Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Carbon Materials
2.2. Materials’ Characterization
2.3. Adsorption Experiments
3. Results and Discussion
3.1. Physicochemical Characteristics of the Materials
3.2. Adsorption Experiments
3.2.1. Screening Test
3.2.2. Adsorption Kinetics
3.2.3. Adsorption Isotherm Studies
3.2.4. Thermodynamic Parameters
3.3. Regeneration and Reuse Under Environmentally Relevant Conditions
3.4. Comparative Studies with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W.C. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci. Total Environ. 2022, 811, 152357. [Google Scholar] [CrossRef] [PubMed]
- Santagata, R.; Ripa, M.; Genovese, A.; Ulgiati, S. Food waste recovery pathways: Challenges and opportunities for an emerging bio-based circular economy. A systematic review and an assessment. J. Clean. Prod. 2021, 286, 125490. [Google Scholar] [CrossRef]
- Ahmed, I.; Zia, M.A.; Afzal, H.; Ahmed, S.; Ahmad, M.; Akram, Z.; Sher, F.; Iqbal, H.M.N. Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. Sustainability 2021, 13, 4200. [Google Scholar] [CrossRef]
- Ramola, S.; Belwal, T.; Srivastava, R.K. Thermochemical Conversion of Biomass Waste-Based Biochar for Environment Remediation. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Williams, P.T.; Reed, A.R. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 2006, 30, 144–152. [Google Scholar] [CrossRef]
- Tan, X.-F.; Liu, S.-B.; Liu, Y.-G.; Gu, Y.-L.; Zeng, G.-M.; Hu, X.-J.; Wang, X.; Liu, S.-H.; Jiang, L.-H. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Pašti, I.A.; Lazarević-Pašti, T. Resolving Coffee Waste and Water Pollution—A Study on KOH-Activated Coffee Grounds for Organophosphorus Xenobiotics Remediation. J. Xenobiot. 2024, 14, 1238–1255. [Google Scholar] [CrossRef]
- Mondal, M.; Goswami, D.K.; Bhattacharyya, T.K. Lignocellulose based Bio-waste Materials derived Activated Porous Carbon as Superior Electrode Materials for High-Performance Supercapacitor. J. Energy Storage 2021, 34, 102229. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Bevilacqua, E.; Cruzat, V.; Singh, I.; Rose’Meyer, R.B.; Panchal, S.K.; Brown, L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023, 15, 994. [Google Scholar] [CrossRef]
- Stylianou, M.; Agapiou, A.; Omirou, M.; Vyrides, I.; Ioannides, I.M.; Maratheftis, G.; Fasoula, D. Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environ. Sci. Pollut. Res. 2018, 25, 35776–35790. [Google Scholar] [CrossRef]
- Santos, C.; Fonseca, J.; Aires, A.; Coutinho, J.; Trindade, H. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag. 2017, 59, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Lee, Y.G.; Song, Y.; Nguyen, D.-T.; Bae, H.-J. An integrated process for conversion of spent coffee grounds into value-added materials. Bioresour. Technol. 2022, 346, 126618. [Google Scholar] [CrossRef]
