Intelligent Optimization and Impact Analysis of Energy Efficiency and Carbon Reduction in the High-Temperature Sintered Ore Production Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Boundary
2.2. Model Establishment
2.3. Evaluation Indexes
2.3.1. Heat Utilization Efficiency (HUE)
2.3.2. Energy Consumption (EC)
2.3.3. Production Costs (PC)
2.3.4. Pollutants and Carbon Emissions
3. Optimization Algorithms and Data Sources
3.1. Optimization Algorithm
3.2. Data Sources
3.3. Model Validation
4. Results and Discussion
4.1. Multi Objective Optimization Results
4.2. Parameter and Energy Changes
4.3. Analysis of Influencing Factors
4.3.1. Changes in Sintered Ore Grade
4.3.2. Changes in the Thickness of the Material Layer
4.3.3. Change in Coal Ratio
4.3.4. Changes in Moisture Content of Materials
5. Conclusions
- (1)
- Using the NSGA-III algorithm, a Pareto front solution set for the multi-objective optimization of the sintering process was obtained, and the optimal solution for balancing quality, energy saving, and cost objectives was found. After optimization, the heat utilization efficiency of the sintering process increased by 0.67%, energy consumption decreased by 17.3 MJ/t, and production costs decreased by 11.45 CNY/t. Additionally, CO2 and SO2 emissions per ton of sintered ore decreased by 0.464 kg/t and 0.034 kg/t, and NOx emissions decreased by 0.008 kg/t. This optimization effectively improved the heat utilization efficiency of the sintering process while reducing energy consumption, production costs, pollutants, and carbon emissions.
- (2)
- In addition, optimized operating parameters for the optimal allocation of production resources, such as ore blending, flux, fuel consumption, and various airflow parameters, were obtained. These optimizations are beneficial for enhancing energy savings, improving efficiency, and reducing pollution in the sintering process. By implementing these optimizations, enterprises are expected to reduce energy consumption by 203.12 million MJ, production costs by 134.47 million CNY, CO2 emissions by 5.45 million kg, SO2 emissions by 0.399 million kg, and NOX by 0.094 million kg annually. It has brought significant economic and environmental benefits to the steel industry.
- (3)
- By studying and quantifying the influence of various key factors on multiple targets and pollutant emissions in the production process, especially changes in parameters such as sintered ore grade, material layer thickness, mixed material moisture content, and coal ratio, it was found that for every 1% increase in sintered ore grade, heat utilization efficiency improved by 0.81%, energy consumption decreased by 0.19%, and sintering production cost increased by 0.15%. Additionally, while ensuring production quality requirements are met, reasonably reducing the moisture content in the mixture and minimizing the consumption of coal in the fuel, along with increasing the material layer thickness, can contribute to lowering sintering energy consumption and reducing pollutant emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SP | Sintering plant | COG | Coke Oven Gas |
SRC | Sintering ring cooler | BFG | Blast Furnace Gas |
HUE | Heat utilization efficiency | NSGA-III | Non-dominated Sorting Genetic Algorithm III |
EC | Energy consumption | CNY | Chinese Yuan |
PC | Production costs | ||
The i-th type of material or energy | Temperature of sintered ore entering the ring cooler, °C | ||
The j-th type of output material or energy | Temperature of the sintered ore exiting the ring cooler, °C | ||
The input dosage of the i-th material or energy, kg/t | Extraction volume of the s-th type of steam, kg/t | ||
The output dosage of the j-th material or energy, kg/t | Enthalpy value of the s-th type of steam, kJ/kg | ||
