Evolution of Properties of High-Strength and High-Mg-Content CuMg Alloys After Being Subjected to Single Operation 50% Deformation in Hot and Cold Upsetting Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition of Selected Materials
2.2. Upsetting Tests
2.3. Microstrutural Analysis
2.4. Hardness and Electrical Conductivity
3. Results and Discussion
3.1. Chemical Composition of Selected Materials
3.2. Upsetting Tests
3.3. Microstructural Analysis
3.4. Hardness and Electrical Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saini, D.K.; Bafna, N.; Jha, P.K. Effect of sheet thickness on the solidification and quality of Al-Mg2Si composite sheet fabricated by continuous casting. J. Manuf. Process. 2024, 131, 27–37. [Google Scholar] [CrossRef]
- Bagherian, E.-R.; Fan, Y.; Cooper, M.; Frame, B.; Abdolvand, A. Effect of melt temperature, cleanout cycle, continuous casting direction (horizontal / vertical) and super-cooler size on tensile strength, elongation percentage and microstructure of continuous cast copper alloys. Metall. Res. Technol. 2016, 113, 502. [Google Scholar] [CrossRef]
- Strzępek, P.; Mamala, A.; Boumerzoug, Z.; Baudin, T.; Brisset, F.; Zasadzińska, M.; Noga, P. Effect of Horizontal Continuous Casting Parameters on Cyclic Macrosegregation, Microstructure, and Properties of High-Strength Cu–Mg Alloy Cast Rod. Metall. Mater. Trans. A, 2024; in press. [Google Scholar] [CrossRef]
- Jiang, M.-Y.; Meng, X.-Y.; Zhou, J.; Wei, Z.-Y.; Zhang, H.-F.; Shen, P. Design and manufacture of near-net-shape metal-ceramic composites with gradient-layered structure and optimized damage tolerance. Addit. Manuf. 2024, 84, 104112. [Google Scholar] [CrossRef]
- Fahlman, B.D. Metals. In Materials Chemistry; Springer: New York, NY, USA, 2023; pp. 191–289. [Google Scholar] [CrossRef]
- Avdeeva, L.K.; Godulyan, L.V.; Kovalev, A.I.; Wainstein, D.L.; Vakhrushev, V.O. Corrosion properties, chemical composition, and surface morphology of non-ferrous metals after tests at different temperature and humidity conditions. Metallurgist 2024, 68, 66–82. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Y.; Chen, J. Effects of non-ferrous metal prices and uncertainty on industry stock market under different market conditions. Resour. Policy 2021, 73, 102243. [Google Scholar] [CrossRef]
- Smyrak, B. Analysis of the quality of aluminum overhead conductors after 30 years of operation. Eng. Fail. Anal. 2023, 154, 107600. [Google Scholar] [CrossRef]
- Meyberg, R.A.; Absi Salas, F.M.; Domingues, L.A.M.C.; Correia de Barros, M.T.; Lima, A.C.S. Experimental study on the transformer effect in an ACSR cable. Int. J. Electr. Power Energy Syst. 2020, 119, 105861. [Google Scholar] [CrossRef]
- Ma, X.; Gao, L.; Zhang, J.; Zhang, L.-C. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR) Conductors in High-Voltage Transmission Line. Metals 2017, 7, 373. [Google Scholar] [CrossRef]
- Bochniak, W.; Korbel, A.; Ostachowski, P.; Lagoda, M. Plastic flow of metals under cyclic change of deformation path conditions. Arch. Civ. Mech. Eng. 2018, 18, 679–686. [Google Scholar] [CrossRef]
- Muszka, K.; Madej, L.; Majta, J. The effects of deformation and microstructure inhomogeneities in the Accumulative Angular Drawing (AAD). Mater. Sci. Eng. A 2013, 574, 68–74. [Google Scholar] [CrossRef]
