Comparative Evaluation of Bone–Implant Contact in Various Surface-Treated Dental Implants Using High-Resolution Micro-CT in Rabbits’ Bone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Preparation
2.2. In Vivo Tests
2.3. Scanning Electron Microscopy
2.4. Micro-Computed Tomography
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meagher, M.J.; Parwani, R.N.; Virdi, A.S.; Sumner, D.R. Optimizing a micro-computed tomography-based surrogate measurement of bone-implant contact. J. Orthop. Res. 2018, 36, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Park, J.-I.; Chae, J.S.; Yeo, I.-S.L. Comparison of micro-computed tomography and histomorphometry in the measurement of bone–implant contact ratios. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 87–95. [Google Scholar] [CrossRef]
- Albrektsson, T. Hard tissue implant interface. Aust. Dent. J. 2008, 53, S34–S38. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, R.; Kuhlisch, E.; Schulz, M.; Eckelt, U.; Stadlinger, B. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices. Eur. Cells Mater. 2012, 23, 237–248. [Google Scholar] [CrossRef]
- Park, Y.; Yi, K.; Lee, I.; Jung, Y. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clin. Oral Implant. Res. 2005, 16, 156–160. [Google Scholar] [CrossRef]
- Boas, F.E.; Fleischmann, D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012, 4, 229–240. [Google Scholar] [CrossRef]
- Vandeweghe, S.; Coelho, P.G.; Vanhove, C.; Wennerberg, A.; Jimbo, R. Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 1259–1266. [Google Scholar] [CrossRef]
- Li, J.Y.; Pow, E.H.N.; Zheng, L.W.; Ma, L.; Kwong, D.L.W.; Cheung, L.K. Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning. Clin. Oral Implant. Res. 2014, 25, 506–510. [Google Scholar] [CrossRef]
- Van Oosterwyck, H.; Duyck, J.; Vander Sloten, J.; Vander Perre, G.; Jansen, J.; Wevers, M.; Naert, I. The Use of Microfocus Computerized Tomography as a New Technique for Characterizing Bone Tissue Around Oral Implants. J. Oral Implantol. 2000, 26, 5–12. [Google Scholar] [CrossRef]
- Stoppie, N.; van der Waerden, J.; Jansen, J.A.; Duyck, J.; Wevers, M.; Naert, I.E. Validation of Microfocus Computed Tomography in the Evaluation of Bone Implant Specimens. Clin. Implant Dent. Relat. Res. 2005, 7, 87–94. [Google Scholar] [CrossRef]
- de Faria Vasconcelos, K.; dos Santos Corpas, L.; da Silveira, B.M.; Laperre, K.; Padovan, L.E.; Jacobs, R.; de Freitas, P.H.L.; Lambrichts, I.; Bóscolo, F.N. Micro-CT assessment of bone microarchitecture in implant sites reconstructed with autogenous and xenogenous grafts: A pilot study. Clin. Oral Implant. Res. 2017, 28, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Broucek, J.; Virdi, A.S.; Sumner, D.R. Limitations of using micro-computed tomography to predict bone–implant contact and mechanical fixation. J. Microsc. 2012, 245, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Sarve, H.; Friberg, B.; Borgefors, G.; Johansson, C.B. Introducing a Novel Analysis Technique for Osseointegrated Dental Implants Retrieved 29 Years Postsurgery. Clin. Implant Dent. Relat. Res. 2013, 15, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.C.; Choi, C.A.; Yeo, I.-S.L. Spiral scanning imaging and quantitative calculation of the 3-dimensional screw-shaped bone-implant interface on micro-computed tomography. J. Periodontal Implant Sci. 2018, 48, 202. [Google Scholar] [CrossRef]
- Schouten, C.; Meijer, G.J.; van den Beucken, J.J.J.P.; Spauwen, P.H.M.; Jansen, J.A. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography. Biomaterials 2009, 30, 4539–4549. [Google Scholar] [CrossRef]
- Bissinger, O.; Probst, F.A.; Wolff, K.; Jeschke, A.; Weitz, J.; Deppe, H.; Kolk, A. Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs. J. Clin. Periodontol. 2017, 44, 418–427. [Google Scholar] [CrossRef]
