Biological Activity of Silicon Nitride Ceramics: A Critical Review
Abstract
:1. Introduction
Chronological Development of Biological Perspectives on Silicon Nitride Ceramics
2. Early Notes on Surface Chemistry and Biocompatibility
3. Crystal Structure of Biomedical Si3N4
4. Chemical Reactions of Si3N4 In Vivo
5. Bioactive Mechanisms
6. Anti-Pathogenic Mechanisms
7. Si3N4 in Bioglasses
8. What Is Missing?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griss, P.; Werner, E.; Heimke, J. Alumina, Ceramic, Bioglass and Silicon Nitride: A Comparative Biocompatibility Study. In Mechanical Properties of Biomaterials; Hastings, G., Williams, D.F., Eds.; John Wiley & Sons: Milton, QLD, Australia, 1980. [Google Scholar]
- Ducheyne, P.; Hastings, G.W. Metal and Ceramic Biomaterials: Volume I Structure; CRC Press: Boca Raton, FL, USA, 1984; Volume 2, ISBN 9780849362613. [Google Scholar]
- Kousbroek, R. Metal and Ceramic Biomaterials: Volume II Strength and Surface; CRC Press: Boca Raton, FL, USA, 1984; Volume 2, ISBN 9780849362613. [Google Scholar]
- Normann, R.A.; Campbell, P.K.; Li, W.P. Silicon Based Microstructures Suitable for Intracortical Electrical Stimulation (Visual Prosthesis Application). In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, 4–7 November 1988; IEEE: Piscataway, NJ, USA, 1988; pp. 714–715. [Google Scholar]
- Prohaska, O.J.; Olcaytug, F.; Pfundner, P.; Dragaun, H. Thin-Film Multiple Electrode Probes: Possibilities and Limitations. IEEE Trans. Biomed. Eng. 1986, BME-33, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Bergveld, P.; Wiersma, J.; Meertens, H. Extracellular Potential Recordings by Means of a Field Effect Transistor without Gate Metal, Called OSFET. IEEE Trans. Biomed. Eng. 1976, BME-23, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Edell, D.J.; Churchill, J.N.; Gourley, I.M. Biocompatibility of a Silicon Based Peripheral Nerve Electrode. Biomater. Med. Devices Artif. Organs 1982, 10, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Howlett, C.R.; McCartney, E.; Ching, W. The Effect of Silicon Nitride Ceramic on Rabbit Skeletal Cells and Tissue. An in Vitro and in Vivo Investigation. Clin. Orthop. Relat. Res. 1989, 244, 293–304. [Google Scholar] [CrossRef]
- Griss, P. Silicon Nitride Ceramic (Si3N4) on Rabbit Skeletal Cells and Tissue. Clin. Orthop. Relat. Res. 1990, 256, 306–308. [Google Scholar] [CrossRef]
- Orth, J.; Ludwig, M.; Piening, W.; Wilke, A.; Griss, P. Biocompatibility of Siliconcarbide and Siliconnitride Ceramics. Results of an Animal Experiment. In Bioceramics and the Human Body; Springer: Dordrecht, The Netherlands, 1992; pp. 372–377. ISBN 9781851667482. [Google Scholar]
- Sohrabi, A.; Holland, C.; Kue, R.; Nagle, D.; Hungerford, D.S.; Frondoza, C.G. Proinflammatory Cytokine Expression of IL-1beta and TNF-Alpha by Human Osteoblast-like MG-63 Cells upon Exposure to Silicon Nitride in Vitro. J. Biomed. Mater. Res. 2000, 50, 43–49. [Google Scholar] [CrossRef]
- Kue, R.; Sohrabi, A.; Nagle, D.; Frondoza, C.; Hungerford, D. Enhanced Proliferation and Osteocalcin Production by Human Osteoblast-like MG63 Cells on Silicon Nitride Ceramic Discs. Biomaterials 1999, 20, 1195–1201. [Google Scholar] [CrossRef]
- Neumann, A.; Kramps, M.; Ragoß, C.; Maier, H.R.; Jahnke, K. Histological and Microradiographic Appearances of Silicon Nitride and Aluminum Oxide in a Rabbit Femur Implantation Model. Materwiss. Werksttech. 2004, 35, 569–573. [Google Scholar] [CrossRef]
- Neumann, A.; Kramps, M.; Ragoss, C.; Jahnke, K. R052: Silicon Nitride as Biomaterial: A Comparative In Vivo Investigation. Otolaryngol. Head Neck Surg. 2003, 129, P171–P172. [Google Scholar] [CrossRef]
- Neumann, A.; Reske, T.; Held, M.; Jahnke, K.; Ragoß, C.; Maier, H.R. Comparative investigation of the biocompatibility of various sili-con nitride ceramic qualities in vitro. J. Mater. Sci. Mater. Med. 2004, 15, 1135–1140. [Google Scholar] [CrossRef]