- Wen, X.; Liu, H.; Zhang, L.; Zhang, J.; Fu, C.; Shi, X.; Chen, X.; Mijowska, E.; Chen, M.-J.; Wang, D.-Y. Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresour. Technol. 2019, 272, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Cara, I.G.; Țopa, D.; Puiu, I.; Jităreanu, G. Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture 2022, 12, 1579. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ghosh, P.; Malyan, S.K.; Sharma, J.; Kumar, V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. J. Environ. Sci. Health Part C 2019, 37, 288–329. [Google Scholar] [CrossRef]
- Aswathi, A.; Pandey, A.; Sukumaran, R.K. Rapid degradation of the organophosphate pesticide—Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresour. Technol. 2019, 292, 122025. [Google Scholar] [CrossRef]
- Leskovac, A.; Petrović, S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023, 12, 2709. [Google Scholar] [CrossRef]
- Marić, S.; Jocić, A.; Tekić, D.; Mušović, J.; Milićević, J.; Dimitrijević, A. Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters. Sep. Purif. Technol. 2024, 340, 126609. [Google Scholar] [CrossRef]
- Jørs, E.; Neupane, D.; London, L. Pesticide Poisonings in Low- and Middle-Income Countries. Environ. Health Insights 2018, 12, 1178630217750876. [Google Scholar] [CrossRef]
- Tasić, T.; Milanković, V.; Batalović, K.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A.; Lazarević-Pašti, T. Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal. Foods 2023, 12, 2362. [Google Scholar] [CrossRef] [PubMed]
- Jensen, I.M.; Whatling, P. Chapter 71—Malathion: A Review of Toxicology. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Academic Press: New York, NY, USA, 2010; pp. 1527–1542. [Google Scholar] [CrossRef]
- Sarker, A.; Nandi, R.; Kim, J.-E.; Islam, T. Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: Prospects and challenges. Environ. Technol. Innov. 2021, 23, 101777. [Google Scholar] [CrossRef]
- Kaur, M.; Sharma, S.; Sodhi, H.S. Chapter 16—Phytoremediation of pesticides. In Phytoremediation; Bhat, R.A., Tonelli, F.M.P., Dar, G.H., Hakeem, K., Eds.; Academic Press: New York, NY, USA, 2022; pp. 323–350. [Google Scholar] [CrossRef]
- Kurakalva, R.M. Chapter 8—In situ chemical oxidation (ISCO) remediation: A focus on activated persulfate oxidation of pesticide-contaminated soil and groundwater. In Cost Effective Technologies for Solid Waste and Wastewater Treatment; Kathi, S., Devipriya, S., Thamaraiselvi, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 75–86. [Google Scholar] [CrossRef]
- Jusoh, A.; Hartini, W.J.H.; Ali, N.a.; Endut, A. Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour. Technol. 2011, 102, 5312–5318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci. Total Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.-D.; Han, H.; Park, J.-H.; Kim, Y.S. Sustainable Proposal for Regulating Organophosphate Pesticides in Wastewater Treatment Plants in South Korea. Sustainability 2022, 14, 11979. [Google Scholar] [CrossRef]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. J. Water Process Eng. 2015, 8, 55–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Pagilla, K. Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation. Desalination 2010, 263, 36–44. [Google Scholar] [CrossRef]
- Available online: https://sdgresources.relx.com/ (accessed on 22 October 2024).