- Kulakov, A.A.; Grogor’ian, A.S.; Arkhipov, A.V. Impact of surface modifications of dental implants on their integration potential. Stomatologiya 2012, 91, 75–77. [Google Scholar]
- Lang, M.; Cerutis, D.; Miyamoto, T.; Nunn, M. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces. Int. J. Oral Maxillofac. Implant. 2016, 31, 799–806. [Google Scholar] [CrossRef]
- Guarnieri, R.; Rappelli, G.; Piemontese, M.; Procaccini, M.; Quaranta, A. A Double-Blind Randomized Trial Comparing Implants with Laser-Microtextured and Machined Collar Surfaces: Microbiologic and Clinical Results. Int. J. Oral Maxillofac. Implant. 2016, 31, 1117–1125. [Google Scholar] [CrossRef]
- Xing, R.; Lyngstadaas, S.P.; Ellingsen, J.E.; Taxt-Lamolle, S.; Haugen, H.J. The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation. Clin. Oral Implant. Res. 2015, 26, 649–656. [Google Scholar] [CrossRef]
- Guarnieri, R.; Miccoli, G.; Reda, R.; Mazzoni, A.; Di Nardo, D.; Testarelli, L. Sulcus fluid volume, IL-6, and Il-1b concentrations in periodontal and peri-implant tissues comparing machined and laser-microtextured collar/abutment surfaces during 12 weeks of healing: A split-mouth RCT. Clin. Oral Implant. Res. 2022, 33, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Camarda, A.J.; Durand, R.; Benkarim, M.; Rompré, P.H.; Guertin, G.; Ciaburro, H. Prospective randomized clinical trial evaluating the effects of two different implant collar designs on peri-implant healing and functional osseointegration after 25 years. Clin. Oral Implant. Res. 2021, 32, 285–296. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Ko, Y.; Kye, S.-B.; Yang, S.-M. Human Gingival Fibroblast (HGF-1) Attachment and Proliferation on Several Abutment Materials with Various Colors. Int. J. Oral Maxillofac. Implant. 2014, 29, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Zamparini, F.; Scialabba, V.; Gatto, M.; Piattelli, A.; Montebugnoli, L.; Gandolfi, M. A 3-Year Prospective Cohort Study on 132 Calcium Phosphate–Blasted Implants: Flap vs Flapless Technique. Int. J. Oral Maxillofac. Implant. 2016, 31, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, R.; Serra, M.; Bava, L.; Grande, M.; Farronato, D.; Iorio-Siciliano, V. The Impact of a Laser-Microtextured Collar on Crestal Bone Level and Clinical Parameters Under Various Placement and Loading Protocols. Int. J. Oral Maxillofac. Implant. 2014, 29, 354–363. [Google Scholar] [CrossRef]
- Mastrangelo, F.; Quaresima, R.; Canullo, L.; Scarano, A.; Muzio, L.; Piattelli, A. Effects of Novel Laser Dental Implant Microtopography on Human Osteoblast Proliferation and Bone Deposition. Int. J. Oral Maxillofac. Implant. 2020, 35, 320–329. [Google Scholar] [CrossRef]
- Hu, F.; Fan, X.; Peng, F.; Yan, X.; Song, J.; Deng, C.; Liu, M.; Zeng, D.; Ning, C. Characterization of Porous Titanium-Hydroxyapatite Composite Biological Coating on Polyetheretherketone (PEEK) by Vacuum Plasma Spraying. Coatings 2022, 12, 433. [Google Scholar] [CrossRef]
- Brunello, G.; Brun, P.; Gardin, C.; Ferroni, L.; Bressan, E.; Meneghello, R.; Zavan, B.; Sivolella, S. Biocompatibility and antibacterial properties of zirconium nitride coating on titanium abutments: An in vitro study. PLoS ONE 2018, 13, e0199591. [Google Scholar] [CrossRef]
- Prachar, P.; Bartakova, S.; Brezina, V.; Cvrcek, L.; Vanek, J. Cytocompatibility of implants coated with titanium nitride and zirconium nitride. Bratisl. Med. J. 2015, 116, 154–156. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Migranov, M.S.; Minin, I.V.; Shekhtman, S.R.; Suhova, N.A.; Gurin, V.D.; Pivkin, P.M. Nanostructured biocompatible Ti-TiN coating for implants with improved functional properties. In Proceedings of the Technologies for Optical Countermeasures XVIII and High-Power Lasers: Technology and Systems, Platforms, Effects V, Online, 13–18 September 2021; Titterton, D.H., Grasso, R.J., Richardson, M.A., Bohn, W.L., Ackermann, H., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 5. [Google Scholar]