- Neumann, A.; Unkel, C.; Werry, C.; Herborn, C.U.; Maier, H.R.; Ragoß, C.; Jahnke, K. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface. Otolaryngol. Head Neck Surg. 2006, 134, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Bal, B.S.; Khandkar, A.; Lakshminarayanan, R.; Clarke, I.; Hoffman, A.A.; Rahaman, M.N. Testing of Silicon Nitride Ceramic Bearings for Total Hip Arthroplasty. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 87B, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Bal, B.S.; Khandkar, A.; Lakshminarayanan, R.; Clarke, I.; Hoffman, A.A.; Rahaman, M.N. Fabrication and testing of silicon nitride bearings in total hip arthroplasty: Winner of the 2007 “HAP” PAUL award. J. Arthroplast. 2009, 24, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Bal, B.S.; Rahaman, M. The rationale for silicon nitride bearings in orthopaedic applications. In Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment; IntechOpen: London, UK, 2011; pp. 421–432. [Google Scholar]
- Cappi, B.; Neuss, S.; Salber, J.; Telle, R.; Knüchel, R.; Fischer, H. Cytocompatibility of High Strength Non-Oxide Ceramics. J. Biomed. Mater. Res. A 2010, 93, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Yang, P.; Huang, J.; Liang, J.; Sun, H.; Huang, N. Optimization of Hemocompatibility of Silicon Oxynitride Films. Adv. Mater. Res. 2009, 79, 727–730. [Google Scholar] [CrossRef]
- Gustavsson, J.; Altankov, G.; Errachid, A.; Samitier, J.; Planell, J.A.; Engel, E. Modulation of Biological Properties of Silicon Nitride for Biosensor Applications by Self-Assembled Monolayers. Adv. Sci. Technol. 2006, 53, 122–127. [Google Scholar]
- Yamamoto, A.; Honma, R.; Sumita, M.; Hanawa, T. Cytotoxicity Evaluation of Ceramic Particles of Different Sizes and Shapes. J. Biomed. Mater. Res. A 2004, 68, 244–256. [Google Scholar] [CrossRef]
- Bogner, E.; Dominizi, K.; Hagl, P.; Bertagnolli, E.; Wirth, M.; Gabor, F.; Brezna, W.; Wanzenboeck, H.D. Bridging the Gap—Biocompatibility of Microelectronic Materials. Acta Biomater. 2006, 2, 229–237. [Google Scholar] [CrossRef]
- Anderson, M.C.; Olsen, R. Bone Ingrowth into Porous Silicon Nitride. J. Biomed. Mater. Res. A 2009, 92, 1598–1605. [Google Scholar] [CrossRef]
- Webster, T.J.; Patel, A.A.; Rahaman, M.N.; Sonny Bal, B. Anti-Infective and Osteointegration Properties of Silicon Nitride, Poly(Ether Ether Ketone), and Titanium Implants. Acta Biomater. 2012, 8, 4447–4454. [Google Scholar] [CrossRef]
- Pezzotti, G.; McEntire, B.J.; Bock, R.; Zhu, W.; Boschetto, F.; Rondinella, A.; Marin, E.; Marunaka, Y.; Adachi, T.; Yamamoto, T.; et al. In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces. ACS Biomater. Sci. Eng. 2016, 2, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Park, W.-T.; Tsang, J.W.M.; Yee, T.B.; Je, M. Cytocompatibility Assessment of Si, Plasma Enhanced Chemical Vapor Deposition-Formed SiO2 and Si3N4 Used for Neural Prosthesis: A Comparative Study. Nanosci. Nanotechnol. Lett. 2013, 5, 916–920. [Google Scholar] [CrossRef]
- Dion, I.; Bordenave, L.; Lefebvre, F.; Bareille, R.; Baquey, C.; Monties, J.-R.; Havlik, P. Physico-Chemistry and Cytotoxicity of Ceramics. J. Mater. Sci. Mater. Med. 1994, 5, 18–24. [Google Scholar] [CrossRef]
- Aydin, E.; Türkez, H.; Hacimüftüoğlu, F. In Vitro Cytotoxicity and Molecular Effects Related to Silicon Nanoparticles Exposures. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilim. Derg. 2017, 17, 10–17. [Google Scholar] [CrossRef]
- Pezzotti, G.; Oba, N.; Zhu, W.; Marin, E.; Rondinella, A.; Boschetto, F.; McEntire, B.; Yamamoto, K.; Bal, B.S. Human Osteoblasts Grow Transitional Si/N Apatite in Quickly Osteointegrated Si3N4 Cervical Insert. Acta Biomater. 2017, 64, 411–420. [Google Scholar] [CrossRef]
- Marin, E.; Boschetto, F.; Zanocco, M.; Zhu, W.; Adachi, T.; Kanamura, N.; Yamamoto, T.; McEntire, B.J.; Jones, E.N.; Powell, C.; et al. Biological Responses to Silicon and Nitrogen-Rich PVD Silicon Nitride Coatings. Mater. Today Chem. 2021, 19, 100404. [Google Scholar] [CrossRef]
- Marin, E.; Zanocco, M.; Boschetto, F.; Yamamoto, T.; Kanamura, N.; Zhu, W.; McEntire, B.J.; Bal, B.S.; Ashida, R.; Mazda, O.; et al. In Vitro Comparison of Bioactive Silicon Nitride Laser Claddings on Different Substrates. Appl. Sci. 2020, 10, 9039. [Google Scholar] [CrossRef]