- Chavan, D.M.; Thacker, D.N.P.; Tarar, D.J.L. Toxicity Evaluation of Pesticide Industry Wastewater through Fish Bioassay. IRA-Int. J. Appl. Sci. 2016, 3, 331–339. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Pejčić, M.; Pašti, I.; Lazarević-Pašti, T. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity. Foods 2023, 12, 2397. [Google Scholar] [CrossRef]
- Raji, A.; Thomas Nesakumar, J.I.E.; Mani, S.; Perumal, S.; Rajangam, V.; Thirunavukkarasu, S.; Lee, Y.R. Biowaste-originated heteroatom-doped porous carbonaceous material for electrochemical energy storage application. J. Ind. Eng. Chem. 2021, 98, 308–317. [Google Scholar] [CrossRef]
- Palanisami, H.; Azmi, M.R.M.; Zaini, M.A.A.; Zakaria, Z.A.; Alam, M.N.H.Z.; Yunus, M.A.C. Coffee residue-based activated carbons for phenol removal. Water Pract. Technol. 2021, 16, 793–805. [Google Scholar] [CrossRef]
- Yuan, G.; Li, H.; Hu, H.; Xie, Y.; Xiao, Y.; Dong, H.; Liang, Y.; Liu, Y.; Zheng, M. Microstructure engineering towards porous carbon materials derived from one biowaste precursor for multiple energy storage applications. Electrochim. Acta 2019, 326, 134974. [Google Scholar] [CrossRef]
- Biegun, M.; Dymerska, A.; Chen, X.; Mijowska, E. Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte. Materials 2020, 13, 3919. [Google Scholar] [CrossRef]
- Kah, M.; Sigmund, G.; Xiao, F.; Hofmann, T. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res. 2017, 124, 673–692. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J. Environ. Chem. Eng. 2020, 8, 103904. [Google Scholar] [CrossRef]
- Celso Gonçalves, A.; Zimmermann, J.; Schwantes, D.; Tarley, C.R.T.; Conradi Junior, E.; de Oliveira, V.H.D.; Campagnolo, M.A.; Ziemer, G.L. Renewable Eco-Friendly Activated Biochar from Tobacco: Kinetic, Equilibrium and Thermodynamics Studies for Chlorpyrifos Removal. Sep. Sci. Technol. 2022, 57, 159–179. [Google Scholar] [CrossRef]
- Thuy, P.T.; Anh, N.V.; van der Bruggen, B. Evaluation of Two Low-Cost–High-Performance Adsorbent Materials in the Waste-to-Product Approach for the Removal of Pesticides from Drinking Water. CLEAN-Soil Air Water 2012, 40, 246–253. [Google Scholar] [CrossRef]
- Katnić, Đ.B.; Porobić, S.J.; Vujčić, I.; Kojić, M.M.; Lazarević-Pašti, T.; Milanković, V.; Marinović-Cincović, M.; Živojinović, D.Z. Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal. Radiat. Phys. Chem. 2024, 214, 111277. [Google Scholar] [CrossRef]
- Katnić, Đ.; Porobić, S.J.; Lazarević-Pašti, T.; Kojić, M.; Tasić, T.; Marinović-Cincović, M.; Živojinović, D. Sterilized plum pomace biochar as a low-cost effective sorbent of environmental contaminants. J. Water Process Eng. 2023, 56, 104487. [Google Scholar] [CrossRef]
- Ettish, M.N.; El-Sayyad, G.S.; Elsayed, M.A.; Abuzalat, O. Preparation and characterization of new adsorbent from Cinnamon waste by physical activation for removal of Chlorpyrifos. Environ. Chall. 2021, 5, 100208. [Google Scholar] [CrossRef]
Material | T1 [°C] | Y1 [%] | Grinding [min] | Chemical Activation | T2 [°C] | Physical Activation | Y2 [%] | Grinding [min] | Y [%] (Y1 × Y2) |