- Pan, Y.-H.; Lin, J.C.Y.; Chen, M.K.; Salamanca, E.; Choy, C.S.; Tsai, P.-Y.; Leu, S.-J.; Yang, K.-C.; Huang, H.-M.; Yao, W.-L.; et al. Glow Discharge Plasma Treatment on Zirconia Surface to Enhance Osteoblastic-Like Cell Differentiation and Antimicrobial Effects. Materials 2020, 13, 3771. [Google Scholar] [CrossRef]
- Ogawa, T. Ultraviolet Photofunctionalization of Titanium Implants. Int. J. Oral Maxillofac. Implant. 2014, 29, e95–e102. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Qin, H.; Cao, H.; Qian, S.; Zhao, Y.; Peng, X.; Zhang, X.; Liu, X.; Chu, P.K. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 2014, 35, 7699–7713. [Google Scholar] [CrossRef]
- Karl, M.; Albrektsson, T. Clinical Performance of Dental Implants with a Moderately Rough (TiUnite) Surface: A Meta-Analysis of Prospective Clinical Studies. Int. J. Oral Maxillofac. Implant. 2017, 32, 717–734. [Google Scholar] [CrossRef]
- Martínez-Rus, F.; Prieto, M.; Salido, M.; Madrigal, C.; Özcan, M.; Pradíes, G. A Clinical Study Assessing the Influence of Anodized Titanium and Zirconium Dioxide Abutments and Peri-implant Soft Tissue Thickness on the Optical Outcome of Implant-Supported Lithium Disilicate Single Crowns. Int. J. Oral Maxillofac. Implant. 2017, 32, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Djošić, M.; Janković, A.; Mišković-Stanković, V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. Materials 2021, 14, 5391. [Google Scholar] [CrossRef]
- Radin, S.; Ducheyne, P. Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials 2007, 28, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Gnedenkov, S.V.; Sharkeev, Y.P.; Sinebryukhov, S.L.; Khrisanfova, O.A.; Legostaeva, E.V.; Zavidnaya, A.G.; Puz’, A.V.; Khlusov, I.A.; Opra, D.P. Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: Fundamental principles and synthesis conditions. Corros. Rev. 2016, 34, 65–83. [Google Scholar] [CrossRef]
- Traini, T.; Murmura, G.; Sinjari, B.; Perfetti, G.; Scarano, A.; D’Arcangelo, C.; Caputi, S. The surface anodization of titanium dental implants improves blood clot formation followed by osseointegration. Coatings 2018, 8, 252. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, M.; Chowdhary, R. Anodized dental implant surface. Indian J. Dent. Res. 2017, 28, 76. [Google Scholar] [CrossRef]
- Benalcázar Jalkh, E.B.; Parra, M.; Torroni, A.; Nayak, V.V.; Tovar, N.; Castellano, A.; Badalov, R.M.; Bonfante, E.A.; Coelho, P.G.; Witek, L. Effect of supplemental acid-etching on the early stages of osseointegration: A preclinical model. J. Mech. Behav. Biomed. Mater. 2021, 122, 104682. [Google Scholar] [CrossRef]
- Rajan, A.; Sivarajan, S.; Vallabhan, C.G.; Nair, A.S.; Jayakumar, S.; Pillai, A.S. An In Vitro Study to Evaluate and Compare the Hemocompatibility of Titanium and Zirconia Implant Materials after Sandblasted and Acid-etched Surface Treatment. J. Contemp. Dent. Pract. 2018, 19, 1448–1454. [Google Scholar] [PubMed]
- Kim, H.; Park, S.; Han, M.; Lee, Y.; Ku, Y.; Rhyu, I.; Seol, Y. Occurrence of Progressive Bone Loss Around Anodized Surface Implants and Resorbable Blasting Media Implants: A Retrospective Cohort Study. J. Periodontol. 2017, 88, 329–337. [Google Scholar] [CrossRef]
- Gotfredson, K.; Wennerberg, A.; Johansson, C.; Skovgaard, L.T.; Hjørting-Hansen, E. Anchorage of TiO 2 -blasted, HA-coated, and machined implants: An experimental study with rabbits. J. Biomed. Mater. Res. 1995, 29, 1223–1231. [Google Scholar] [CrossRef]