- Gronostajski, Z.; Hawryluk, M. The main aspects of precision forging. Arch. Civ. Mech. Eng. 2008, 8, 39–55. [Google Scholar] [CrossRef]
- Millenin, A.; Wróbel, M.; Kustra, P. Investigation of the workability and surface roughness of thin brass wires in various dieless drawing technologies. Arch. Civ. Mech. Eng. 2022, 22, 10. [Google Scholar] [CrossRef]
- Liu, S.; Xie, T.; Han, J.; Shan, X. Stress superposition effect in ultrasonic drawing of titanium wires: An experimental study. Ultrasonics 2022, 125, 106775. [Google Scholar] [CrossRef] [PubMed]
- Leśniak, D.; Zasadziński, J.; Libura, W.; Gronostajcki, Z.; Śliwa, R.; Leszczyńska-Madej, B.; Kaszuba, M.; Woźnicki, A.; Płonka, B.; Widomski, P.; et al. Latest advances in extrusion processes of light metals. Arch. Civ. Mech. Eng. 2024, 24, 184. [Google Scholar] [CrossRef]
- Maleta, M.; Głuchowski, W.; Rdzawski, Z.; Łagoda, M.; Domagała-Dubiel, J. Influence of the speed of downward semi-continuous casting on the crystal size and mechanical properties of recycled copper. Metalugija 2023, 62, 387–390. [Google Scholar]
- Davis, J.R. ASM Specialty Handbook: Copper and Copper Alloys; ASM International: Novelty, OH, USA, 2001; ISBN 978-087170-726-0. [Google Scholar]
- Nordheim, L. Zur Elektronentheorie der Metalle. I. Ann. Phys. 1931, 401, 607–640. [Google Scholar] [CrossRef]
- Shariyari, F.; Shaeri, M.H.; Dashti, A.; Zarei, Z.; Noghani, M.T.; Cho, J.H.; Djavanroodi, F. Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. Mater. Sci. Eng. A 2022, 831, 142149. [Google Scholar] [CrossRef]
- Brudny, A.; Kulasa, J.; Cwolek, B.; Malec, W.; Juszczyk, B. Influence of the continuous casting process of tin-zinc-lead bronze on the wear of the graphite crystallizer. Metalurgija 2022, 61, 785–788. [Google Scholar]
- Ma, S.; Ye, C.; Yang, X.; Fu, L.; Fan, J.; Wang, J.; Shan, A. Microstructure evolution during the heavy warm rolling of a nickel aluminum bronze. Mater. Sci. Eng. A 2023, 883, 145458. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Sheng, X.; Gao, Y.; Lei, Q. Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging. Fusion Eng. Des. 2020, 159, 111766. [Google Scholar] [CrossRef]
- Tardieu, S.; Mesguich, D.; Lonjon, A.; Lecouturier, F.; Ferreira, N.; Chevallier, G.; Proietti, A.; Estournes, C.; Caurent, C. Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity. Mater. Sci. Eng. A 2019, 761, 138048. [Google Scholar] [CrossRef]
- Dölling, J.; Henle, R.; Prahl, U.; Zilly, A.; Nandi, G. Copper-Based Alloys with Optimized Hardness and High Conductivity: Research on Precipitation Hardening of Low-Alloyed Binary CuSc Alloys. Metals 2022, 12, 902. [Google Scholar] [CrossRef]
- Ma, B.; An, B.; Zhao, X.; Li, Y.; Du, J.; Wang, E. Microstructure and properties of Cu-Cr-Zr alloy by doping Sc. Mater. Lett. 2023, 336, 133917. [Google Scholar] [CrossRef]
- Yu, X.; Hou, Y.; Ren, X.; Sun, C.; Wang, M. Research progress on the removal, recovery and direct high-value materialization of valuable metal elements in electroplating/electroless plating waste solution. J. Water Proc. Eng. 2022, 46, 102577. [Google Scholar] [CrossRef]
- Copper Alloys Knowledge Base. Available online: http://www.conductivity-app.org/ (accessed on 25 September 2024).