---|---|---|---|---|---|---|---|---|---|
SCG–650 | 650 | 18 | 15 | / | / | / | / | / | 18 |
SCG–650K | 650 | 18 | 15 | KOH | 650 | / | 86 | 15 | 15.5 |
SCG–650P | 650 | 18 | 15 | H3PO4 | 650 | / | 86 | 15 | 15.5 |
SCG–650C | 650 | 17 | 15 | / | / | CO2 | / | / | 17 |
SCG–650KC | 650 | 18 | 15 | KOH | 650 | CO2 | 82 | 15 | 14.8 |
SCG–650PC | 650 | 18 | 15 | H3PO4 | 650 | CO2 | 85 | 15 | 15.3 |
[at%] | C | O | N | K | P | Mg | Ca | Others * |
---|---|---|---|---|---|---|---|---|
SCG–650 | 82.1 | 8.7 | 8.1 | 0.6 | 0.1 | 0.2 | 0.2 | 0.0 |
SCG–650K | 73.5 | 17.7 | 5.8 | 2.6 | 0.1 | 0.2 | 0.2 | 0.0 |
SCG–650P | 79.0 | 12.2 | 6.3 | 0.7 | 1.2 | 0.2 | 0.3 | 0.0 |
SCG–650C | 80.3 | 9.3 | 8.9 | 0.8 | 0.1 | 0.2 | 0.3 | 0.0 |
SCG–650KC | 71.5 | 16.8 | 7.7 | 3.4 | 0.1 | 0.2 | 0.2 | 0.1 |
SCG–650PC | 77.4 | 13.8 | 6.3 | 0.6 | 1.4 | 0.2 | 0.2 | 0.1 |
Sample | SBET [m2 g−1] | Vtot × 103 [cm3 g−1] |
---|---|---|
SCG–650 | 0.8 | 1.4 |
SCG–650K | 2.2 | 4.1 |
SCG–650P | 5.5 | 4.9 |
SCG–650C | 1.3 | 0.5 |
SCG–650KC | 98.0 | 44.4 |
SCG–650PC | 0.7 | 0.8 |
Sample | %ads (MLT) | %ads (CHP) |
---|---|---|
SCG–650 | 0.46 ± 0.02 | 9.5 ± 0.5 |
SCG–650K | 0 | 0 |
SCG–650P | 0 | 8.2 ± 0.4 |
SCG–650C | 1.72 ± 0.09 | 11.0 ± 0.6 |
SCG–650KC | 0 | 5.7 ± 0.3 |
SCG–650PC | 1.98 ± 0.09 | 14.2 ± 0.7 |
Material | SCG–650 | SCG–650P | SCG–650C | SCG–650KC | SCG–650PC |
---|---|---|---|---|---|
Pseudo-first-order | |||||
qe [mg g−1] | 3.3 ± 0.3 | 1.7 ± 0.7 | 1.94 ± 0.05 | 5.89 ± 0.02 | 3.70 ± 0.02 |
k1 × 102 [min−1] | 1.9 ± 0.4 | 1.2 ± 0.5 | 5.12 ± 0.06 | 0.324 ± 0.002 | 1.73 ± 0.02 |
χ2 | 0.394 | 0.153 | 0.028 | 0.120 | 0.053 |
R2 | 0.821 | 0.713 | 0.937 | 0.984 | 0.974 |
Pseudo-second-order | |||||
qe [mg g−1] | 3.5 ± 0.5 | 1.9 ± 0.8 | 2.02 ± 0.03 | 7.33 ± 0.03 | 3.92 ± 0.02 |
k2 × 103 [mg min−1 g−1] | 6.1 ± 0.7 | 7.2 ± 0.8 | 43.1 ± 0.2 | 0.112 ± 0.002 | 6.24 ± 0.03 |
χ2 | 0.524 | 0.155 | 0.007 | 0.175 | 0.050 |
R2 | 0.763 | 0.709 | 0.984 | 0.976 | 0.975 |
Elovich model | |||||
α × 101 [mg g−1 min−1] | 1.5 ± 0.9 | 0.40 ± 0.08 | 15.1 ± 0.8 | 0.262 ± 0.004 | 4.02 ± 0.04 |
β [g mg−1] | 1.7 ± 0.7 | 2.7 ± 0.8 | 4.15 ± 0.08 | 0.487 ± 0.004 | 1.75 ± 0.05 |
χ2 | 0.793 | 0.183 | 0.033 | 0.298 | 0.092 |
R2 | 0.640 | 0.657 | 0.924 | 0.959 | 0.955 |
Intraparticle diffusion model | |||||
I part | |||||
C [mg g−1] | −2.39 | −3.00 | 0.170 | −2.430 | −0.023 |
kid [mg g−1 min−0.5] | 0.669 | 0.549 | 0.210 | 0.444 | 0.302 |
R2 | 0.810 | - | 0.946 | 0.988 | 0.896 |
II part | - | ||||
C [mg g−1] | 3.041 | 1.104 | 1.619 | −1.090 | 1.892 |
kid [mg g−1 min−0.5] | 0.006 | 0.018 | 0.012 | 0.271 | 0.078 |
R2 | 0.923 | 1.000 | 0.970 | - | - |
III part | |||||
C [mg g−1] | 2.532 | 3.019 | |||
kid [mg g−1 min−0.5] | 0.089 | 0.022 | |||
R2 | 0.986 | 0.999 |
Material | T (°C) | SCG–650 | SCG–650P | SCG–650C | SCG–650KC | SCG–650PC |
---|---|---|---|---|---|---|
Freundlich isotherm | ||||||
KF ×101 [(mg g−1)(dm3 g−1)1/n] | 25 | 1.89 ± 0.03 | 0.761 ± 0.002 | 1.32 ± 0.03 | 12 ± 2 | 4.2 ± 0.8 |
30 | 3.28 ± 0.08 | 0.711 ± 0.007 | 2.47 ± 0.02 | 3.42 ± 0.05 | 4.5 ± 0.3 | |
35 | 4.7 ± 0.8 | 0.78 ± 0.07 | 3.48 ± 0.01 | / | 4.85 ± 0.05 | |
