 22.00 | 21.22 | 21.61 | 0.90 | 0.04 | 1.02 × 10−6 |
JZ-W-2-6 | 24.34 | 22.76 | N.A. 1 | 22.76 | 0.94 | 0.04 | 9.16 × 10−7 |
WJ-1 | 21.66 | N.A. 2 | N.A. 2 | N.A. 2 | N.A. 2 | 0.05 | 1.33 × 10−6 |
WJ-2 | 27.11 | N.A. 2 | N.A. 2 | N.A. 2 | N.A. 2 | 0.05 | 8.56 × 10−7 |
WJ-3 | 28.77 | N.A. 2 | N.A. 2 | N.A. 2 | N.A. 2 | 0.05 | 8.12 × 10−7 |
WJ-4 | 28.31 | N.A. 2 | N.A. 2 | N.A. 2 | N.A. 2 | 0.05 | 6.07 × 10−7 |
WJ-5 | 33.39 | N.A. 2 | N.A. 2 | N.A. 2 | N.A. 2 | 0.04 | 7.04 × 10−7 |
WJ-6 | 21.99 | N.A. 2 | N.A. 2 | N.A. 2 | N.A. 2 | 0.06 | 1.10 × 10−6 |
JZ-W-4-1 | 20.16 | 11.78 | 11.44 | 11.61 | 0.58 | 0.06 | 2.11 × 10−6 |
JZ-W-4-2 | 20.06 | 13.78 | 19.38 | 16.58 | 0.83 | 0.05 | 1.83 × 10−6 |
JZ-W-4-3 | 17.31 | 8.62 | N.A. 1 | 8.62 | 0.50 | 0.06 | 2.20 × 10−6 |
JZ-W-4-4 | 16.57 | 13.37 | 11.85 | 12.61 | 0.76 | 0.06 | 2.71 × 10−6 |
JZ-W-6-1 | 12.21 | 6.47 | 6.44 | 6.45 | 0.53 | 0.07 | 3.94 × 10−6 |
JZ-W-6-2 | 12.07 | 8.63 | 6.67 | 7.65 | 0.63 | 0.08 | 4.05 × 10−6 |
JZ-W-6-4 | 13.14 | 5.82 | N.A. 1 | 5.82 | 0.44 | 0.07 | 3.91 × 10−6 |
JZ-W-8-2 | 11.76 | 6.67 | 8.95 | 7.81 | 0.66 | 0.07 | 4.57 × 10−6 |
JZ-W-8-3 | 11.55 | 10.15 | 8.82 | 9.48 | 0.82 | 0.07 | 4.38 × 10−6 |
JZ-W-8-4 | 8.74 | 4.76 | 6.21 | 5.48 | 0.63 | 0.05 | 4.79 × 10−6 |
JZ-W-10-1 | 7.03 | 4.85 | 4.84 | 4.85 | 0.69 | 0.06 | 6.70 × 10−6 |
JZ-W-10-2 | 7.95 | 4.63 | 4.71 | 4.67 | 0.59 | 0.06 | 6.67 × 10−6 |
JZ-W-10-3 | 9.04 | 4.34 | 3.36 | 3.85 | 0.43 | 0.07 | 5.21 × 10−6 |
JZ-W-10-4 | 9.83 | 6.68 | 8.95 | 7.81 | 0.79 | 0.11 | 5.76 × 10−6 |
Specimen | Peak Load Pu (kN) | Cracking Load Pini1 (kN) | Cracking Load Pini2 (kN) | Averaged Cracking Load Pini (kN) | Pini/Pu | CMODc (mm) | Compliance (mm/N) |
---|---|---|---|---|---|---|---|
JZ-Y-2-1 | 76.04 | 13.82 | N.A. * | 13.82 | 0.18 | 0.51 | 9.05 × 10−7 |
JZ-Y-2-2 | 82.51 | 18.97 | 22.88 | 20.92 | 0.25 | 0.83 | 9.30 × 10−7 |
JZ-Y-2-3 | 93.97 | 25.06 | 24.42 | 24.74 | 0.26 | 2.03 | 1.18 × 10−6 |
JZ-Y-2-4 | 93.85 | 26.01 | 26.56 | 26.29 | 0.28 | 1.59 | 8.50 × 10−7 |
JZ-Y-2-5 | 71.04 | 22.30 | 26.06 | 24.18 | 0.34 | 0.40 | 8.25 × 10−7 |
JZ-Y-2-6 | 69.45 | 14.90 | 10.46 | 12.68 | 0.18 | 0.52 | 8.84 × 10−7 |
Specimen | Pini (kN) | a0 (mm) | α0 | F(α0) | () | Pu (kN) | CMODc (mm) | γ | αc | ac (mm) | F(αc) | () |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JZ-W-2-1 | 13.03 | 20 | 0.1 | 1.01 | 0.62 | 24.81 | 0.03 | 0.75 | 0.21 | 42.42 | 0.99 | 1.69 |