- Rodriguez-Calvillo, P.; Ferrer, N.; Cabrera-Marrero, J.M. Analysis of microstructure and strengthening in CuMg alloys deformed by equal channel angular pressing. J. Alloys Compd. 2015, 626, 340–348. [Google Scholar] [CrossRef]
- Gorsse, S.; Ouvard, B.; Goune, M.; Poulon-Quintin, A. Microstructural design of new high conductivity–high strength Cu-based alloy. J. Alloys Compd. 2015, 633, 42–47. [Google Scholar] [CrossRef]
- Strzępek, P.; Zasadzińska, M. Prospective cold metal working and analysis of deformation susceptibility of CuMg alloys with high magnesium content. Sci. Rep. 2024, 14, 6447. [Google Scholar] [CrossRef]
- Fan, J.; Liu, Z.; Liu, W.; Wang, C. Simulation and Experiment Study on Cone End Billet Method in Upsetting Billet with a Large Height-to-Diameter Ratio. Appl. Sci. 2023, 13, 9523. [Google Scholar] [CrossRef]
- Schubert, K.; Anderko, K. Crystal Structure of the NiMg2, CuMg2, and AuMg3. Z. Met. 1951, 42 Pt 11, 321–325. [Google Scholar]
- Spriggs, G.E. Properties of diamond and cubic boron nitride. In Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials; Beiss, P., Ruthardt, R., Warlimont, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 118–139. [Google Scholar] [CrossRef]
- Dhondapure, P.; Rajakrishnan, N.; Nayak, S.; Champliaud, H.; Morin, J.-B.; Jahazi, M. Influence of deformation path on microstructure evolution during the open die forging of large size ingot of high strength steel: Experiments and FE analysis. Int. J. Adv. Manuf. Technol. 2024, 134, 3733–3750. [Google Scholar] [CrossRef]
- Mohammadi, H.; Eivani, A.R.; Seyedein, S.H.; Ghosh, M.; Jafarian, H.R. Evolution of dynamic recrystallization behavior and simulation of isothermal compression of Zn–22Al alloy. J. Mater. Res. Technol. 2023, 24, 4009–4023. [Google Scholar] [CrossRef]
- Wang, Z.J.; Cheng, L.D. Experimental research and numerical simulation of the dynamic cylinder upsetting. Mater. Sci. Eng. A 2009, 499, 138–141. [Google Scholar] [CrossRef]
- Hamzah, S.; Ståhlberg, U. A study of pore closure in the manufacturing of heavy rings. J. Mater. Process. Technol. 1998, 84, 25–37. [Google Scholar] [CrossRef]
- Lee, M.C.; Jang, S.M.; Cho, J.H. Finite element simulation of pore closing during cylinder upsetting. Int. J. Mod. Phys. B 2008, 22, 5768–5773. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Zhang, X.; Dai, H.; Jia, J.; Bai, Z. Dynamic recrystallization kinetics and microstructure evolution of an AZ91D magnesium alloy during hot compression. Mater. Charact. 2018, 145, 39–52. [Google Scholar] [CrossRef]
- Yang, Q.-S.; Duan, J.-X.; Deng, A.-Y.; Wang, E.-G. Numerical simulation of macrosegregation phenomenon in Cu-6wt%Ag alloy ingots fabricated by electromagnetic stirring. J. Mater. Res. Technol. 2024, 28, 300–315. [Google Scholar] [CrossRef]
- Lesoult, G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences. Mater. Sci. Eng. A-Struct. 2005, 413, 19–29. [Google Scholar] [CrossRef]
- Prescott, P.; Incropera, F.P. Convection heat and mass transfer in alloy solidification. Adv. Heat Tranf. 1996, 28, 231–238. [Google Scholar] [CrossRef]
