Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition and As-Received Microstructure
3.2. Grain Structure Evolution During Annealing
3.3. Tensile Properties
4. Discussion
4.1. Effect Annealing Time on Grain Structure Evolution
4.2. Superplastic Behavior
5. Conclusions
- The as-received Al-Mg 5xxx cold-rolled alloys exhibited a fibrous grain structure that quickly recrystallized after two minutes of annealing at 520 °C. This rapid recrystallization behavior of the alloys was attributed to the high annealing temperature and significant strain energy of cold working.
- The microstructural analysis revealed that the recrystallized grains during high-temperature annealing were finer in Alloy 2 (Al-4.0Mg-1.18Mn) than in Alloy 1 (Al-4.5Mg-0.74Mn). After 4 min of annealing, Alloy 2 possessed a higher fraction of small grains (<10 µm) of 87% compared to 80% of Alloy 1. While both alloys experienced grain growth with increasing annealing time, Alloy 2 demonstrated better resistance to grain growth owing to the presence of a higher amount of Al6(Mn,Fe) intermetallic particles and a higher number density of Mn dispersoids, which provided effective Zener pinning.
- Both alloys exhibited distinct superplastic performances during deformation, which were largely influenced by their respective recrystallized grain structures. Alloy 2, with its fine and stable grain structure, demonstrated superior tensile elongation compared to Alloy 1 at low strain rates of 0.001 s−1 and 0 01 s−1. However, both alloys displayed comparable tensile elongation at a strain rate of 1 s−1.
- These findings suggest that optimizing the annealing time could effectively develop a fine and equiaxed grain structure in Al-Mg 5xxx alloys, making them suitable for HSBF applications. However, reducing the size and increasing the number density of both intermetallic particles and Mn dispersoids are crucial for improving the grain growth resistance of recrystallized grains to further enhance the forming performance during HSBF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, S.; Kyeong, J.; Shin, S.; Kang, H. Effect of Geometrical Parameters of Microscale Particles on Particle-Stimulated Nucleation and Recrystallization Texture of Al-Si-Mg-Cu-Based Alloy Sheets. Materials 2022, 15, 7924. [Google Scholar] [CrossRef] [PubMed]
- Grimes, R. Superplastic forming of aluminium alloys. In Superplastic Forming of Advanced Metallic Materials; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 247–271. [Google Scholar] [CrossRef]
- Kishchik, A.A.; Mikhaylovskaya, A.V.; Kotov, A.D.; Rofman, O.V.; Portnoy, V.K. Al-Mg-Fe-Ni based alloy for high strain rate superplastic forming. Mater. Sci. Eng. A 2018, 718, 190–197. [Google Scholar] [CrossRef]
- Ebenberger, P.; Uggowitzer, P.J.; Gerold, B.; Pogatscher, S. Effect of compositional and processing variations in new 5182-type AlMgMn alloys on mechanical properties and deformation surface quality. Materials 2019, 12, 1645. [Google Scholar] [CrossRef]
- Nieh, T.; Hsiung, L.M.; WKaibyshev, R. High strain rate superplasticity in a continuously recrystallized Al–6% Mg–0.3%Sc alloy. Acta Mater. 1998, 46, 2789–2800. [Google Scholar] [CrossRef]
- Luo, Y.; Luckey, S.G.; Friedman, P.A.; Peng, Y. Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation. Int. J. Mach. Tools Manuf. 2008, 48, 1509–1518. [Google Scholar] [CrossRef]
- Liu, J.; Tan, M.J.; Aue-U-Lan, Y.; Jarfors, A.E.W.; Fong, K.S.; Castagne, S. Superplastic-like forming of non-superplastic AA5083 combined with mechanical pre-forming. Int. J. Adv. Manuf. Technol. 2011, 52, 123–129. [Google Scholar] [CrossRef]
- Bhatta, L.; Pesin, A.; Zhilyaev, A.P.; Tandon, P.; Kong, C.; Yu, H. Recent development of superplasticity in aluminum alloys: A review. Metals 2020, 10, 77. [Google Scholar] [CrossRef]