- Zanocco, M.; Marin, E.; Rondinella, A.; Boschetto, F.; Horiguchi, S.; Zhu, W.; McEntire, B.J.; Bock, R.M.; Bal, B.S.; Pezzotti, G. The Role of Nitrogen Off-Stoichiometry in the Osteogenic Behavior of Silicon Nitride Bioceramics. Mater. Sci. Eng. C 2019, 105, 110053. [Google Scholar] [CrossRef]
- Marin, E.; Adachi, T.; Boschetto, F.; Zanocco, M.; Rondinella, A.; Zhu, W.; Bock, R.; McEntire, B.; Bal, S.B.; Pezzotti, G. Biological Response of Human Osteosarcoma Cells to Si3N4-Doped Bioglasses. Mater. Des. 2018, 159, 79–89. [Google Scholar] [CrossRef]
- Ahuja, N.; Awad, K.R.; Brotto, M.; Aswath, P.B.; Varanasi, V. A Comparative Study on Silicon Nitride, Titanium and Polyether Ether Ketone on Mouse Pre-Osteoblast Cells. Med. Devices Sens. 2021, 4, e10139. [Google Scholar] [CrossRef]
- Awad, K.R.; Ahuja, N.; Shah, A.; Tran, H.; Aswath, P.B.; Brotto, M.; Varanasi, V. Silicon Nitride Enhances Osteoprogenitor Cell Growth and Differentiation via Increased Surface Energy and Formation of Amide and Nanocrystalline HA for Craniofacial Reconstruction. Med. Devices Sens. 2019, 2, e10032. [Google Scholar] [CrossRef] [PubMed]
- José, D.; Santos, M.; Amaral, S.M.; Oliveira, M.A.; Lopez, R.F. Silva Silicon Nitride—Bioglass® Composite for Biomedical Applications. Key Eng. 2000, 192–195, 589–592. [Google Scholar]
- Frajkorová, F.; Bodišová, K.; Boháč, M.; Bartoníčková, E.; Sedláček, J. Preparation and Characterisation of Porous Composite Biomaterials Based on Silicon Nitride and Bioglass. Ceram. Int. 2015, 41, 9770–9778. [Google Scholar] [CrossRef]
- Amaral, M.; Costa, M.A.; Lopes, M.A.; Silva, R.F.; Santos, J.D.; Fernandes, M.H. Si3N4-Bioglass Composites Stimulate the Proliferation of MG63 Osteoblast-like Cells and Support the Osteogenic Differentiation of Human Bone Marrow Cells. Biomaterials 2002, 23, 4897–4906. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Li, S.; Shi, S. Histomorphometry of silicon nitride composite endosteal implant in dogs. Zhonghua Kou Qiang Yi Xue Za Zhi 1999, 34, 223–225. [Google Scholar]
- Weisenberg, B.A.; Mooradian, D.L. Hemocompatibility of Materials Used in Microelectromechanical Systems: Platelet Adhesion and Morphology in Vitro. J. Biomed. Mater. Res. 2002, 60, 283–291. [Google Scholar] [CrossRef]
- Bal, B.S.; Rahaman, M.N. Orthopedic Applications of Silicon Nitride Ceramics. Acta Biomater. 2012, 8, 2889–2898. [Google Scholar] [CrossRef]
- Yorifuji, M.; Affatato, S.; Tateiwa, T.; Takahashi, Y.; Shishido, T.; Marin, E.; Zanocco, M.; Zhu, W.; Pezzotti, G.; Yamamoto, K. Wear Simulation of Ceramic-on-Crosslinked Polyethylene Hip Prostheses: A New Non-Oxide Silicon Nitride versus the Gold Standard Composite Oxide Ceramic Femoral Heads. Materials 2020, 13, 2917. [Google Scholar] [CrossRef]
- Gorth, D.J.; Puckett, S.; Ercan, B.; Webster, T.J.; Rahaman, M.; Bal, B.S. Decreased Bacteria Activity on Si3N4 Surfaces Compared with PEEK or Titanium. Int. J. Nanomed. 2012, 7, 4829–4840. [Google Scholar]
- Pezzotti, G.; Bock, R.M.; McEntire, B.J.; Jones, E.; Boffelli, M.; Zhu, W.; Baggio, G.; Boschetto, F.; Puppulin, L.; Adachi, T.; et al. Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. Langmuir 2016, 32, 3024–3035. [Google Scholar] [CrossRef]
- Bock, R.M.; Jones, E.N.; Ray, D.A.; Sonny Bal, B.; Pezzotti, G.; McEntire, B.J. Bacteriostatic Behavior of Surface Modulated Silicon Nitride in Comparison to Polyetheretherketone and Titanium. J. Biomed. Mater. Res. Part A 2017, 105, 1521–1534. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Asai, T.; Adachi, T.; Ohgitani, E.; Yamamoto, T.; Kanamura, N.; Boschetto, F.; Zhu, W.; Zanocco, M.; Marin, E.; et al. Antifungal Activity of Polymethyl Methacrylate/Si3N4 Composites against Candida albicans. Acta Biomater. 2021, 126, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Ohgitani, E.; Ikegami, S.; Shin-Ya, M.; Adachi, T.; Yamamoto, T.; Kanamura, N.; Marin, E.; Zhu, W.; Okuma, K.; et al. Instantaneous Inactivation of Herpes Simplex Virus by Silicon Nitride Bioceramics. Int. J. Mol. Sci. 2023, 24, 12657. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; de Mesy Bentley, K.L.; McEntire, B.J.; Bal, B.S.; Schwarz, E.M.; Xie, C. Surface Topography of Silicon Nitride Affects Antimicrobial and Osseointegrative Properties of Tibial Implants in a Murine Model. J. Biomed. Mater. Res. Part A 2017, 105, 3413–3421. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.H.P.; Chan, K.-Y.; Xu, L.-C. Quantification of Bacterial Adhesion Forces Using Atomic Force Microscopy (AFM). J. Microbiol. Methods 2000, 40, 89–97. [Google Scholar] [CrossRef]