Dosage of material in process, kg/t | energy consumption of the sintering process, MJ/t | ||
The i-th type of input heat in SP, kJ/t | The dosage of k-th energy recovered and supplied externally, kg/t, m3/t | ||
The j-th type of output heat in SP, kJ/t | , | Conversion coefficient of standard coal, MJ/t, MJ/m3 | |
The dosage of the i-th material or energy, kg/t | The dosage of sintered ore produced during the statistical period, kg/t | ||
The specific heat capacity of the i-th material or energy, kJ/(kg·K) | production cost per ton of sintered ore products, CNY/t | ||
The specific heat capacity of the i-th gas, m3/t | Price coefficient of the i-th substance or energy, CNY/kg, CNY/m3, CNY/kWh | ||
Specific heat capacity of the i-th gas, kJ/(m3·K) | , , | Price coefficients for maintenance, labor, and depreciation of unit products, CNY/t | |
The r-th chemical reaction | Price coefficient for the k-th type of energy recovery, CNY/kg, CNY/m3 | ||
Relative molecular mass of the r-th material | Oxidation rate of sulfur, % | ||
Reaction enthalpy of the r-th reaction, kJ/mol | The desulfurization rate of desulfurization equipment, % | ||
Comprehensive heat transfer coefficient between sintered ore and air, W/(m²·K) | Nitrogen oxide generation coefficient | ||
Efficiency of waste heat boiler in sintering ring cooler, % | Carbon emission factor, kg/t, kg/m3, kg/kWh |
Appendix A
Material Species | Component (%) | Price (CNY) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TFe | FeO | SiO2 | CaO | MgO | Al2O3 | S | P | TiO2 | ||
Ore1 | 65.80 | 0.23 | 1.42 | 0.45 | 0.01 | 1.22 | 0.01 | 0.06 | 0.09 | 830.00 |
Ore2 | 62.50 | 0.22 | 4.20 | 0.48 | 0.03 | 2.30 | 0.02 | 0.09 | 0.10 | 815.00 |
Ore3 | 61.60 | 0.31 | 4.35 | 0.45 | 0.03 | 1.88 | 0.04 | 0.05 | 0.11 | 500.00 |
Ore4 | 58.50 | 0.23 | 4.16 | 0.44 | 0.01 | 1.42 | 0.01 | 0.05 | 0.09 | 795.00 |
Ore5 | 56.20 | 0.20 | 5.53 | 0.10 | 0.03 | 2.22 | 0.03 | 0.08 | 0.11 | 760.00 |
Ore6 | 66.60 | 26.00 | 2.50 | 0.60 | 0.40 | 1.30 | 0.11 | 0.01 | 0.17 | 870.00 |
Ore7 | 60.60 | 11.32 | 10.33 | 0.69 | 0.83 | 1.14 | 0.02 | 0.02 | 0.00 | 800.00 |
Ore8 | 66.03 | 26.01 | 2.08 | 0.55 | 1.04 | 0.90 | 0.19 | 0.02 | 0.00 | 840.00 |
Ore9 | 57.43 | 0.28 | 5.57 | 0.24 | 0.64 | 1.20 | 0.02 | 0.07 | 0.06 | 720.00 |
Ore10 | 58.74 | 0.91 | 5.16 | 0.01 | 0.10 | 2.61 | 0.02 | 0.05 | 0.00 | 730.00 |
Ore11 | 59.61 | 0.33 | 5.51 | 0.27 | 0.12 | 2.81 | 0.01 | 0.05 | 0.00 | 750.00 |
Quicklime | 0.00 | 0.00 | 4.75 | 56.95 | 6.25 | 1.49 | 0.09 | 0.00 | 0.00 | 680.00 |
Limestone | 0.00 | 0.00 | 0.84 | 51.14 | 3.01 | 0.93 | 0.02 | 0.00 | 0.00 | 500.00 |
Dolomite | 0.00 | 0.00 | 1.83 | 31.09 | 20.29 | 0.00 | 0.02 | 0.00 | 0.00 | 180.00 |
Bentonite | 1.18 | 0.00 | 68.40 | 1.51 | 2.48 | 13.95 | 0.00 | 0.00 | 0.08 | 300.00 |
Calciumlime | 0.00 | 0.00 | 0.64 | 83.96 | 3.20 | 0.33 | 0.01 | 0.00 | 0.00 | 880.00 |
Gas | H2 | O2 | N2 | CO | CO2 | CH4 | C2H6 | C3H8 | C2H4 | C2H2 |
---|---|---|---|---|---|---|---|---|---|---|
COG | 59.8 | 0.14 | 3.54 | 6.53 | 1.86 | 23.60 | 0.62 | 0.00 | 1.35 | 0.00 |
BFG | 4.535 | 0.25 | 49.60 | 24.86 | 20.75 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Coal Species | Volatile Content | Carbon Content (Car/%) | Sulfur Content | Ash Content |
---|---|---|---|---|
Anthracite | 9.45 | 78.92 | 0.14 | 12.50 |
Coke | 0.008752 | 85.77 | 0.59 | 11.95 |
Composition | TFe | FeO | SiO2 | CaO | MgO | Al2O3 | S | P | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Sintered ore | 55~58 | ≤9.00 | ≤5.80 | ≤11.00 | ≤2.50 | ≤2.20 | ≤0.03 | ≤0.09 | ≤0.25 |
Composition | TFe | FeO | SiO2 | CaO | MgO | Al2O3 | S | P | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Before | 56.32 | 8.50 | 5.75 | 10.95 | 2.42 | 2.09 | 0.0043 | 0.0016 | 0.084 |
After | 56.68 | 8.40 | 5.66 | 10.94 | 2.47 | 2.02 | 0.0041 | 0.0011 | 0.068 |