- Trofimov, D.M.; Imayev, V.M.; Imayev, R.M. Influence of upset forging and heat treatment on the microstructure and mechanical properties of a new β-solidifying γ-TiAl alloy. Intermetallics 2023, 163, 108078. [Google Scholar] [CrossRef]
- Wang, J.; Langlois, L.; Rafiq, M.; Bigot, R.; Lu, H. Study of the hot forging of weld cladded work pieces using upsetting tests. J. Mater. Process. Technol. 2014, 214, 365–379. [Google Scholar] [CrossRef]
- Jedrasik, P.; Shercliff, H. Finite element analysis of small-scale hot compression testing. J. Mater. Sci. Technol. 2021, 76, 174–188. [Google Scholar] [CrossRef]
- Maki, K.; Ito, Y.; Matsunaga, H.; Mori, H. Solid-solution copper alloys with high strength and high electrical conductivity. Scr. Mater. 2013, 68, 777–780. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, S.; Zhang, Y.; Zheng, X.; Xu, D.; Zhang, Z.; Li, Y.; Fu, L.; Li, X.; Tian, B.; et al. Ce effects on dynamic recrystallization and microstructure of the copper alloy under hot deformation behavior with different strain rate. J. Mater. Res. Technol. 2023, 24, 4888–4903. [Google Scholar] [CrossRef]
- Shen, K.; Guo, M.; Wang, M. Recrystallization characteristics of a fine grained copper alloy. Mater. Chem. Phys. 2010, 120, 709–714. [Google Scholar] [CrossRef]
- Hollomon, J.H. Tensile Deformation. Trans. Tms-AIME 1945, 162, 268–290. [Google Scholar]
- Wang, X.; Xiao, Z.; Zhou, T.; Jiang, X. Deformation mechanism and properties evolution of a copper alloy with ultra-high strength after cold drawing and subsequent aging treatment. Mater. Sci. Eng. A 2024, 912, 146952. [Google Scholar] [CrossRef]
- Lalpoor, M.; Eskin, D.G.; Ruvalcaba, D.; Fjær, H.G.; Ten Cate, A.; Ontijt, N.; Katherman, L. Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters. Mater. Sci. Eng. A 2011, 528, 2831–2842. [Google Scholar] [CrossRef]
- Jiang, J.; Tong, Z.; Huang, M.; Wang, Y.; Zhao, W. Effect of recrystallization annealing on microstructure and properties of cold-deformed CoCrCu1.2FeNi high entropy alloy. J. Alloys Compd. 2024, 973, 172943. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Wenpeng, L.; Liang, J.; Gu, S. Microstructure and Texture of Pure Copper under Large Compression Deformation and Different Annealing Times. Coatings 2023, 13, 2093. [Google Scholar] [CrossRef]
- Rezaei Ashtiani, H.R.; Shayanpoor, A.A. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper. Acta Metall. Sin. Engl. Lett. 2022, 35, 662–678. [Google Scholar] [CrossRef]
- Çetinarslan, C.S. Effect of cold plastic deformation on electrical conductivity of various materials. Mater. Des. 2009, 30, 671–673. [Google Scholar] [CrossRef]
- Freudenberger, J.; Kauffmann, A.; Klauß, H.; Marr, T.; Nenkov, K.; Subramanya Sarma, V.; Schultz, L. Studies on recrystallization of single-phase copper alloys by resistance measurements. Acta Mater. 2010, 58, 2324–2329. [Google Scholar] [CrossRef]