- Barnes, A.J. Superplastic aluminum forming-expanding its techno-economie niche. Mater. Sci. Forum 1999, 304–306, 785–796. [Google Scholar] [CrossRef]
- Kawasaki, M.; Langdon, T.G. Superplasticity in Ultrafine-Grained Materials. Adv. Mater. Sci. Eng. 2018, 54, 46–55. [Google Scholar] [CrossRef]
- Majidi, O.; Jahazi, M.; Bombardier, N. Finite element simulation of high-speed blow forming of an automotive component. Metals 2018, 8, 901. [Google Scholar] [CrossRef]
- Liu, F.C.; Ma, Z.Y. Achieving high strain rate superplasticity in cast 7075Al alloy via friction stir processing. J. Mater. Sci. 2009, 44, 2647–2655. [Google Scholar] [CrossRef]
- Giuliano, G. Superplastic Forming of Advanced Metallic Materials; Woodhead Publishing Limited: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, G.; Zhou, L.; Xiao, D.; Deng, Y.; Yin, Z.; Peng, B.; Pan, Q.; Wang, Y.; Lu, L. Achieving high superplasticity of a traditional thermal-mechanical processed non-superplastic Al-Zn-Mg alloy sheet by low Sc additions. J. Alloys Compd. 2015, 638, 364–373. [Google Scholar] [CrossRef]
- Yakovtseva, O.A.; Kishchik, A.A.; Cheverikin, V.V.; Kotov, A.D.; Mikhaylovskaya, A.V. The mechanisms of the high-strain-rate superplastic deformation of Al-Mg-based alloy. Mater. Lett. 2022, 325, 132883. [Google Scholar] [CrossRef]
- Prasannavenkatesan, R.; Parker, M.; Laplante, Y.; Bombardier, N.; Rush, B.; Li, S. High Speed Blow Forming Processes. Patent US US20170087617A1, 30 March 2017. [Google Scholar]
- Kishchik, A.A.; Mikhaylovskaya, A.V.; Levchenko, V.S.; Portnoy, V.K. Formation of microstructure and the superplasticity of Al–Mg-based alloys. Phys. Met. Metallogr. 2017, 118, 96–103. [Google Scholar] [CrossRef]
- Yakovtseva, O.A.; Mikhaylovskaya, A.V.; Mochugovskiy, A.G.; Cheverikin, V.V.; Portnoy, V.K. Superplastic deformation mechanisms in high magnesium contenting aluminum alloy. Mater. Sci. Forum 2016, 838–839, 66–71. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.V.; Yakovtseva, O.A.; Golovin, I.S.; Pozdniakov, A.V.; Portnoy, V.K. Superplastic deformation mechanisms in fine-grained Al-Mg based alloys. Mater. Sci. Eng. A 2015, 627, 31–41. [Google Scholar] [CrossRef]
- Kotov, A.D.; Mikhaylovskaya, A.V.; Kishchik, M.S.; Tsarkov, A.A.; Aksenov, S.A.; Portnoy, V.K. Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment. J. Alloys Compd. 2016, 688, 336–344. [Google Scholar] [CrossRef]
- Kweitsu, E.K.; Sarkar, D.K.; Chen, X.G. A Short Review on Superplasticity of Aluminum Alloys. Eng. Proc. 2023, 43, 43. [Google Scholar] [CrossRef]
- Portnoy, V.K.; Rylov, D.S.; Levchenko, V.S.; Mikhaylovskaya, A. V The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys. J. Alloys Compd. 2013, 581, 313–317. [Google Scholar] [CrossRef]
- Pérez-Prado, M.T.; González-Doncel, G.; Ruano, O.A.; McNelley, T.R. Texture analysis of the transition from slip to grain boundary sliding in a discontinuously recrystallized superplastic aluminum alloy. Acta Mater. 2001, 49, 2259–2268. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Liu, K.; Rometsch, P.; Parson, N.; Chen, X.G. Effects of AlMn dispersoids and Al3(Sc,Zr) precipitates on the microstructure and ambient/elevated-temperature mechanical properties of hot-rolled AA5083 alloys. Mater. Sci. Eng. A 2022, 855, 143950. [Google Scholar] [CrossRef]
- Allen, S.M. Foil thickness measurements from convergent-beam diffraction patterns. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1981, 43, 325–335. [Google Scholar] [CrossRef]
- McNelley, T.R.; Oh-Ishi, K.; Zhilyaev, A.P.; Swaminathan, S.; Krajewski, P.E.; Taleff, E.M. Characteristics of the transition from grain-boundary sliding to solute drag creep in superplastic AA5083. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2008, 39, 50–64. [Google Scholar] [CrossRef]
- ASTM E112-12; StandardTest Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2012.