References
- World Steel Association. Sustainability Indicators for the Steel Industry; World Steel Association: Brussels, Belgium, 2023. [Google Scholar]
- 2023 China Steel Yearbook. China Iron and Steel Industry Yearbook Society; China Iron and Steel Association: Beijing, China, 2023. [Google Scholar]
- Jiang, M.; Guo, M.; Liu, H.; Zhao, S.; Wang, Z. Discussion on optimization technology of whole process control of ultra-low emission of sintering flue gas. Sinter. Pelletizing 2023, 48, 115–121. [Google Scholar] [CrossRef]
- Tang, L.; Jia, M.; Bo, X.; Xue, X. High resolution emission inventory and atmospheric environmental impact research in Chinese iron and steel industry. China Environ. Sci. 2019, 40, 1493–1506. [Google Scholar] [CrossRef]
- Wang, J.; Meng, H.; Zhou, H. Effect of biochar substitution on iron ore sintering characteristics based on optimization of fuel distribution through the bed. Fuel Process. Technol. 2023, 247, 107817. [Google Scholar] [CrossRef]
- Cheng, Z.; Tan, Z.; Guo, Z.; Yang, J.; Wang, Q. Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry. Renew. Sustain. Energy Rev. 2020, 131, 110034. [Google Scholar] [CrossRef]
- Cavaliere, P. (Ed.) Sintering: Most Efficient Technologies for Greenhouse Emissions Abatement. In Clean Ironmaking and Steelmaking Processes: Efficient Technologies for Greenhouse Emissions Abatement; Springer International Publishing: Cham, Switzerland, 2019; pp. 111–165. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, M.; Ji, Z.; Fan, X.; Zhao, G.; Zhou, H.; Zheng, H.; Wang, X.; Liu, L.; Li, J. New approach to improve heat energy utilization efficiency in iron ore sintering: Exploration of surface fuel addition. Process Saf. Environ. Prot. 2024, 190, 125–137. [Google Scholar] [CrossRef]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Zhang, J.; Ding, P.; Zhou, J. Simulation and optimization of waste heat recovery in sinter cooling process. Appl. Therm. Eng. 2013, 54, 7–15. [Google Scholar] [CrossRef]
- Dong, H.; Yang, Y.; Jia, F.; Zhao, L.; Cai, J. Thermodynamic analysis of efficient recovery and utilisation of waste heat resources during sintering process. Int. J. Exergy 2013, 12, 552–569. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Wang, J.; Cheng, Z.; Wang, Q. Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed. Energy 2014, 67, 370–380. [Google Scholar] [CrossRef]
- Cui, L.; Liu, M.; Yuan, X.; Wang, Q.; Ma, Q.; Wang, P.; Hong, J.; Liu, H. Environmental and economic impact assessment of three sintering flue gas treatment technologies in the iron and steel industry. J. Clean. Prod. 2021, 311, 127703. [Google Scholar] [CrossRef]
- Liu, C.; Xie, Z.; Sun, F.; Chen, L. Optimization for sintering proportioning based on energy value. Appl. Therm. Eng. 2016, 103, 1087–1094. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, F.; Zhao, F.; Sutherland, J.W. A Data-Driven Model for Energy Consumption in the Sintering Process. J. Manuf. Sci. Eng. 2016, 138, 12. [Google Scholar] [CrossRef]
- Yuan, Y.; Na, H.; Du, T.; Qiu, Z.; Sun, J.; Yan, T.; Che, Z. Multi-objective optimization and analysis of material and energy flows in a typical steel plant. Energy 2023, 263, 125874. [Google Scholar] [CrossRef]
- Hu, J.; Wu, M.; Chen, X.; Cao, W.; Pedrycz, W. Multi-model ensemble prediction model for carbon efficiency with application to iron ore sintering process. Control Eng. Pract. 2019, 88, 141–151. [Google Scholar] [CrossRef]
- Hu, J.; Wu, M.; Chen, L.; Cao, W.; Pedrycz, W. Real-time dynamic prediction model of carbon efficiency with working condition identification in sintering process. J. Process Control 2022, 111, 97–105. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Wu, M.; She, J. Modeling and optimization method featuring multiple operating modes for improving carbon efficiency of iron ore sintering process. Control Eng. Pract. 2016, 54, 117–128. [Google Scholar] [CrossRef]