- Chen, T.; Wen, M.; Cui, H.; Guo, J.; Wang, C. Hot Deformation Behavior and Processing Maps of Pure Copper during Isothermal Compression. Materials 2023, 16, 3939. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Mechanisms of high temperature deformation in electrolytic copper in extended ranges of temperature and strain rate. Mater. Sci. Eng. A 2004, 374, 335–341. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kim, W.J. Examination of high-temperature mechanisms and behavior under compression and processing maps of pure copper. J. Mater. Res. Technol. 2020, 9, 960–968. [Google Scholar] [CrossRef]
- Mao, Q.; Liu, Y.; Zhao, Y. A review on copper alloys with high strength and high electrical conductivity. J. Alloys Compd. 2024, 990, 174456. [Google Scholar] [CrossRef]
Element | Cu | Mg | Other |
---|---|---|---|
Cu | Minimum 99.9 | Maximum 0.02 | Max. 0.1 |
CuMg2 | 98 ± 0.05 | 2 ± 0.05 | Max. 0.1 |
CuMg2.4 | 97.6 ± 0.05 | 2.4 ± 0.05 | Max. 0.1 |
CuMg2.8 | 97.2 ± 0.05 | 2.8 ± 0.05 | Max. 0.1 |
CuMg3 | 97 ± 0.05 | 3 ± 0.05 | Max. 0.1 |
CuMg3.2 | 96.8 ± 0.05 | 3.2 ± 0.05 | Max. 0.1 |
CuMg3.6 | 96.4 ± 0.05 | 3.6 ± 0.05 | Max. 0.1 |
CuMg4 | 96 ± 0.05 | 4 ± 0.05 | Max. 0.1 |
Element | Cu | Mg | Other |
---|---|---|---|
Cu | 99.92 ± 0.011 | 0.001 ± 0.001 | Bal. |
CuMg2 | 98.0 ± 0.043 | 1.99 ± 0.025 | Bal. |
CuMg2.4 | 97.6 ± 0.031 | 2.37 ± 0.014 | Bal. |
CuMg2.8 | 97.2 ± 0.055 | 2.78 ± 0.027 | Bal. |
CuMg3 | 97.0 ± 0.049 | 2.99 ± 0.028 | Bal. |
CuMg3.2 | 96.8 ± 0.031 | 3.20 ± 0.021 | Bal. |
CuMg3.6 | 96.4 ± 0.038 | 3.58 ± 0.029 | Bal. |
CuMg4 | 96.0 ± 0.045 | 3.98 ± 0.026 | Bal. |
Supersaturated | Supersaturated and Cold Drawn | Supersaturated, Cold Drawn, and Recrystallized | Hot Deformed at 700 °C | |
---|---|---|---|---|
Group of materials | Engineering stress recorded at 50% of strain (MPa) | |||
Cu | 508 | 559 | 608 | 64 |
Single-phase CuMg | 949–970 | 961–992 | 903–941 | 116 |
CuMg3 | 1023 | 1049 | 1045 | 126 |
Two-phase CuMg | 1136–1157 | 1130–1162 | 1137–1170 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzępek, P.; Zasadzińska, M.; Noga, P.; Skrzekut, T. Evolution of Properties of High-Strength and High-Mg-Content CuMg Alloys After Being Subjected to Single Operation 50% Deformation in Hot and Cold Upsetting Tests. Materials 2024, 17, 5467. https://doi.org/10.3390/ma17225467
Strzępek P, Zasadzińska M, Noga P, Skrzekut T. Evolution of Properties of High-Strength and High-Mg-Content CuMg Alloys After Being Subjected to Single Operation 50% Deformation in Hot and Cold Upsetting Tests. Materials. 2024; 17(22):5467. https://doi.org/10.3390/ma17225467
Chicago/Turabian StyleStrzępek, Paweł, Małgorzata Zasadzińska, Piotr Noga, and Tomasz Skrzekut. 2024. "Evolution of Properties of High-Strength and High-Mg-Content CuMg Alloys After Being Subjected to Single Operation 50% Deformation in Hot and Cold Upsetting Tests" Materials 17, no. 22: 5467. https://doi.org/10.3390/ma17225467
APA StyleStrzępek, P., Zasadzińska, M., Noga, P., & Skrzekut, T. (2024). Evolution of Properties of High-Strength and High-Mg-Content CuMg Alloys After Being Subjected to Single Operation 50% Deformation in Hot and Cold Upsetting Tests. Materials, 17(22), 5467. https://doi.org/10.3390/ma17225467