JZ-W-2-2 | 12.74 | 20 | 0.1 | 1.01 | 0.61 | 24.06 | 0.05 | 1.28 | 0.31 | 62.07 | 1.05 | 2.11 |
JZ-W-2-3 | 10.1 | 20 | 0.1 | 1.01 | 0.48 | 23.12 | 0.04 | 1.07 | 0.28 | 55.14 | 1.02 | 1.86 |
JZ-W-2-4 | 21.51 | 20 | 0.1 | 1.01 | 1.02 | 25.59 | 0.05 | 1.20 | 0.30 | 59.72 | 1.04 | 2.18 |
JZ-W-2-5 | 21.61 | 20 | 0.1 | 1.01 | 1.03 | 24.04 | 0.04 | 1.03 | 0.27 | 53.70 | 1.02 | 1.90 |
JZ-W-2-6 | 22.76 | 20 | 0.1 | 1.01 | 1.08 | 24.34 | 0.04 | 1.01 | 0.27 | 53.24 | 1.02 | 1.91 |
WJ-1 | N.A. * | 20 | 0.1 | 1.01 | N.A. * | 21.66 | 0.05 | 1.42 | 0.33 | 66.12 | 1.08 | 2.01 |
WJ-2 | N.A. * | 20 | 0.1 | 1.01 | N.A. * | 27.11 | 0.05 | 1.14 | 0.29 | 57.54 | 1.03 | 2.24 |
WJ-3 | N.A. * | 20 | 0.1 | 1.01 | N.A. * | 28.77 | 0.05 | 1.07 | 0.28 | 55.31 | 1.02 | 2.31 |
WJ-4 | N.A. * | 20 | 0.1 | 1.01 | N.A. * | 28.31 | 0.05 | 1.09 | 0.28 | 55.91 | 1.03 | 2.30 |
WJ-5 | N.A. * | 20 | 0.1 | 1.01 | N.A. * | 33.39 | 0.04 | 0.74 | 0.21 | 42.11 | 0.99 | 2.26 |
WJ-6 | N.A. * | 20 | 0.1 | 1.01 | N.A. * | 21.99 | 0.06 | 1.68 | 0.36 | 72.61 | 1.12 | 2.22 |
JZ-W-4-1 | 11.61 | 40 | 0.2 | 0.99 | 0.77 | 20.16 | 0.06 | 1.83 | 0.38 | 75.99 | 1.14 | 2.13 |
JZ-W-4-2 | 16.58 | 40 | 0.2 | 0.99 | 1.10 | 20.06 | 0.05 | 1.54 | 0.35 | 69.10 | 1.10 | 1.93 |
JZ-W-4-3 | 8.62 | 40 | 0.2 | 0.99 | 0.57 | 17.31 | 0.06 | 2.14 | 0.41 | 81.88 | 1.20 | 1.98 |
JZ-W-4-4 | 12.61 | 40 | 0.2 | 0.99 | 0.84 | 16.57 | 0.06 | 2.23 | 0.42 | 83.55 | 1.21 | 1.94 |
JZ-W-6-1 | 6.45 | 60 | 0.3 | 1.04 | 0.56 | 12.21 | 0.07 | 3.53 | 0.50 | 100.61 | 1.43 | 1.85 |
JZ-W-6-2 | 7.65 | 60 | 0.3 | 1.04 | 0.66 | 12.07 | 0.08 | 4.08 | 0.53 | 105.70 | 1.51 | 1.99 |
JZ-W-6-4 | 5.82 | 60 | 0.3 | 1.04 | 0.51 | 13.14 | 0.07 | 3.28 | 0.49 | 97.97 | 1.39 | 1.91 |
JZ-W-8-2 | 7.81 | 80 | 0.4 | 1.18 | 0.88 | 11.76 | 0.07 | 3.67 | 0.51 | 101.94 | 1.45 | 1.83 |
JZ-W-8-3 | 9.48 | 80 | 0.4 | 1.18 | 1.06 | 11.55 | 0.07 | 3.74 | 0.51 | 102.58 | 1.46 | 1.81 |
JZ-W-8-4 | 5.48 | 80 | 0.4 | 1.18 | 0.62 | 8.74 | 0.05 | 3.53 | 0.50 | 100.53 | 1.42 | 1.33 |
JZ-W-10-1 | 4.85 | 100 | 0.5 | 1.42 | 0.74 | 7.03 | 0.06 | 5.26 | 0.57 | 114.20 | 1.68 | 1.35 |
JZ-W-10-2 | 4.67 | 100 | 0.5 | 1.42 | 0.71 | 7.95 | 0.06 | 4.65 | 0.55 | 110.13 | 1.60 | 1.42 |