- Ivanoff, C.; Widmark, G.; Hallgren, C.; Sennerby, L.; Wennerberg, A. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin. Oral Implant. Res. 2001, 12, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Rasmusson, L.; Kahnberg, K.; Tan, A. Effects of Implant Design and Surface on Bone Regeneration and Implant Stability: An Experimental Study in the Dog Mandible. Clin. Implant Dent. Relat. Res. 2001, 3, 2–8. [Google Scholar] [CrossRef]
- Velasco-Ortega, E.; Ortiz-Garcia, I.; Jiménez-Guerra, A.; Núñez-Márquez, E.; Moreno-Muñoz, J.; Rondón-Romero, J.L.; Cabanillas-Balsera, D.; Gil, J.; Muñoz-Guzón, F.; Monsalve-Guil, L. Osseointegration of Sandblasted and Acid-Etched Implant Surfaces. A Histological and Histomorphometric Study in the Rabbit. Int. J. Mol. Sci. 2021, 22, 8507. [Google Scholar] [CrossRef]
- Schupbach, P.; Glauser, R.; Bauer, S. Al2O3 Particles on Titanium Dental Implant Systems following Sandblasting and Acid-Etching Process. Int. J. Biomater. 2019, 2019, 6318429. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Del Fabbro, M.; Coelho, P.G.; Bozano, R. Positive biomechanical effects of titanium oxide for sandblasting implant surface as an alternative to aluminium oxide. J. Oral Implantol. 2015, 41, 515–522. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Yu, Z.M.; Wei, Q. Nano modified SLA process for titanium implants. Mater. Lett. 2017, 186, 38–41. [Google Scholar] [CrossRef]
- Rodrigo, A.; Vallés, G.; Saldaña, L.; Rodríguez, M.; Martínez, M.E.; Munuera, L.; Vilaboa, N. Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J. Orthop. Res. 2006, 24, 46–54. [Google Scholar] [CrossRef]
- Li, D.; Wang, C.; Li, Z.; Wang, H.; He, J.; Zhu, J.; Zhang, Y.; Shen, C.; Xiao, F.; Gao, Y.; et al. Nano-sized Al2O3 particle-induced autophagy reduces osteolysis in aseptic loosening of total hip arthroplasty by negative feedback regulation of RANKL expression in fibroblasts. Cell Death Dis. 2018, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Zheng, Y.F.; Qin, L. A comprehensive biological evaluation of ceramic nanoparticles as wear debris. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Lee, Y.-H.; Gankhuyag, B.; Chakraborty, C.; Lee, S.-S. Effect of Alumina Particles on the Osteogenic Ability of Osteoblasts. J. Funct. Biomater. 2022, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Bahraminasab, M.; Arab, S.; Ghaffari, S. Osteoblastic cell response to Al2O3 -Ti composites as bone implant materials. BioImpacts 2021, 12, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.J.; Pérez, R.A.; Olmos, J.; Herraez-Galindo, C.; Gutierrez-Pérez, J.L.; Torres-Lagares, D. The effect of using Al2O3 and TiO2 in sandblasting of titanium dental implants. J. Mater. Res. 2022, 37, 2604–2613. [Google Scholar] [CrossRef]
- Rønold, H.J.; Lyngstadaas, S.P.; Ellingsen, J.E. A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone. J. Biomed. Mater. Res. Part A 2003, 67A, 524–530. [Google Scholar] [CrossRef]
- Abou Neel, E.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.; Bozec, L.; Mudera, V. Demineralization–remineralization dynamics in teeth and bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef]
- Zero, D.T. Etiology of dental erosion—Extrinsic factors. Eur. J. Oral Sci. 1996, 104, 162–177. [Google Scholar] [CrossRef]
- Scaramucci, T.; Carvalho, J.C.; Hara, A.T.; Zero, D.T. Causes of Dental Erosion: Intrinsic Factors. In Dental Erosion and Its Clinical Management; Springer International Publishing: Cham, Switzerland, 2015; pp. 35–67. [Google Scholar]
Machined Surface—Only Anodizing | ||||||||
---|---|---|---|---|---|---|---|---|
Before Demineralization | After Demineralization | |||||||
cross-sectional plane | 0°–180° | 45°–225° | 90°–270° | 135°–315° | 0°–180° | 45°–225° | 90°–270° | 135°–315° |
