Experimental Evaluation of Under Slab Mats (USMs) Made from End-of-Life Tires for Ballastless Tram Track Applications
Abstract
:1. Introduction
2. Testing of Essential Parameters of USMs According to DIN 45673-7
- Continuous support (Figure 3).
3. Laboratory Test Results
3.1. USM Samples and Test Stand
3.2. Results for Three Samples of USM No. 175
3.3. Influence of USM Thickness on Its Elastic Characteristics
3.3.1. USM Samples with a Density of 600 kg/m3
3.3.2. USM Samples with a Density of 500 kg/m3
3.4. Influence of USM Density on Its Elastic Characteristics
3.5. Influence of Space Filling in USM on Its Elastic Characteristics
3.6. Conclusions from Laboratory Tests
- Comparison of test results of USMs with equal density and varied thickness;
- Comparison of test results of USMs with equal thickness and varied density;
- Comparison of test results of USMs with equal thickness and density but with varied space filling (no holes, medium holes, and large holes).
- As the thickness of the USM samples increases (while maintaining the same density and the same way of space filling), the values of the static and dynamic bedding moduli decrease, and this relationship is approximately linear.
- As the density of the USM samples increases (while maintaining the same thickness and the same way of space filling), the values of the static and dynamic bedding moduli increase;
- As the load frequency in the test of dynamic characteristics of the USM sample increases, the value of the dynamic bedding modulus and the value of the dynamic stiffening ratio increase;
- Making holes in the USM samples causes a decrease in the value of static and dynamic bedding modulus.
4. Application of Experimental Test Results in the Analysis of Tram Track Systems with USMs
4.1. Assumptions
- Type 1—structure with discrete supports and discrete fastening of the rail to the floating slab system in the form of a concrete slab (Figure 23);
- Type 2—structure with discrete supports and discrete fastening of the rail to the floating slab system in the form of longitudinal concrete beams (Figure 24).
4.2. Analysis of Tram Track Structures with USMs
- USM no. 173—density 500 kg/m3, thickness 15 mm;
- USM no. 175—density 500 kg/m3, thickness 25 mm;
- USM no. 181—density 500 kg/m3, thickness 40 mm.
5. Conclusions
- Increase of the USM thickness (in mats with the same density and the same way of space filling) results in decreasing values of the static and dynamic bedding moduli—the static bedding modulus decreases by 38–72% (depending on the assessed load range) when the mat thickness changes from 10 mm to 25 mm, and the dynamic bedding modulus decreases by 57–60% (depending on the load frequency);
- An increase in the USM density (in mats with the same thickness and the same way of space filling) results in increasing values of the static and dynamic bedding moduli—observed increases of the static bedding moduli are at the level of 112–239% (depending on the mat thickness and the assessed load range), and in the case of the dynamic bedding moduli 103–163% (depending on the mat thickness and the load frequency);
- Increase of the load frequency in the test of USM dynamic characteristics leads to increasing values of the dynamic bedding modulus and the dynamic stiffening ratio;
- Holes in the USM samples lead to decreasing values of the static and dynamic bedding moduli—the static bedding modulus can be reduced up to 33–52% (depending on the assessed load range) in the 20 mm thick mat and up to 19–40% in the 25 mm thick mat, while the dynamic bedding modulus can be reduced up to 31–37% (depending on the load frequency) in the thinner mat and 18–23% in the thicker one;
- The dependence of the stress on the deflection induced by this stress for the tested SBR-based USM samples is approximately linear within almost the entire tested range, which translates into a predictable operation of such an element in the tram track structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Wang, X.; Zhou, Y.; Qin, J. Vibration Mitigation Effect Investigation of a New Slab Track Plate Design. Sensors 2019, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Bezin, Y.; Farrington, D.; Penny, C.; Temple, B.; Iwnicki, S. The dynamic response of slab track constructions and their benefit with respect to conventional ballasted track. Veh. Syst. Dyn. 2010, 48, 175–193. [Google Scholar] [CrossRef]