JZ-W-10-3 | 3.85 | 100 | 0.5 | 1.42 | 0.59 | 9.04 | 0.07 | 4.77 | 0.55 | 110.99 | 1.61 | 1.64 |
JZ-W-10-4 | 7.81 | 100 | 0.5 | 1.42 | 1.18 | 9.83 | 0.11 | 6.90 | 0.61 | 122.71 | 1.91 | 2.21 |
Specimen | Peak Load Pu (kN) | Initial Notch Size a0 (mm) | α0 | Y(α0) | ae (mm) | ft (MPa) | () | σn (MPa) | ae/afpz |
---|---|---|---|---|---|---|---|---|---|
JZ-W-2-1 | 24.81 | 20 | 0.1 | 0.93 | 8.98 | 4.91 | 2.19 | 4.52 | 0.18 |
JZ-W-2-2 | 24.06 | 20 | 0.1 | 0.93 | 8.98 | 4.76 | 2.13 | 4.38 | 0.18 |
JZ-W-2-3 | 23.12 | 20 | 0.1 | 0.93 | 8.98 | 4.57 | 2.05 | 4.21 | 0.18 |
JZ-W-2-4 | 25.59 | 20 | 0.1 | 0.93 | 8.98 | 5.06 | 2.26 | 4.66 | 0.18 |
JZ-W-2-5 | 24.04 | 20 | 0.1 | 0.93 | 8.98 | 4.76 | 2.13 | 4.38 | 0.18 |
JZ-W-2-6 | 24.34 | 20 | 0.1 | 0.93 | 8.98 | 4.81 | 2.15 | 4.43 | 0.18 |
WJ-1 | 21.66 | 20 | 0.1 | 0.93 | 8.98 | 4.29 | 1.92 | 3.95 | 0.18 |
WJ-2 | 27.11 | 20 | 0.1 | 0.93 | 8.98 | 5.36 | 2.40 | 4.93 | 0.18 |
WJ-3 | 28.77 | 20 | 0.1 | 0.93 | 8.98 | 5.69 | 2.54 | 5.24 | 0.18 |
WJ-4 | 28.31 | 20 | 0.1 | 0.93 | 8.98 | 5.60 | 2.50 | 5.15 | 0.18 |
WJ-5 | 33.39 | 20 | 0.1 | 0.93 | 8.98 | 6.60 | 2.95 | 6.07 | 0.18 |
WJ-6 | 21.99 | 20 | 0.1 | 0.93 | 8.98 | 4.35 | 1.95 | 4.01 | 0.18 |
JZ-W-4-1 | 20.16 | 40 | 0.2 | 0.91 | 10.77 | 4.99 | 2.23 | 4.53 | 0.22 |
JZ-W-4-2 | 20.06 | 40 | 0.2 | 0.91 | 10.77 | 4.97 | 2.22 | 4.51 | 0.22 |
JZ-W-4-3 | 17.31 | 40 | 0.2 | 0.91 | 10.77 | 4.29 | 1.92 | 3.89 | 0.22 |
JZ-W-4-4 | 16.57 | 40 | 0.2 | 0.91 | 10.77 | 4.11 | 1.84 | 3.73 | 0.22 |
JZ-W-6-1 | 12.21 | 60 | 0.3 | 0.95 | 10.40 | 3.82 | 1.71 | 3.48 | 0.21 |
JZ-W-6-2 | 12.07 | 60 | 0.3 | 0.95 | 10.40 | 3.78 | 1.69 | 3.44 | 0.21 |
JZ-W-6-4 | 13.14 | 60 | 0.3 | 0.95 | 10.40 | 4.11 | 1.84 | 3.74 | 0.21 |
JZ-W-8-2 | 11.76 | 80 | 0.4 | 1.07 | 9.48 | 4.77 | 2.13 | 4.37 | 0.19 |
JZ-W-8-3 | 11.55 | 80 | 0.4 | 1.07 | 9.48 | 4.68 | 2.09 | 4.29 | 0.19 |
JZ-W-8-4 | 8.74 | 80 | 0.4 | 1.07 | 9.48 | 3.56 | 1.59 | 3.26 | 0.19 |
JZ-W-10-1 | 7.03 | 100 | 0.5 | 1.30 | 8.37 | 3.87 | 1.73 | 3.58 | 0.17 |
JZ-W-10-2 | 7.95 | 100 | 0.5 | 1.30 | 8.37 | 4.36 | 1.95 | 4.04 | 0.17 |
JZ-W-10-3 | 9.04 | 100 | 0.5 | 1.30 | 8.37 | 4.95 | 2.22 | 4.59 | 0.17 |
JZ-W-10-4 | 9.83 | 100 | 0.5 | 1.30 | 8.37 | 5.38 | 2.41 | 4.98 | 0.17 |
Reference | fcu (MPa) | Water/Cement Ratio | dmax (mm) | Dimension L × H × B (mm) | S/H | Number of Datapoints | α0 | () | or () | Analytical Method |