- Yao, X.; Walter, J.; Burke, S.; Stewart, S.; Jericho, M.H.; Pink, D.; Hunter, R.; Beveridge, T.J. Atomic Force Microscopy and Theoretical Considerations of Surface Properties and Turgor Pressures of Bacteria. Colloids Surf. B Biointerfaces 2002, 23, 213–230. [Google Scholar] [CrossRef]
- Gordesli, F.P.; Abu-Lail, N.I. Combined Poisson and Soft-Particle DLVO Analysis of the Specific and Nonspecific Adhesion Forces Measured between L. Monocytogenes Grown at Various Temperatures and Silicon Nitride. Environ. Sci. Technol. 2012, 46, 10089–10098. [Google Scholar] [CrossRef]
- Boonaert, C.J.P.; Rouxhet, P.G.; Dufrêne, Y.F. Surface Properties of Microbial Cells Probed at the Nanometre Scale with Atomic Force Microscopy. Surf. Interface Anal. 2000, 30, 32–35. [Google Scholar] [CrossRef]
- Park, B.-J.; Haines, T.; Abu-Lail, N.I. A Correlation between the Virulence and the Adhesion of Listeria monocytogenes to Silicon Nitride: An Atomic Force Microscopy Study. Colloids Surf. B Biointerfaces 2009, 73, 237–243. [Google Scholar] [CrossRef]
- Pezzotti, G.; Fujita, Y.; Boschetto, F.; Zhu, W.; Marin, E.; Vandelle, E.; McEntire, B.J.; Bal, S.B.; Giarola, M.; Polverari, A. Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen Plasmopara viticola. Front. Microbiol. 2020, 11, 610211. [Google Scholar] [CrossRef]
- Bock, R.M.; McEntire, B.J.; Bal, B.S.; Rahaman, M.N.; Boffelli, M.; Pezzotti, G. Surface Modulation of Silicon Nitride Ceramics for Orthopaedic Applications. Acta Biomater. 2015, 26, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, X.; Wick, C.D.; Dang, L.X.; Miller, J.D. Silica surface states and their wetting characteristics. Surf. Innov. 2019, 8, 145–157. [Google Scholar] [CrossRef]
- Loehman, R.E.; Rowcliffe, D.J. Sintering of Si3N4-Y2O3-Al2O3. J. Am. Ceram. Soc. 1980, 63, 144–148. [Google Scholar] [CrossRef]
- Pezzotti, G.; Marin, E.; Adachi, T.; Lerussi, F.; Rondinella, A.; Boschetto, F.; Zhu, W.; Kitajima, T.; Inada, K.; McEntire, B.J.; et al. Incorporating Si3 N4 into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants. Macromol. Biosci. 2018, 18, e1800033. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Boschetto, F.; Honma, T.; Yang, Q.; Ajunwa, O.M.; Marsili, E.; Zhu, W.; Pezzotti, G. Particulate Reinforced Bone Cements: The Potential Antibacteric Role of Nitrides. Materialia 2023, 28, 101748. [Google Scholar] [CrossRef]
- Tamai, K.; Yasui, A.; Morinaga, H.; Doi, T.K.; Kurokawa, S. Effect of Particle-Substrate Interaction on the Polishing Rate. In Proceedings of the International Conference on Planarizaiton/CMP Technology, Fukuoka, Japan, 19–21 November 2009. [Google Scholar]
- Bu, K.-H.; Moudgil, B.M. Colloidal Silica Based High Selectivity Shallow Trench Isolation (STI) Chemical Mechanical Polishing (CMP) Slurry. Mater. Res. Soc. Symp. Proc. 2005, 867, W8-5. [Google Scholar] [CrossRef]
- Pezzotti, G. Silicon Nitride as a Biomaterial. J. Ceram. Soc. Jpn. 2023, 131, 398–428. [Google Scholar] [CrossRef]
- Hien, T.T.T.; Ishizaki, C.; Ishizaki, K. NHx/OH Surface Groups in Commercial Si3N4 Powders Analyzed by Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy. J. Ceram. Soc. Jpn. 2003, 111, 28–32. [Google Scholar] [CrossRef]
- Dufour, L.-C.; Perdereau, M. Small Particles and Thin Films of Metals on Ceramic Oxides. In Surfaces and Interfaces of Ceramic Materials; Springer: Dordrecht, The Netherlands, 1989; pp. 419–448. ISBN 9789401069571. [Google Scholar]
- Bergström, L.; Bostedt, E. Surface Chemistry of Silicon Nitride Powders: Electrokinetic Behaviour and ESCA Studies. Colloids Surf. 1990, 49, 183–197. [Google Scholar] [CrossRef]
- Zhmud, B.V.; Bergström, L. Dissolution Kinetics of Silicon Nitride in Aqueous Suspension. J. Colloid Interface Sci. 1999, 218, 582–584. [Google Scholar] [CrossRef]
- Ip, Y.K.; Chew, S.F.; Randall, D.J. Ammonia Toxicity, Tolerance, and Excretion. In Fish Physiology; Nitrogen Excretion; Academic Press: Cambridge, MA, USA, 2001; Volume 20, pp. 109–148. [Google Scholar]