- Rakhmonov, J.; Qassem, M.; Larouche, D.; Liu, K.; Javidani, M.; Colbert, J.; Chen, X.G. A new approach to determine tensile stress-strain evolution in semi-solid state at near-solidus temperature of aluminum alloys. Metals 2021, 11, 396. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Lu, Z.; Teng, G.; Liu, S.; Hu, Z.; He, A. The effect of annealing temperature on the recrystallization and mechanical properties of severe plastic deformed commercial pure aluminium during ultra-fast annealing. Mater. Res. Express 2021, 8, 046515. [Google Scholar] [CrossRef]
- ASTM E21; Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- Abu-Farha, F.; Curtis, R. On the Standard Test Methods for Evaluating the Tensile Properties of Superplastic Sheets; EuoSPF: Carca-sonne, France, 2008; hal-00337704. [Google Scholar]
- Erie, P.S.; Curtis, R.; London, C. Standards for superplastic forming of metals. In Superplastic Forming of Advanced Metallic Materials; Woodhead Publishing Limited: Cambridge, UK, 2011; Volume 7, pp. 34–48. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Chen, Y.; Han, G. Constitutive parameters identification based on DIC assisted thermo-mechanical tensile test for hot stamping of boron steel. J. Mater. Process. Technol. 2019, 271, 429–443. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction, 10th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2018; ISBN 9781119405436. [Google Scholar]
- Humphreys, J.; Rohrer, G.S. Recrystallization and Related Annealing Phenomena, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780080982694. [Google Scholar]
- Algendy, A.Y.; Rometsch, P.; Chen, X.G. Impact of hot rolling temperature on the mechanical properties and microstructural evolution of hot/cold-rolled AA5083 with Sc and Zr microalloying. Mater. Sci. Eng. A 2024, 896, 146275. [Google Scholar] [CrossRef]
- Engler, O.; Miller-jupp, S. Control of second-phase particles in the Al-Mg-Mn alloy AA 5083. J. Alloys Compd. 2016, 689, 998–1010. [Google Scholar] [CrossRef]
- Engler, O.; Kuhnke, K.; Hasenclever, J. Development of intermetallic particles during solidi fi cation and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents. J. Alloys Compd. 2017, 728, 669–681. [Google Scholar] [CrossRef]
- Davis, J.R. Alloying: Understanding the Basics; ASM International: New York, NY, USA, 2001; ISBN 0-87170-744-6. [Google Scholar]
- Grasserbauer, J.; Weißensteiner, I.; Falkinger, G.; Kremmer, T.M.; Uggowitzer, P.J.; Pogatscher, S. Influ-ence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part I: Evolution of Primary and Secondary Phases. Materials 2021, 14, 3204. [Google Scholar] [CrossRef]
- Jin, H.; Gerlich, A.P. Effects of intermetallic particles on cavitation during superplastic forming of aluminium alloy. Mater. Sci. Technol. 2019, 35, 1428–1435. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Liu, K.; Chen, X.G. Evolution of dispersoids during multistep heat treatments and their effect on rolling performance in an Al-5% Mg-0.8% Mn alloy. Mater. Charact. 2021, 181, 111487. [Google Scholar] [CrossRef]
- Liu, K.; Chen, X.G. Development of Al-Mn-Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des. 2015, 84, 340–350. [Google Scholar] [CrossRef]