implant–edge connection line [mm] | 16,784 | 16,606 | 16,523 | 15,535 | 16,151 | 16,934 | 16,812 | 15,303 |
implant–air connection line [mm] | 2432 | 2853 | 4118 | 1748 | 2037 | 1768 | 6674 | 4702 |
implant–bone connection line (BIC) [%] | 86 | 83 | 75 | 89 | 87 | 90 | 60 | 69 |
average BIC [%] | 83 | 77 | ||||||
standard deviation BIC [%] | 6 | 14 |
Only Etching | ||||||||
---|---|---|---|---|---|---|---|---|
Before Demineralization | After Demineralization | |||||||
cross-sectional plane | 0°–180° | 45°–225° | 90°–270° | 135°–315° | 0°–180° | 45°–225° | 90°–270° | 135°–315° |
implant–edge connection line [mm] | 16,781 | 16,957 | 16,853 | 15,787 | 19,950 | 15,329 | 17,596 | 17,621 |
implant–air connection line [mm] | 1942 | 2335 | 2379 | 1320 | 6741 | 1204 | 1458 | 2852 |
implant–bone connection line (BIC) [%] | 88 | 86 | 86 | 92 | 66 | 92 | 92 | 84 |
average BIC [%] | 88 | 83 | ||||||
standard deviation BIC [%] | 3 | 12 |
Sandblasting by Al2O3 + Etching | ||||||||
---|---|---|---|---|---|---|---|---|
Before Demineralization | After Demineralization | |||||||
cross-sectional plane | 0°–180° | 45°–225° | 90°–270° | 135°–315° | 0°–180° | 45°–225° | 90°–270° | 135°–315° |
implant–edge connection line [mm] | 16,953 | 17,638 | 15,692 | 16,957 | 16,321 | 16,275 | 17,258 | 17,028 |
implant–air connection line [mm] | 2976 | 1497 | 1299 | 6193 | 1490 | 1946 | 9137 | 2481 |
implant–bone connection line (BIC) [%] | 82 | 92 | 92 | 63 | 91 | 88 | 47 | 85 |
average BIC [%] | 82 | 78 | ||||||
standard deviation BIC [%] | 13 | 21 |
Sandblasting by TiO2 + Etching | ||||||||
---|---|---|---|---|---|---|---|---|
Before Demineralization | After Demineralization | |||||||
cross-sectional plane | 0°–180° | 45°–225° | 90°–270° | 135°–315° | 0°–180° | 45°–225° | 90°–270° | 135°–315° |
implant–edge connection line [mm] | 16,112 | 17,071 | 16,726 | 16,999 | 17,808 | 15,978 | 18,563 | 17,415 |
implant–air connection line [mm] | 3051 | 1755 | 1848 | 3949 | 2008 | 4451 | 8646 | 2878 |
implant–bone connection line (BIC) [%] | 81 | 90 | 89 | 77 | 89 | 72 | 53 | 83 |
average BIC [%] | 84 | 74 | ||||||
standard deviation BIC [%] | 6 | 16 |
Only Anodizing | Only Etching | Sandblasting by Al2O3 + Etching | Sandblasting by TiO2 + Etching | |
---|---|---|---|---|
implant volume [mm3] | 9.45 | 8.91 | 9.46 | 9.54 |
implant surface [mm2] | 60.82 | 69.11 | 66.85 | 63.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, R.; Puszkarz, A.K.; Piętka, T.; Sowiński, J.; Sadowska-Sowińska, M.; Kołkowska, A.; Simka, W. Comparative Evaluation of Bone–Implant Contact in Various Surface-Treated Dental Implants Using High-Resolution Micro-CT in Rabbits’ Bone. Materials 2024, 17, 5396. https://doi.org/10.3390/ma17225396
Zieliński R, Puszkarz AK, Piętka T, Sowiński J, Sadowska-Sowińska M, Kołkowska A, Simka W. Comparative Evaluation of Bone–Implant Contact in Various Surface-Treated Dental Implants Using High-Resolution Micro-CT in Rabbits’ Bone. Materials. 2024; 17(22):5396. https://doi.org/10.3390/ma17225396
Chicago/Turabian StyleZieliński, Rafał, Adam K. Puszkarz, Tomasz Piętka, Jerzy Sowiński, Monika Sadowska-Sowińska, Agata Kołkowska, and Wojciech Simka. 2024. "Comparative Evaluation of Bone–Implant Contact in Various Surface-Treated Dental Implants Using High-Resolution Micro-CT in Rabbits’ Bone" Materials 17, no. 22: 5396. https://doi.org/10.3390/ma17225396
APA StyleZieliński, R., Puszkarz, A. K., Piętka, T., Sowiński, J., Sadowska-Sowińska, M., Kołkowska, A., & Simka, W. (2024). Comparative Evaluation of Bone–Implant Contact in Various Surface-Treated Dental Implants Using High-Resolution Micro-CT in Rabbits’ Bone. Materials, 17(22), 5396. https://doi.org/10.3390/ma17225396