- Vandelle, E.; Delledonne, M. Peroxynitrite Formation and Function in Plants. Plant Sci. 2011, 181, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G. Silicon Nitride: A Bioceramic with a Gift. ACS Appl. Mater. Interfaces 2019, 11, 26619–26636. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.; Xiao, W. Silicon Nitride Bioceramics in Healthcare. Int. J. Appl. Ceram. Technol. 2018, 15, 861–872. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, F.; Jiang, D.; Iwasa, M. Dispersion of Si3N4 Powders in Aqueous Media. Colloids Surf. A Physicochem. Eng. Asp. 2005, 259, 117–123. [Google Scholar] [CrossRef]
- Galassi, C.; Rastelli, E.; Roncari, E.; Ardizzone, S.; Cattania, M.G. Characterization and Stabilization of Si3N4 Suspensions. J. Mater. Res. 1995, 10, 339–344. [Google Scholar] [CrossRef]
- Greil, P.; Nitzsche, R.; Friedrich, H.; Hermel, W. Evaluation of Oxygen Content on Silicon Nitride Powder Surface from the Measurement of the Isoelectric Point. J. Eur. Ceram. Soc. 1991, 7, 353–359. [Google Scholar] [CrossRef]
- Lee, S.S.; Huber, S.; Ferguson, S.J. Comprehensive in vitro comparison of cellular and osteogenic response to alternative biomaterials for spinal implants. Mater. Sci. Eng. C 2021, 127, 112251. [Google Scholar]
- Adeva, M.M.; Souto, G.; Blanco, N.; Donapetry, C. Ammonium Metabolism in Humans. Metabolism 2012, 61, 1495–1511. [Google Scholar] [CrossRef]
- Martinelle, K.; Häggström, L. Mechanisms of Ammonia and Ammonium Ion Toxicity in Animal Cells: Transport across Cell Membranes. J. Biotechnol. 1993, 30, 339–350. [Google Scholar] [CrossRef]
- Wang, F.; Chen, S.; Jiang, Y.; Zhao, Y.; Sun, L.; Zheng, B.; Chen, L.; Liu, Z.; Zheng, X.; Yi, K.; et al. Effects of Ammonia on Apoptosis and Oxidative Stress in Bovine Mammary Epithelial Cells. Mutagenesis 2018, 33, 291–299. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, J.; Sun, Q.; Xu, Y.; Teng, X. Oxidative Stress and Mitochondrial Dysfunction Involved in Ammonia-Induced Nephrocyte Necroptosis in Chickens. Ecotoxicol. Environ. Saf. 2020, 203, 110974. [Google Scholar] [CrossRef] [PubMed]
- Coelho, N.M.; González-García, C.; Salmerón-Sánchez, M.; Altankov, G. Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces. Biotechnol. Bioeng. 2011, 108, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, C.; Li, Y.; Sun, J.; Wang, P.; Di, K.; Chen, H.; Zhao, Y. Effect of yttrium ion on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro. J. Rare Earths 2010, 28, 466–470. [Google Scholar] [CrossRef]
- Arima, Y.; Iwata, H. Effects of Surface Functional Groups on Protein Adsorption and Subsequent Cell Adhesion Using Self-Assembled Monolayers. J. Mater. Chem. 2007, 17, 4079–4087. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Zhu, M.; Zhang, Y.; Liu, Z.; Ma, Y.; Zhu, Y.; Zhang, C. Effects of Functional Groups on the Structure, Physicochemical and Biological Properties of Mesoporous Bioactive Glass Scaffolds. J. Mater. Chem. B Mater. Biol. Med. 2015, 3, 1612–1623. [Google Scholar] [CrossRef]
- Griss, P. Alumina Ceramic, Bioglass and Silicon Nitride: A Comparative Biocompatibility Study. Mecahnical Prop. Biomater. 1980. [Google Scholar]
- Marin, E.; Bassi, G.; Yoshikawa, O.; Boschetto, F.; Zhu, W.; Rossi, A.; Lanzutti, A.; Xu, H.; Montesi, M.; Panseri, S.; et al. The Role of Y2O3 in the Bioactivity of YSZ/PLLA Composites. J. Mater. Sci. 2023, 58, 11218–11234. [Google Scholar] [CrossRef]
- Honma, T.; Marin, E.; Boschetto, F.; bin Idrus, M.D.; Mizuno, K.; Miyamoto, N.; Adachi, T.; Yamamoto, T.; Kanamura, N.; Zhu, W.; et al. In Vitro Osteoconductivity of PMMA-Y2O3 Composite Resins. Adv. Ind. Eng. Polym. Res. 2023, 6, 24–38. [Google Scholar] [CrossRef]
- Song, X.; Shang, P.; Sun, Z.; Lu, M.; You, G.; Yan, S.; Chen, G.; Zhou, H. Therapeutic Effect of Yttrium Oxide Nanoparticles for the Treatment of Fulminant Hepatic Failure. Nanomedicine 2019, 14, 2519–2533. [Google Scholar] [CrossRef]
- Howlett, C.R. Reply to Griss. Clin. Orthop. Relat. Res. 1990, 256, 306. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, C.; Xu, E.; Liu, X.; Zhao, F.; Sun, X.; Chen, H.; Gao, J. Effect of Y2O3 on the Physical Properties and Biocompatibility of β–SiAlON Ceramics. Ceram. Int. 2020, 46, 23427–23432. [Google Scholar] [CrossRef]