- Kenyon, M.; Robson, J.; Fellowes, J.; Liang, Z. Effect of Dispersoids on the Microstructure Evolution in Al–Mg–Si Alloys. Adv. Eng. Mate. 2019, 21, 1800494. [Google Scholar] [CrossRef]
- Sotoudeh, K.; Bate, P.S. Diffusion creep and superplasticity in aluminium alloys. Acta Mater. 2010, 58, 1909–1920. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, J.; Zhou, K.; Mao, Q.; Zhao, Y.; Meng, A.; Li, Z.; Li, J. Coupling effect of temperature and strain rate on mechanical properties and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy. Mater. Sci. Eng. A 2024, 901, 146525. [Google Scholar] [CrossRef]
- Verlinden, B.; Driver, J.; Samajdar, I.; Dotherty, R. Thermo-Mechanical Processing of Metallic Mate-Rials; Elsevier: Cambridge, UK, 2007; ISBN 9780080544489. [Google Scholar]
- Chokshi, A.H. Grain Boundary Processes in Strengthening, Weakening, and Superplasticity. Adv. Eng. Mater. 2020, 22, 1900748. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Effect of grain size on strength and strain rate sensitivity in metals. J. Mater. Sci. 2022, 57, 5210–5229. [Google Scholar] [CrossRef]
- Jeong, H.T.; Park, H.K.; Kang, H.S.; Kim, W.J. Operation of solute-drag creep in an AlCoCrFeMnNi high-entropy alloy and enhanced hot workability. J. Alloys Compd. 2020, 824, 153829. [Google Scholar] [CrossRef]
- Buken, H.; Kozeschnik, E. Modeling Static Recrystallization in Al-Mg Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2021, 52, 544–552. [Google Scholar] [CrossRef]
- Du, S.; Li, Y.; Zheng, Y. Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel. J. Mater. Eng. Perform. 2016, 25, 2661–2669. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.V.; Yakovtseva, O.A.; Cheverikin, V.V.; Kotov, A.D.; Portnoy, V.K. Superplastic behaviour of Al-Mg-Zn-Zr-Sc-based alloys at high strain rates. Mater. Sci. Eng. A 2016, 659, 225–233. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Sun, Q.; Ye, L.; Zhang, X. Superplastic Deformation Mechanisms in Fine-Grained 2050 Al-Cu-Li Alloys. Materials 2020, 13, 2705. [Google Scholar] [CrossRef]
Alloys | Mg | Mn | Si | Fe | Cu | Cr | Ti | Zn | Al |
---|---|---|---|---|---|---|---|---|---|
Alloy 1 (Al-4.5Mg-0.74Mn) | 4.52 | 0.74 | 0.40 | 0.12 | 0.10 | 0.01 | 0.02 | 0.01 | Bal. |
Alloy 2 (Al-4.0Mg-1.18Mn) | 4.00 | 1.18 | 0.40 | 0.12 | 0.10 | 0.01 | 0.02 | 0.01 | Bal. |
Alloy | Mn-Dispersoids | |
---|---|---|
) | ||
Alloy 1 | 234 ± 36 | 4 ± 0.3 |
Alloy 2 | 166 ± 17 | 9.3 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kweitsu, E.K.; Sarkar, D.K.; Algendy, A.Y.; Chen, X.-G.; Veilleux, J.; Bombardier, N. Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys. Materials 2024, 17, 5492. https://doi.org/10.3390/ma17225492
Kweitsu EK, Sarkar DK, Algendy AY, Chen X-G, Veilleux J, Bombardier N. Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys. Materials. 2024; 17(22):5492. https://doi.org/10.3390/ma17225492
Chicago/Turabian StyleKweitsu, Eric Kojo, Dilip Kumar Sarkar, Ahmed Y. Algendy, X.-Grant Chen, Jocelyn Veilleux, and Nicolas Bombardier. 2024. "Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys" Materials 17, no. 22: 5492. https://doi.org/10.3390/ma17225492
APA StyleKweitsu, E. K., Sarkar, D. K., Algendy, A. Y., Chen, X. -G., Veilleux, J., & Bombardier, N. (2024). Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys. Materials, 17(22), 5492. https://doi.org/10.3390/ma17225492