- Ntotsios, E.; Thompson, D.; Hussein, M. A comparison of ground vibration due to ballasted and slab tracks. Transp. Geotech. 2019, 21, 100256. [Google Scholar] [CrossRef]
- Ramos, A.; Correia, A.; Calçada, R.; Alves Costa, P.; Esen, A.; Woodward, P.; Connolly, D.; Laghrouche, O. Influence of track foundation on the performance of ballast and concrete slab tracks under cyclic loading: Physical modelling and numerical model calibration. Constr. Build. Mater. 2021, 277, 122245. [Google Scholar] [CrossRef]
- Theyssen, J.; Aggestam, E.; Zhu, S.; Nielsen, J.; Pieringer, A.; Kropp, W.; Zhai, W. Calibration and validation of the dynamic response of two slab track models using data from a full-scale test rig. Eng. Struct. 2021, 234, 111980. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, X.; Qiao, C.; Wang, T.; Ma, M. Study on Modelling Method of Resilient Mat Used under Floating Slab Track. Materials 2023, 16, 3078. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, J.; Sang, T.; Wang, L.; Yi, Q.; Wang, P. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration. Constr. Build. Mater. 2021, 283, 122802. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Wang, K.; Bai, Y.; Li, P. Comparing dynamic performance between new sleeper-damping and floating-slab track system. Constr. Build. Mater. 2023, 400, 132588. [Google Scholar] [CrossRef]
- Zhang, J.; Xi, C.; Sun, Y.; Li, G.; Liu, J.; Wang, M. Analysis of Antideformation and Antivibration Effect of Different Track Beds under Subway Train Vibration. Shock. Vib. 2022, 2022, 4814039. [Google Scholar] [CrossRef]
- Xu, G.; Su, S.; Wang, A.; Hu, R. Theoretical analysis and experimental research on multi-layer elastic damping track structure. Adv. Mech. Eng. 2021, 13, 1687814021994975. [Google Scholar] [CrossRef]
- Cai, X.; Li, D.; Zhang, Y.; Miao, Q.; Cui, R. Experimental Study on the Vibration Control Effect of Long Elastic Sleeper Track in Subways. Shock. Vib. 2018, 2018, 6209518. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Q.; Shi, Z. Floating slab track with inerter enhanced dynamic vibration absorbers. Veh. Syst. Dyn. 2023, 61, 589–615. [Google Scholar] [CrossRef]
- Montella, G.; Mastroianni, G.; Serino, G. Experimental and numerical investigations on innovative floating-slab track including recycled rubber elements. In Proceedings of the ISMA2012-USD2012, Leuven, Belgium, 17–19 September 2012. [Google Scholar]
- Dudkin, E.P.; Andreeva, L.A.; Sultanov, N.N. Methods of Noise and Vibration Protection on Urban Rail Transport. Proc. Eng. 2017, 189, 829–835. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. The use of deconstructed tire rail pads in railroad tracks: Impact of pad thickness. Mater. Des. 2014, 58, 198–203. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.A. An alternative sustainable railway maintenance technique based on the use of rubber particles. J. Clean. Prod. 2017, 142, 3850–3858. [Google Scholar] [CrossRef]
- Esmaeili, M.; Rezaei, N. In situ impact testing of a light-rail ballasted track with tyre-derived aggregate subballast layer. Int. J. Pavement Eng. 2015, 17, 176–188. [Google Scholar] [CrossRef]
- Fathali, M.; Esmaeili, M.; Moghadas Nejad, F. Influence of tire-derived aggregates mixed with ballast on ground-borne vibrations. J. Mod. Transp. 2019, 27, 355–363. [Google Scholar] [CrossRef]
- Indraratna, B.; Qi, Y.; Ngo, T.N.; Rujikiatkamjorn, C.; Neville, T.; Ferreira, F.B.; Shahkolahi, A. Use of Geogrids and Recycled Rubber in Railroad Infrastructure for Enhanced Performance. Geosciences 2019, 9, 30. [Google Scholar] [CrossRef]
- Kraśkiewicz, C.; Anysz, H.; Zbiciak, A.; Płudowska-Zagrajek, M.; Al Sabouni-Zawadzka, A. Artificial neural networks as a tool for selecting the parameters of prototypical under sleeper pads produced from recycled rubber granulate. J. Clean. Prod. 2023, 405, 136975. [Google Scholar] [CrossRef]
- Kraśkiewicz, C.; Zbiciak, A.; Al Sabouni-Zawadzka, A.; Marczak, M. Analysis of the Influence of Fatigue Strength of Prototype Under Ballast Mats (UBMs) on the Effectiveness of Protection against Vibration Caused by Railway Traffic. Materials 2021, 14, 2125. [Google Scholar] [CrossRef]
- Kraśkiewicz, C.; Zbiciak, A.; Al Sabouni-Zawadzka, A.; Piotrowski, A. Resistance to severe environmental conditions of prototypical recycling-based under ballast mats (UBMs) used as vibration isolators in the ballasted track systems. Constr. Build. Mater. 2022, 319, 126075. [Google Scholar] [CrossRef]
- EN 17282:2020-10; Railway Applications—Infrastructure—Under Ballast Mats. CEN: Brussels, Belgium, 2020.