- Huang, Y.; Zhai, X.; Ma, T.; Zhang, M.; Pan, H.; Weijia Lu, W.; Zhao, X.; Sun, T.; Li, Y.; Shen, J.; et al. Rare Earth-Based Materials for Bone Regeneration: Breakthroughs and Advantages. Coord. Chem. Rev. 2022, 450, 214236. [Google Scholar] [CrossRef]
- Hnatko, M.; Hičák, M.; Labudová, M.; Galusková, D.; Sedláček, J.; Lenčéš, Z.; Šajgalík, P. Bioactive Silicon Nitride by Surface Thermal Treatment. J. Eur. Ceram. Soc. 2020, 40, 1848–1858. [Google Scholar] [CrossRef]
- Fu, L.; Xiong, Y.; Carlsson, G.; Palmer, M.; Örn, S.; Zhu, W.; Weng, X.; Engqvist, H.; Xia, W. Biodegradable Si3N4 Bioceramic Sintered with Sr, Mg and Si for Spinal Fusion: Surface Characterization and Biological Evaluation. Appl. Mater. Today 2018, 12, 260–275. [Google Scholar] [CrossRef]
- Zeng, X.; Sipaut, C.S.; Ismail, N.M.; Liu, Y.; Farm, Y.Y.; Peng, B.; He, J. Fabrication of 3D Printed Si3N4 Bioceramics with Superior Comprehensive Performance through ZnO Nanowires Doping. Ceram. Int. 2024, 50, 34457–34466. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, L.; Zhang, C.; Xu, E.; Wang, L.; Liu, X.; Chang, G.; Sun, X.; Ma, C.; Yuan, H.; et al. Improved Sintering Performance of β-SiAlON-Si3N4 and Its Osteogenic Differentiation Ability by Adding β-SiAlON. J. Biomater. Appl. 2022, 36, 1652–1663. [Google Scholar] [CrossRef]
- Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial Urease and Its Role in Long-Lasting Human Diseases. Curr. Protein Pept. Sci. 2012, 13, 789–806. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, H.; Zhu, R.; Liao, X.; Wu, Y.; Mi, J.; Wang, Y. Ammonia Reduction by the GdhA and GlnA Genes from Bacteria in Laying Hens. Ecotoxicol. Environ. Saf. 2021, 222, 112486. [Google Scholar] [CrossRef]
- Mobley, H.L.; Hu, L.T.; Foxal, P.A. Helicobacter Pylori Urease: Properties and Role in Pathogenesis. Scand. J. Gastroenterol. Suppl. 1991, 187, 39–46. [Google Scholar] [CrossRef]
- Ghosh, S.; Navarathna, D.H.M.L.P.; Roberts, D.D.; Cooper, J.T.; Atkin, A.L.; Petro, T.M.; Nickerson, K.W. Arginine-Induced Germ Tube Formation in Candida Albicans Is Essential for Escape from Murine Macrophage Line RAW 264.7. Infect. Immun. 2009, 77, 1596–1605. [Google Scholar] [CrossRef]
- Vylkova, S.; Carman, A.J.; Danhof, H.A.; Collette, J.R.; Zhou, H.; Lorenz, M.C. The Fungal Pathogen Candida Albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular PH. MBio 2011, 2, e00055-11. [Google Scholar] [CrossRef] [PubMed]
- Kangarlou, A.; Sofiabadi, S.; Yadegari, Z.; Asgary, S. Antifungal Effect of Calcium Enriched Mixture Cement against Candida Albicans. Iran. Endod. J. 2009, 4, 101–105. [Google Scholar] [PubMed]
- El-Zahed, M.M.; Kiwaan, H.A.; Farhat, A.A.M.; Moawed, E.A.; El-Sonbati, M.A. Anticandidal Action of Polyurethane Foam: A New Modifier with Functionalized Isothiouronium Group. Iran. Polym. J. 2023, 32, 71–79. [Google Scholar] [CrossRef]
- Kreutzwiesner, E.; Noormofidi, N.; Wiesbrock, F.; Kern, W.; Rametsteiner, K.; Stelzer, F.; Slugovc, C. Contact Bactericides and Fungicides on the Basis of Amino-Functionalized Poly(Norbornene)s. J. Polym. Sci. A Polym. Chem. 2010, 48, 4504–4514. [Google Scholar] [CrossRef]
- Montazeri, M.; Razzaghi-Abyaneh, M.; Nasrollahi, S.A.; Maibach, H.; Nafisi, S. Enhanced Topical Econazole Antifungal Efficacy by Amine-Functionalized Silica Nanoparticles. Bull. Mater. Sci. 2020, 43, 13. [Google Scholar] [CrossRef]
- Aggarwal, M.; Husain, S.; Kumar, B. Role of Functionalized Carbon Nanotubes in Antimicrobial Activity. In Functionalized Carbon Nanotubes for Biomedical Applications; Wiley: Hoboken, NJ, USA, 2023; pp. 377–411. [Google Scholar]
- Baggio, G. Spectroscopic Investigations on the Possible Antibacterial Activity of Differently Surface-Treated Silicon Nitrides for Dental Applications. Master’s Theis, University of Venice, Venice, Italy, 2016. [Google Scholar]
- Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin: A Review of Population Pharmacokinetic Analyses. Clin. Pharmacokinet. 2012, 51, 1–13. [Google Scholar] [CrossRef]
- Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24296575/ (accessed on 5 March 2024).