n | 25 | 1.40 ± 0.04 | 1.24 ± 0.06 | 1.49 ± 0.02 | 2.1 ± 0.2 | 1.8 ± 0.5 |
30 | 1.67 ± 0.06 | 1.18 ± 0.05 | 1.21 ± 0.01 | 1.33 ± 0.06 | 1.8 ± 0.2 | |
35 | 1.8 ± 0.3 | 1.2 ± 0.2 | 1.07 ± 0.01 | / | 1.73 ± 0.04 | |
Langmuir isotherm | ||||||
KL ×102 [dm3 mg−1] | 25 | 2.81 ± 0.05 | 2.22 ± 0.03 | 3.53 ± 0.03 | 14.6 ± 0.6 | 7.9 ± 0.5 |
30 | 6.52 ± 0.02 | 1.82 ± 0.03 | 1.61 ± 0.01 | 6.13 ± 0.05 | 7.74 ± 0.04 | |
35 | 8.8 ± 0.1 | 1.7 ± 0.1 | 0.624 ± 0.001 | / | 7.21 ± 0.01 | |
qmax [mg g−1] | 25 | 4.67 ± 0.04 | 2.98 ± 0.03 | 2.52 ± 0.02 | 7.14 ± 0.07 | 4.0 ± 0.2 |
30 | 3.78 ± 0.03 | 3.53 ± 0.04 | 12.3 ± 0.1 | 5.42 ± 0.05 | 4.38 ± 0.03 | |
35 | 4.03 ± 0.09 | 3.94 ± 0.09 | 51.7 ± 0.1 | / | 4.96 ± 0.01 | |
Temkin isotherm | ||||||
KT × 101 [dm3 mg−1] | 25 | 6.67 ± 0.05 | 4.94 ± 0.02 | 7.25 ± 0.05 | 13.0 ± 0.4 | 7.9 ± 0.4 |
30 | 7.60 ± 0.01 | 4.63 ± 0.03 | 6.02 ± 0.05 | 8.71 ± 0.01 | 8.62 ± 0.04 | |
35 | 8.57 ± 0.08 | 3.041 ± 0.001 | 5.97 ± 0.06 | / | 9.40 ± 0.02 | |
bT [J g mol−1mg−1] | 25 | 3600 ± 40 | 5810 ± 30 | 6140 ± 40 | 1520 ± 60 | 2800 ± 100 |
30 | 3190 ± 10 | 5440 ± 30 | 1950 ± 50 | 2490 ± 10 | 2710 ± 50 | |
35 | 2840 ± 70 | 4224 ± 5 | 1050 ± 60 | / | 2580 ± 30 | |
Dubinin–Radushkevich isotherm | ||||||
qDR [mg g−1] | 25 | 1.9 ± 0.2 | 1.40 ± 0.03 | 1.2 ± 0.2 | 5.42 ± 0.03 | 2.78 ± 0.03 |
30 | 2.4 ± 0.2 | 1.483 ± 0.001 | 3.55 ± 0.03 | 2.7 ± 0.2 | 2.9 ± 0.2 | |
35 | 2.86 ± 0.03 | 1.60 ± 0.01 | 9.34 ± 0.02 | / | 3.14 ± 0.06 | |
E [J mol−1] | 25 | 450 ± 30 | 148 ± 8 | 440 ± 30 | 686 ± 5 | 365 ± 7 |
30 | 340 ± 30 | 562 ± 1 | 413 ± 4 | 480 ± 20 | 2200 ± 100 | |
35 | 418 ± 6 | 152 ± 2 | 144 ± 3 | / | 476 ± 8 |
ΔH0 [kJ mol−1] | ΔS0 [J mol−1K−1] | ΔG0 [kJ mol−1] | R2 | |||
---|---|---|---|---|---|---|
T (°C) | 25 | 30 | 35 | |||
SCG–650 | 15.8 ± 0.1 | 88.2 ± 0.1 | −10.5 ± 0.1 | −10.9 ± 0.1 | −11.4 ± 0.1 | 0.994 |
SCG–650P | 10.3 ± 0.1 | 64.5 ± 0.1 | −8.92 ± 0.01 | −9.23 ± 0.01 | −9.62 ± 0.01 | 0.992 |
SCG–650C | 146 ± 4 | 521 ± 5 | −9.42 ± 0.04 | −12.0 ± 0.2 | −14.6 ± 0.3 | 0.971 |
SCG–650KC | −98.2 | −285.7 | −13.0 | −11.5 | −10.1 | - |
SCG–650PC | 21.1 ± 0.1 | 107 ± 2 | −10.9 ± 0.1 | −11.4 ± 0.1 | −12.0 ± 0.1 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Pašti, I.A.; Lazarević-Pašti, T. Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water. Materials 2024, 17, 5499. https://doi.org/10.3390/ma17225499
Milanković V, Tasić T, Brković S, Potkonjak N, Unterweger C, Pašti IA, Lazarević-Pašti T. Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water. Materials. 2024; 17(22):5499. https://doi.org/10.3390/ma17225499
Chicago/Turabian StyleMilanković, Vedran, Tamara Tasić, Snežana Brković, Nebojša Potkonjak, Christoph Unterweger, Igor A. Pašti, and Tamara Lazarević-Pašti. 2024. "Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water" Materials 17, no. 22: 5499. https://doi.org/10.3390/ma17225499
APA StyleMilanković, V., Tasić, T., Brković, S., Potkonjak, N., Unterweger, C., Pašti, I. A., & Lazarević-Pašti, T. (2024). Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water. Materials, 17(22), 5499. https://doi.org/10.3390/ma17225499