- Kraśkiewicz, C.; Zbiciak, A.; Pełczyński, J.; Al Sabouni-Zawadzka, A. Experimental and numerical testing of prototypical under ballast mats (UBMs) produced from deconstructed tires—The effect of mat thickness. Constr. Build. Mater. 2023, 369, 130559. [Google Scholar] [CrossRef]
- DIN 45673-7:2010-08; Mechanical Vibration—Resilient Elements Used in Railway Tracks—Part 7: Laboratory Test Procedures for Resilient Elements of Floating Slab Track Systems. DIN: Berlin, Germany, 2010.
- Zbiciak, A.; Kraśkiewicz, C.; Dudziak, S.; Al-Sabouni-Zawadzka, A.; Pełczyński, J. An accurate method for fast assessment of under slab mats (USM) performance in ballastless track structures. Constr. Build. Mater. 2021, 300, 123953. [Google Scholar] [CrossRef]
- Sołkowski, J.; Górszczyk, J.; Malicki, K.; Kudła, D. The Effect of Fatigue Test on the Mechanical Properties of the Cellular Polyurethane Mats Used in Tram and Railway Tracks. Materials 2021, 14, 4118. [Google Scholar] [CrossRef] [PubMed]
- EN 16432-2:2017; Railway Applications—Ballastless Track Systems—Part 2: System Design, Subsystems and Components. CEN: Brussels, Belgium, 2017.
- Królak, K.; Sobiech, J.; Regulski, H. Technical Requirements for the Design and Construction of Tram Tracks on the Warsaw Tramways Track Network (Wymagania Techniczne Dotyczące Projektowania i Budowy Torowisk Tramwajowych na Sieci Torowej Tramwajów Warszawskich—WTT); version 4.0; Tramwaje Warszawskie Sp. z o.o.: Warsaw, Poland, 2022. (In Polish) [Google Scholar]
- Regulation of the Minister of Infrastructure of March 2, 2011 on the Technical Conditions of Trams and Trolleybuses and the Scope of their Necessary Equipment (Rozporządzenie Ministra Infrastruktury z Dnia 2 Marca 2011 r. w Sprawie Warunków Technicznych Tramwajów i Trolejbusów Oraz Zakresu Ich Niezbędnego Wyposażenia [Dz. U 2011 nr 65 poz. 344]). (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20110650344 (accessed on 27 October 2024).
Material No. | Density [kg/m3] | Thickness [mm] | Holes |
---|---|---|---|
169 | 600 | 10 | - |
170 | 600 | 15 | - |
171 | 600 | 20 | - |
172 | 600 | 25 | - |
173 | 500 | 15 | - |
174 | 500 | 20 | - |
175 | 500 | 25 | - |
176 | 500 | 20 | Medium holes |
177 | 500 | 20 | Large holes |
178 | 500 | 25 | Medium holes |
179 | 500 | 25 | Large holes |
180 | 500 | 30 | - |
181 | 500 | 40 | - |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | ||||
---|---|---|---|---|---|
Sample No. 175.1 | Sample No. 175.2 | Sample No. 175.3 | Mean | Standard Deviation | |
0.005–0.015 | 0.016 | 0.014 | 0.014 | 0.015 | 0.001 |
0.005–0.020 | 0.015 | 0.013 | 0.013 | 0.014 | 0.001 |
0.010–0.020 | 0.014 | 0.013 | 0.013 | 0.013 | 0.001 |
0.010–0.040 | 0.015 | 0.013 | 0.013 | 0.014 | 0.001 |
0.020–0.050 | 0.015 | 0.014 | 0.014 | 0.014 | 0.001 |
0.020–0.070 | 0.017 | 0.016 | 0.016 | 0.016 | 0.001 |
Frequency f [Hz] | Dynamic Bedding Modulus Cdyn [N/mm3] | ||||