- Yan, Y.; Ping, S.; Peng, J.; Han, Y.; Li, L.; Yang, J.; Dou, Y.; Li, Y.; Fan, H.; Fan, Y.; et al. Global Transcriptional Analysis of Nitrogen Fixation and Ammonium Repression in Root-Associated Pseudomonas Stutzeri A1501. BMC Genom. 2010, 11, 11. [Google Scholar] [CrossRef]
- Frank, C.S.; Langhammer, P.; Fuchs, B.M.; Harder, J. Ammonium and Attachment of Rhodopirellula Baltica. Arch. Microbiol. 2011, 193, 365–372. [Google Scholar] [CrossRef]
- Hesketh, A.; Fink, D.; Gust, B.; Rexer, H.-U.; Scheel, B.; Chater, K.; Wohlleben, W.; Engels, A. The GlnD and GlnK Homologues of Streptomyces Coelicolor A3(2) Are Functionally Dissimilar to Their Nitrogen Regulatory System Counterparts from Enteric Bacteria. Mol. Microbiol. 2002, 46, 319–330. [Google Scholar] [CrossRef]
- Bremer, E.; Krämer, R. Responses of Microorganisms to Osmotic Stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef]
- Du, X.; Lee, S.S.; Blugan, G.; Ferguson, S.J. Silicon Nitride as a Biomedical Material: An Overview. Int. J. Mol. Sci. 2022, 23, 6551. [Google Scholar] [CrossRef] [PubMed]
- Abu-Lail, N.I.; Camesano, T.A. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by Poisson statistical analysis. Langmuir 2006, 22, 7296–7301. [Google Scholar] [CrossRef] [PubMed]
- Aucapina, R.; Ouedraogo, N.; Ferguson, M.A. Examining Bacterial Cell Interactions Using Atomic Force Microscopy. Biophys. J. 2015, 108, 633a. [Google Scholar] [CrossRef]
- Du, S.; Li, F.; Zhang, J.; Chen, Z.; Zhang, S.; Zhao, S.; Zhao, D.; Fan, B.; Chen, K.; Liu, G. Effects of Sintering Additives and Sintering Methods on the Mechanical, Antimicrobial and Optical Properties of Si3N4 Bioceramics. J. Mech. Behav. Biomed. Mater. 2024, 154, 106529. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhou, X.; Qi, F.; Li, L.; Li, Q.; Shi, G.; Zhang, L.; Wang, Z.; Dong, S.; Zhu, Y. The Effect of T-ZnOw Addition on the Microstructure, Mechanical and Antibacterial Properties of Si3N4 Ceramics for Biomedical Applications. Ceram. Int. 2019, 45, 2393–2399. [Google Scholar] [CrossRef]
- Amaral, M.; Lopes, M.A.; Silva, R.F.; Santos, J.D. Densification Route and Mechanical Properties of Si3N4–Bioglass Biocomposites. Biomaterials 2002, 23, 857–862. [Google Scholar] [CrossRef]
- McEntire, B.J.; Lakshminarayanan, R.; Thirugnanasambandam, P.; Sampson, J.S.; Bock, R.; Brien, D.O. Processing and Characterization of Silicon Nitride Bioceramics. Bioceram. Dev. Appl. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, W.; Rahaman, M.N.; O’Brien, D.; Seitz-Sampson, J.W.; Sonny Bal, B. Robocasting of Silicon Nitride with Controllable Shape and Architecture for Biomedical Applications. Int. J. Appl. Ceram. Technol. 2017, 14, 117–127. [Google Scholar] [CrossRef]
- Çalışkan, F.; Demir, A.; Tatlı, Z. Fabrication of Si3N4 Preforms from Si3N4 Produced via CRN Technique. J. Porous Mater. 2013, 20, 1501–1507. [Google Scholar] [CrossRef]
- Ament, J.D.; Vokshoor, A.; Yee, R.; Johnson, J.P. A Systematic Review and Meta-Analysis of Silicon Nitride and Biomaterial Modulus as It Relates to Subsidence Risk in Spinal Fusion Surgery. N. Am. Spine Soc. J. 2022, 12, 100168. [Google Scholar] [CrossRef]
Authors | Composition/Producer | Ref | Bio Compatibility | Mechanism |
---|---|---|---|---|
Griss et al. | 2.94 micron, meno 0.01 MgO, 0.073 CaO, 0.006 Fe2O3, 0.03 ZrO2 | [1] | Bad | Unknown |
Howlett et al. | Unknown | [8] | Good | Unknown |
Griss et al. | 2.94 micron, meno 0.01 MgO, 0.073 CaO, 0.006 Fe2O3, 0.03 ZrO2 | [9,10] | Bad | Unknown |
Sohrabi et al. | Unknown | [11] | Good | Unknown |
Sohrabi et al. | Conducting Materials, Columbia, MD | [12] | Good | Roughness, chemistry |
Neumann et al. | Mg 0.1, Al 1.7, O 4.3, N 55.6, Si 37.3, Y 1.0 | [13] | Good | Unknown |
Neumann et al. | Mg 0.1, Al 1.7, O 4.3, N 55.6, Si 37.3, Y 1.0 | [14] | Good | Unknown |
Neumann et al. | N 55.6, Mg 0.1, Al 1.7, Si 37.3, Y 1.0, O 4.3 N 50.8, Al 2.4, Si 40.7, Y 1.0, O 5.1 N 53.8, Mg 0.1, Al 1.1, Si 39.8, Y 1.5, O 3.8 N 48.9, Mg 0.5, Al 2.4, Si 41.5, Y 1.1, O 5.6 N 55.1, Mg 0.1, Al 1.7, Si 38.3, Y 0.9, O 4.0 | [15] | Good | Unknown |
Neumann et al. | Unknown | [16] | Good | Surface structures, chemistry |
Bal et al. | N 53.30, Si 39.87, Y 1.1, O 4.1 | [17] | Unknown | Unknown |
Bal et al. | N 53.30, Si 39.87, Y 1.1, O 4.1 | [18] | Unknown | Unknown |
Bal et al. | N 53.30, Si 39.87, Y 1.1, O 4.1 | [19] | Unknown | Unknown |
Cappi et al. | 10% Y3Al5O12 | [20] | Good | Substrate chemistry and grain size but not roughness |