- Feng, H.; Chen, L.; Liu, X.; Xie, Z.; Sun, F. Constructal optimization of a sinter cooling process based on exergy output maximization. Appl. Therm. Eng. 2016, 96, 161–166. [Google Scholar] [CrossRef]
- Feng, J.; Yan, Y.; Zhao, L.; Dong, H. Numerical study of gas–solid counterflow heat transfer in sinter vertical cooling furnace based on energy and exergy analysis. Appl. Therm. Eng. 2024, 244, 122773. [Google Scholar] [CrossRef]
- Feng, J.; Cheng, X.; Wang, H.; Zhao, L.; Wang, H.; Dong, H. Performance analysis and multi-objective optimization of organic Rankine cycle for low-grade sinter waste heat recovery. Case Stud. Therm. Eng. 2024, 53, 103915. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, C.; Ni, B.; Wu, Z.; Wang, Q.; Yang, L. Global sensitivity analysis and multi-objective optimization design of temperature field of sinter cooler based on energy value. Appl. Therm. Eng. 2018, 143, 759–766. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Wang, J.; Ding, X.; Cheng, Z.; Wang, Q. Prediction, parametric analysis and bi-objective optimization of waste heat utilization in sinter cooling bed using evolutionary algorithm. Energy 2015, 90, 24–35. [Google Scholar] [CrossRef]
- Tian, W.; Ni, B.; Jiang, C.; Wu, Z. Uncertainty analysis and optimization of sinter cooling process for waste heat recovery. Appl. Therm. Eng. 2019, 150, 111–120. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Dong, H.; Wang, D.; Zhang, J. Numerical investigation of gas-solid heat transfer process and parameter optimization in shaft kiln for high-purity magnesia. Chem. Eng. Res. Des. 2023, 193, 576–586. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, C.; Gao, C.; Guo, Y.; Zhang, X.; Li, X. Exploration of a new path to reduce air pollutant emissions in the sinter plant of steelworks. J. Clean. Prod. 2022, 373, 133831. [Google Scholar] [CrossRef]
- Zhang, L.; Na, H.; Yuan, Y.; Sun, J.; Yang, Y.; Qiu, Z.; Che, Z.; Du, T. Integrated optimization for utilizing iron and steel industry’s waste heat with urban heating based on exergy analysis. Energy Convers. Manag. 2023, 295, 117593. [Google Scholar] [CrossRef]
- Yuan, Y.; Na, H.; Chen, C.; Qiu, Z.; Sun, J.; Zhang, L.; Du, T.; Yang, Y. Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review. Energy 2024, 304, 132047. [Google Scholar] [CrossRef]
- Li, M.-J.; Tao, W.-Q. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry. Appl. Energy 2017, 187, 203–215. [Google Scholar] [CrossRef]
- Na, H.; Sun, J.; Qiu, Z.; He, J.; Yuan, Y.; Yan, T.; Du, T. A novel evaluation method for energy efficiency of process industry—A case study of typical iron and steel manufacturing process. Energy 2021, 233, 121081. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Q.; Zheng, Z.; Cai, J. Material–energy–emission nexus in the integrated iron and steel industry. Energy Convers. Manag. 2020, 213, 112828. [Google Scholar] [CrossRef]
- Gu, Z.-M.; Wang, G.-G. Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization. Future Gener. Comput. Syst. 2020, 107, 49–69. [Google Scholar] [CrossRef]
- Reddy, S.R.; Dulikravich, G.S. Many-objective differential evolution optimization based on reference points: NSDE-R. Struct. Multidisc. Optim. 2019, 60, 1455–1473. [Google Scholar] [CrossRef]
- Ding, R.; Dong, H.; He, J.; Feng, X.; Yu, X.; Li, L. U-NSGA-III: An Improved Evolutionary Many-Objective Optimization Algorithm. In Bio-Inspired Computing: Theories and Applications; Springer: Singapore, 2018; pp. 24–35. [Google Scholar] [CrossRef]
- Cui, Z.; Chang, Y.; Zhang, J.; Cai, X.; Zhang, W. Improved NSGA-III with selection-and-elimination operator. Swarm Evol. Comput. 2019, 49, 23–33. [Google Scholar] [CrossRef]