---|---|---|---|---|---|
Sample No. 175.1 | Sample No. 175.2 | Sample No. 175.3 | Mean | Standard Deviation | |
5 | 0.026 | 0.025 | 0.025 | 0.025 | 0.001 |
10 | 0.031 | 0.029 | 0.029 | 0.030 | 0.001 |
15 | 0.034 | 0.033 | 0.033 | 0.033 | 0.001 |
20 | 0.039 | 0.037 | 0.037 | 0.038 | 0.001 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | |||
---|---|---|---|---|
169 (10 mm) | 170 (15 mm) | 171 (20 mm) | 172 (25 mm) | |
0.005–0.015 | 0.065 | 0.060 | 0.060 | 0.040 |
0.005–0.020 | 0.071 | 0.064 | 0.060 | 0.039 |
0.010–0.020 | 0.081 | 0.070 | 0.061 | 0.039 |
0.010–0.040 | 0.098 | 0.078 | 0.059 | 0.036 |
0.020–0.050 | 0.114 | 0.084 | 0.058 | 0.034 |
0.020–0.070 | 0.120 | 0.085 | 0.058 | 0.034 |
Frequency f [Hz] | Dynamic Bedding Modulus Cdyn [N/mm3] | |||
---|---|---|---|---|
169 (10 mm) | 170 (15 mm) | 171 (20 mm) | 172 (25 mm) | |
5 | 0.127 | 0.105 | 0.082 | 0.055 |
10 | 0.158 | 0.128 | 0.097 | 0.064 |
15 | 0.177 | 0.144 | 0.106 | 0.071 |
20 | 0.196 | 0.157 | 0.115 | 0.077 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | ||||
---|---|---|---|---|---|
173 (15 mm) | 174 (20 mm) | 175 (25 mm) | 180 (30 mm) | 181 (40 mm) | |
0.005–0.015 | 0.021 | 0.021 | 0.015 | 0.015 | 0.011 |
0.005–0.020 | 0.021 | 0.021 | 0.014 | 0.014 | 0.010 |
0.010–0.020 | 0.021 | 0.021 | 0.013 | 0.014 | 0.010 |
0.010–0.040 | 0.023 | 0.021 | 0.014 | 0.014 | 0.010 |
0.020–0.050 | 0.026 | 0.022 | 0.014 | 0.014 | 0.011 |
0.020–0.070 | 0.030 | 0.024 | 0.016 | 0.015 | 0.012 |
Frequency f[Hz] | Dynamic Bedding ModulusCdyn[N/mm3] | ||||
173 (15 mm) | 174 (20 mm) | 175 (25 mm) | 180 (30 mm) | 181 (40 mm) | |
5 | 0.040 | 0.035 | 0.026 | 0.024 | 0.019 |
10 | 0.049 | 0.041 | 0.030 | 0.029 | 0.022 |
15 | 0.055 | 0.045 | 0.033 | 0.032 | 0.025 |
20 | 0.061 | 0.051 | 0.038 | 0.037 | 0.028 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | |||||
---|---|---|---|---|---|---|
15 mm | 20 mm | 25 mm | ||||
170 (600 kg/m3) | 173 (500 kg/m3) | 171 (600 kg/m3) | 174 (500 kg/m3) | 172 (600 kg/m3) | 175 (500 kg/m3) | |
0.005–0.015 | 0.060 | 0.021 | 0.060 | 0.021 | 0.040 | 0.015 |
0.005–0.020 | 0.064 | 0.021 | 0.060 | 0.021 | 0.039 | 0.014 |
0.010–0.020 | 0.070 | 0.021 | 0.061 | 0.021 | 0.039 | 0.013 |
0.010–0.040 | 0.078 | 0.023 | 0.059 | 0.021 | 0.036 | 0.014 |
0.020–0.050 | 0.084 | 0.026 | 0.058 | 0.022 | 0.034 | 0.014 |
0.020–0.070 | 0.085 | 0.030 | 0.058 | 0.024 | 0.034 | 0.016 |
Frequency f [Hz] | Dynamic Bedding Modulus Cdyn [N/mm3] | |||||
---|---|---|---|---|---|---|
15 mm | 20 mm | 25 mm | ||||
170 (600 kg/m3) | 173 (500 kg/m3) | 171 (600 kg/m3) | 174 (500 kg/m3) | 172 (600 kg/m3) | 175 (500 kg/m3) | |
5 | 0.105 | 0.040 | 0.082 | 0.035 | 0.055 | 0.025 |
10 | 0.128 | 0.049 | 0.097 | 0.041 | 0.064 | 0.030 |
15 | 0.144 | 0.055 | 0.106 | 0.045 | 0.071 | 0.033 |
20 | 0.157 | 0.061 | 0.115 | 0.051 | 0.077 | 0.038 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | |||||
---|---|---|---|---|---|---|