Wang et al. | Si-O-N with high N/O ratio | [21] | Good | Substrate chemistry |
Gustavsson et al. | Unknown | [22] | Good | Unknown |
Yamamoto et al. | particles (700 µm) | [23] | Bad | Particle size and concentration |
Bogner et al. | 6 wt.% Y2O3 and 4 wt.% Al2O3 | [24] | Bad | Unknown |
Anderson et al. | Unknown | [25] | Good | Unknown |
Webster et al. | Si3N4, Y2O3, Al2O3 | [26] | Good | Unknown |
Pezzotti et al. | Si3N4, Y2O3, Al2O3 As-fabricated Si 35.1 N 35.5 O 17.5 Al 2.1 Y 0.1 C 9.7 HF-etched Si 31.6 N 35.2 O 8.4 Al 0.9 Y 0.1 C 21.8 Oxidized Si 32.7 N 0.1 O 57.7 Al 2.9 Y 1.3 C 5.4 Thermal treatment in N2 Si 32.7 N 33.3 O 16.6 Al 5.1 Y 2.1 C 10.3 | [27] | Good | Substrate chemistry |
Sun et al. | Unknown | [28] | Bad | Unknown |
Dion et al. | Unknown | [29] | Good | Unknown |
Aydin et al. | Unknown | [30] | Bad | Particle size and concentration |
Pezzotti et al. | Si3N4, Y2O3, Al2O3 | [31] | Good | Substrate chemistry |
Marin et al. | Si-rich Si3N4 N-rich | [32] | Good | Substrate chemistry |
Marin et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [33] | Good | Surface roughness and chemistry |
Zanocco et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [34] | Good | Surface roughness and chemistry |
Marin et al. | Bioglass doped with 5 wt.% and 10 wt.% Si3N4 | [35] | Good | Substrate chemistry |
Ahuja et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [36] | Good | Substrate chemistry |
Awad et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [37] | Good | Surface chemistry and wettability |
Santos et al. | Unknown | [38] | Bad | Unknown |
Frajkorová et al. | Si3N4-bioglass composite (100 wt.%, 90–10 wt.% and 70–30 wt.%) | [39] | Good | Bioglass addition |
Amaral et al. | Si3N4-bioglass composite (70–30 wt.%) | [40] | Good | Unknown |
Authors | Composition/Producer | Ref | Antipathogen Activity | Mechanism |
---|---|---|---|---|
Bal et al. | Si3N4, Y2O3, Al2O3 As Fired and Polished surfaces | [45] | Staphylococcus Epidermidis (Good), Staphylococcus. Aureus (Good), Pseudomonas aeruginosa (Good), Escherichia coli (Good), Enterococcus (Good) | Hydrophilicity and surface chemistry |
Webster et al. | Si3N4, Y2O3, Al2O3 | [26] | Staphylococcus Epidermidis (Good), | Hydrophilicity and surface net charge |
Pezzotti et al. | Si3N4, Y2O3, Al2O3 | [46] | Porphyromonas gingivalis (Good) | Peroxynitrite formation |
Bock et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 As Fired N2-Annealed (SiYAlON excess on the surface) SiYAlON glazed Oxidized (Si-OH excess on the surface) | [47] | Staphylococcus epidermidis (Good) | Peroxynitrite formation |
Pezzotti et al. | PMMA-βSi3N4 composite (6, 8, 10, 15, and 30 vol.%, no info on Si3N4 composition) | [48] | Candida albicans (Good) | Chemical and osmotic stress |
Pezzotti et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [49] | Human herpesvirus 1 (Good) | Peroxynitrite formation |
Ishikawa et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [50] | Staphylococcus. Aureus (Good), | Peroxynitrite formation and surface morphology |
Fang et al. | Unknown | [51] | Sulfate-reducing bacteria (Bad) | Weak adhesion |
Yao et al. | Unknown | [52] | Pseudomonas aeruginosa (Bad) Enterococcus hirae (Bad) | Weak adhesion |
Pinar Gordesli et al. | Unknown | [53] | Listeria monocytogenes (Bad) | Weak adhesion |
Boonaert et al. | Unknown | [54] | Phanerochaete chrysosporium (Bad) Lactococcus lactis (Bad) | Weak adhesion |
Park et al. | Unknown | [55] | Listeria monocytogenes (Bad) | Unknown |
Pezzotti et al. | 6 wt.% Y2O3, 4 wt.% Al2O3, 90 wt.% Si3N4 | [56] | Plasmopara viticola (Good) | Peroxynitrite formation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boschetto, F.; Rondinella, A.; Marin, E. Biological Activity of Silicon Nitride Ceramics: A Critical Review. Materials 2024, 17, 5548. https://doi.org/10.3390/ma17225548
Boschetto F, Rondinella A, Marin E. Biological Activity of Silicon Nitride Ceramics: A Critical Review. Materials. 2024; 17(22):5548. https://doi.org/10.3390/ma17225548
Chicago/Turabian StyleBoschetto, Francesco, Alfredo Rondinella, and Elia Marin. 2024. "Biological Activity of Silicon Nitride Ceramics: A Critical Review" Materials 17, no. 22: 5548. https://doi.org/10.3390/ma17225548
APA StyleBoschetto, F., Rondinella, A., & Marin, E. (2024). Biological Activity of Silicon Nitride Ceramics: A Critical Review. Materials, 17(22), 5548. https://doi.org/10.3390/ma17225548