- Ding, C.; Jiang, F.; Xue, S.; Chang, R.; Long, H.; Yu, Z.; Ding, X. Prediction model of sintering bed temperature based on lognormal distribution function: Construction and application. J. Mater. Res. Technol. 2023, 26, 5478–5487. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Zhang, J.-L.; Liu, Z.-J.; Du, C.-B. Recent Advances and Research Status in Energy Conservation of Iron Ore Sintering in China. J. Miner. 2017, 69, 2404–2411. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, L.; Zhang, S.; Dong, G.; Wang, Y.; Wang, G.; Kang, J.; Chen, L.; Zhang, J. Comprehensive Technologies for Iron Ore Sintering with a Bed Height of 1000 mm to Improve Sinter Quality, Enhance Productivity and Reduce Fuel Consumption. ISIJ Int. 2020, 60, 2400–2407. [Google Scholar] [CrossRef]
Reaction Types | Reaction | ΔH/kJ·mol−1 |
---|---|---|
Oxidation reaction | C + 0.5O2 = CO | −110.5 |
C + O2 = CO2 | −393.5 | |
2Fe3O4 + 0.5O2 = 3Fe2O3 | −235.8 | |
3FeO + 0.5O2 = 3Fe3O4 | −302.4 | |
4FeS2 + 8O2 = 2Fe2O3 + 6SO2 | −3310 | |
Reduction reaction | CO2 + 2C = 2CO | +172.5 |
3Fe2O3 + CO = 2Fe3O4+ CO2 | −47.2 | |
Fe3O4 + CO = 3FeO + CO2 | +19.4 | |
Decomposition reaction | MeCO3 = MeO + CO2 | FeCO3(+85.1), CaCO3(+178.6), MgCO3(+120.9) |
MeSO4 = MeO + SO2+ 0.5O2 | FeSO4(+340.4), CaSO4(+500.6), MgSO4(+221.6) |
Category | Type | Field Data | Simulated Data |
---|---|---|---|
Input materials | Mixture materials (kg/t) | 1176.030 | 1176.030 |
iron ore (kg/t) | 888.378 | 888.378 | |
Returned ore (kg/t) | 159.457 | 159.457 | |
Flux (kg/t) | 128.691 | 128.691 | |
Coke powder (kg/t) | 49.952 | 49.952 | |
COG (m3/t) | 4.78 | 4.78 | |
Output materials | Tfe (%) | 56.902 | 56.994 |
FeO of sintered ore (%) | 8.590 | 8.500 | |
C of sintered ore (%) | 0.059 | 0.043 | |
CaO of sintered ore (%) | 10.100 | 10.492 | |
MgO of sintered ore (%) | 1.784 | 2.107 | |
SiO2 of sintered ore (%) | 4.934 | 5.512 | |
Al2O3 of sintered ore (%) | 1.851 | 2.006 | |
TiO2 of sintered ore (%) | 0.108 | 0.071 | |
P of sintered ore (%) | 0.044 | 0.057 | |
S of sintered ore (%) | 0.025 | 0.004 | |
Recovery of steam (kg/t) | 39.62 | 39.19 |
Index | Field Data | Simulated | Wu et al. [8] | Sun et al. [32] |
---|---|---|---|---|
Heat utilization efficiency | 57.83% | 57.98% | 57.92% | / |
Energy consumption | 1474.44 MJ | 1464.76 MJ | 1471.8 MJ | 1402 MJ |
Index | HUE (%) | EC (MJ/t) | PC (CNY/t) | CO2(kg/t) | SO2(kg/t) | NOx (kg/t) |
---|---|---|---|---|---|---|
Before optimization | 57.83 | 1474.44 | 942.38 | 160.040 | 0.781 | 0.484 |
After optimization | 58.50 | 1457.14 | 930.93 | 159.576 | 0.747 | 0.476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Sun, J.; Zhang, L.; Yan, S.; Du, T.; Na, H. Intelligent Optimization and Impact Analysis of Energy Efficiency and Carbon Reduction in the High-Temperature Sintered Ore Production Process. Materials 2024, 17, 5410. https://doi.org/10.3390/ma17225410
Yuan Y, Sun J, Zhang L, Yan S, Du T, Na H. Intelligent Optimization and Impact Analysis of Energy Efficiency and Carbon Reduction in the High-Temperature Sintered Ore Production Process. Materials. 2024; 17(22):5410. https://doi.org/10.3390/ma17225410
Chicago/Turabian StyleYuan, Yuxing, Jingchao Sun, Lei Zhang, Su Yan, Tao Du, and Hongming Na. 2024. "Intelligent Optimization and Impact Analysis of Energy Efficiency and Carbon Reduction in the High-Temperature Sintered Ore Production Process" Materials 17, no. 22: 5410. https://doi.org/10.3390/ma17225410
APA StyleYuan, Y., Sun, J., Zhang, L., Yan, S., Du, T., & Na, H. (2024). Intelligent Optimization and Impact Analysis of Energy Efficiency and Carbon Reduction in the High-Temperature Sintered Ore Production Process. Materials, 17(22), 5410. https://doi.org/10.3390/ma17225410