20 mm | 25 mm | |||||
174 (No Holes) | 176 (Medium Holes) | 177 (Large Holes) | 175 (No Holes) | 178 (Medium Holes) | 179 (Large Holes) | |
0.005–0.015 | 0.021 | 0.015 | 0.010 | 0.015 | 0.014 | 0.009 |
0.005–0.020 | 0.021 | 0.014 | 0.010 | 0.014 | 0.014 | 0.009 |
0.010–0.020 | 0.021 | 0.014 | 0.010 | 0.013 | 0.013 | 0.009 |
0.010–0.040 | 0.021 | 0.014 | 0.011 | 0.014 | 0.013 | 0.010 |
0.020–0.050 | 0.022 | 0.016 | 0.013 | 0.014 | 0.014 | 0.011 |
0.020–0.070 | 0.024 | 0.018 | 0.016 | 0.016 | 0.016 | 0.013 |
Frequency f [Hz] | Dynamic Bedding Modulus Cdyn [N/mm3] | |||||
---|---|---|---|---|---|---|
20 mm | 25 mm | |||||
174 (No Holes) | 176 (Medium Holes) | 177 (Large Holes) | 175 (No Holes) | 178 (Medium Holes) | 179 (Large Holes) | |
5 | 0.035 | 0.026 | 0.022 | 0.026 | 0.024 | 0.020 |
10 | 0.041 | 0.032 | 0.027 | 0.030 | 0.029 | 0.024 |
15 | 0.045 | 0.036 | 0.031 | 0.033 | 0.032 | 0.027 |
20 | 0.051 | 0.040 | 0.035 | 0.038 | 0.037 | 0.031 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | ||||
---|---|---|---|---|---|
173.1 | 173.2 | 173.3 | Mean | Standard Deviation | |
0.009–0.035 | 0.0226 | 0.0227 | 0.0227 | 0.0227 | 0.0001 |
0.012–0.065 | 0.0272 | 0.0271 | 0.0272 | 0.0272 | 0.0001 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | ||||
---|---|---|---|---|---|
175.1 | 175.2 | 175.3 | Mean | Standard Deviation | |
0.009–0.035 | 0.0144 | 0.0131 | 0.0131 | 0.0135 | 0.0009 |
0.012–0.065 | 0.0162 | 0.0153 | 0.0153 | 0.0156 | 0.0006 |
Assessed Load Range σ [N/mm2] | Static Bedding Modulus Cstat [N/mm3] | ||||
---|---|---|---|---|---|
181.1 | 181.2 | 181.3 | Mean | Standard Deviation | |
0.009–0.035 | 0.0090 | 0.0116 | 0.0102 | 0.0103 | 0.0013 |
0.012–0.065 | 0.0103 | 0.0116 | 0.0113 | 0.0111 | 0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraśkiewicz, C.; Majnert, P.; Al Sabouni-Zawadzka, A.; Mossakowski, P.; Zarzycki, M. Experimental Evaluation of Under Slab Mats (USMs) Made from End-of-Life Tires for Ballastless Tram Track Applications. Materials 2024, 17, 5388. https://doi.org/10.3390/ma17215388
Kraśkiewicz C, Majnert P, Al Sabouni-Zawadzka A, Mossakowski P, Zarzycki M. Experimental Evaluation of Under Slab Mats (USMs) Made from End-of-Life Tires for Ballastless Tram Track Applications. Materials. 2024; 17(21):5388. https://doi.org/10.3390/ma17215388
Chicago/Turabian StyleKraśkiewicz, Cezary, Piotr Majnert, Anna Al Sabouni-Zawadzka, Przemysław Mossakowski, and Marcin Zarzycki. 2024. "Experimental Evaluation of Under Slab Mats (USMs) Made from End-of-Life Tires for Ballastless Tram Track Applications" Materials 17, no. 21: 5388. https://doi.org/10.3390/ma17215388
APA StyleKraśkiewicz, C., Majnert, P., Al Sabouni-Zawadzka, A., Mossakowski, P., & Zarzycki, M. (2024). Experimental Evaluation of Under Slab Mats (USMs) Made from End-of-Life Tires for Ballastless Tram Track Applications. Materials, 17(21), 5388. https://doi.org/10.3390/ma17215388