---|---|---|---|---|---|---|---|---|---|---|
[29] | 30.4 | 0.52 | N.A. * | 550 × 200 × 100 | 2.5 | 13 | 0.20~0.50 | N.A. * | 2.37 | DKFM |
[31] | 44.9 | 0.52 | 10 | 550 × 200 × 100 | 2.5 | 15 | 0.20~0.50 | 1.03 | 2.07 | DKFM |
[8] | 51.2 | 0.27 | 20 | 650 × 150 × 150 | 4.0 | 18 | 0.40~0.55 | N.A. * | 1.08 | N.A. * |
Current study | 65.4 | 0.46 | 25 | 600 × 200 × 100 | 2.5 | 20 or 26 | 0.10~0.50 | 0.78 N.A. * | 1.94 2.11 | DKFM BEM |
βch | βfic | ft | KIC | ||||
---|---|---|---|---|---|---|---|
Mean Value (MPa) | Standard Deviation (MPa) | Coefficient of Variation | Mean Value () | Standard Deviation () | Coefficient of Variation | ||
1.0 | 0.5 | 5.79 | 0.79 | 0.14 | 1.83 | 0.25 | 0.14 |
1.0 | 1.0 | 5.06 | 0.72 | 0.14 | 1.60 | 0.23 | 0.14 |
1.0 | 1.5 | 4.50 | 0.68 | 0.15 | 1.42 | 0.21 | 0.15 |
1.0 | 2.0 | 4.05 | 0.64 | 0.16 | 1.28 | 0.20 | 0.16 |
1.5 | 0.5 | 5.52 | 0.76 | 0.14 | 2.14 | 0.30 | 0.14 |
1.5 | 1.0 | 4.83 | 0.70 | 0.14 | 1.87 | 0.27 | 0.14 |
1.5 | 1.5 | 4.29 | 0.65 | 0.15 | 1.66 | 0.25 | 0.15 |
1.5 | 2.0 | 3.87 | 0.61 | 0.16 | 1.50 | 0.24 | 0.16 |
2.0 | 0.5 | 5.39 | 0.75 | 0.14 | 2.41 | 0.33 | 0.14 |
2.0 | 1.0 | 4.71 | 0.68 | 0.14 | 2.11 | 0.30 | 0.14 |
2.0 | 1.5 | 4.19 | 0.64 | 0.15 | 1.87 | 0.28 | 0.15 |
2.0 | 2.0 | 3.77 | 0.60 | 0.16 | 1.69 | 0.27 | 0.16 |
2.5 | 0.5 | 5.30 | 0.74 | 0.14 | 2.65 | 0.37 | 0.14 |
2.5 | 1.0 | 4.63 | 0.67 | 0.14 | 2.32 | 0.34 | 0.14 |
2.5 | 1.5 | 4.12 | 0.63 | 0.15 | 2.06 | 0.31 | 0.15 |
2.5 | 2.0 | 3.71 | 0.59 | 0.16 | 1.85 | 0.30 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhuo, Y.; Li, D.; Huang, Y. Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models. Materials 2024, 17, 5387. https://doi.org/10.3390/ma17215387
Chen H, Zhuo Y, Li D, Huang Y. Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models. Materials. 2024; 17(21):5387. https://doi.org/10.3390/ma17215387
Chicago/Turabian StyleChen, Huating, Yifan Zhuo, Dewang Li, and Yan Huang. 2024. "Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models" Materials 17, no. 21: 5387. https://doi.org/10.3390/ma17215387
APA StyleChen, H., Zhuo, Y., Li, D., & Huang, Y. (2024). Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models. Materials, 17(21), 5387. https://doi.org/10.3390/ma17215387