Effect of Processing Parameters on Recrystallization During Hot Isostatic Pressing of Stellite-6 Fabricated Using Laser Powder Bed Fusion Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, R.; Ashraf, A.; Elameen, M.; Faisal, N.H.; El-Sherik, A.M.; Elakwah, Y.O.; Goosen, M.F.A. Single Asperity Nanoscratch Behaviour of HIPed and Cast Stellite 6 Alloys. Wear 2014, 312, 70–82. [Google Scholar] [CrossRef]
- Ratia, V.L.; Zhang, D.; Carrington, M.J.; Daure, J.L.; McCartney, D.G.; Shipway, P.H.; Stewart, D.A. Comparison of the Sliding Wear Behaviour of Self-Mated HIPed Stellite 3 and Stellite 6 in a Simulated PWR Water Environment. Wear 2019, 426–427, 1222–1232. [Google Scholar] [CrossRef]
- Hazlehurst, K.B.; Wang, C.J.; Stanford, M. An Investigation into the Flexural Characteristics of Functionally Graded Cobalt Chrome Femoral Stems Manufactured Using Selective Laser Melting. Mater. Des. 2014, 60, 177–183. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Kurdi, O.; Tauviqirrahman, M.W.; Tri Indah Jamari, J. Tresca Stress Study of CoCrMo-on-CoCrMo Bearings Based on Body Mass Index Using 2D Computational Model. Jurnal Tribologi 2022, 33, 31–38. [Google Scholar]
- Ammarullah, M.I.; Hartono, R.; Supriyono, T.; Santoso, G.; Sugiharto, S.; Permana, M.S. Polycrystalline Diamond as a Potential Material for the Hard-on-Hard Bearing of Total Hip Prosthesis: Von Mises Stress Analysis. Biomedicines 2023, 11, 951. [Google Scholar] [CrossRef]
- Rosalbino, F.; Scavino, G. Corrosion Behaviour Assessment of Cast and HIPed Stellite 6 Alloy in a Chloride-Containing Environment. Electrochim. Acta 2013, 111, 656–662. [Google Scholar] [CrossRef]
- Malayoglu, U.; Neville, A. Comparing the Performance of HIPed and Cast Stellite 6 Alloy in Liquid–Solid Slurries. Wear 2003, 255, 181–194. [Google Scholar] [CrossRef]
- Gülsoy, H.Ö.; Özgün, Ö.; Bilketay, S. Powder Injection Molding of Stellite 6 Powder: Sintering, Microstructural and Mechanical Properties. Mat. Sci. Eng. A 2016, 651, 914–924. [Google Scholar] [CrossRef]
- Kiani Khouzani, M.; Bahrami, A.; Yazdan Mehr, M. Spark Plasma Sintering of Stellite®-6 Superalloy. J. Alloys Compd. 2019, 782, 461–468. [Google Scholar] [CrossRef]
- Sassatelli, P.; Bolelli, G.; Lassinantti Gualtieri, M.; Heinonen, E.; Honkanen, M.; Lusvarghi, L.; Manfredini, T.; Rigon, R.; Vippola, M. Properties of HVOF-Sprayed Stellite-6 Coatings. Surf. Coat. Technol. 2018, 338, 45–62. [Google Scholar] [CrossRef]
- Gholipour, A.; Shamanian, M.; Ashrafizadeh, F. Microstructure and Wear Behavior of Stellite 6 Cladding on 17-4 PH Stainless Steel. J. Alloys Compd. 2011, 509, 4905–4909. [Google Scholar] [CrossRef]
- Mohamed, K.E.; Gad, M.M.A.; Nassef, A.E.; El-Sayed, A.W.A. Localized Corrosion Behaviour of Powder Metallurgy Processed Cobalt-Base Alloy Stellite. Z. Metallkd. 1999, 90, 195. [Google Scholar] [CrossRef]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef]
- Ren, B.; Chen, C.; Zhang, M. Effect of Heat Treatment on the Microstructure of Co–Cr–W Alloy Fabricated by Laser Additive Manufacturing. Opt. Eng. 2018, 57, 041409. [Google Scholar] [CrossRef]
- Traxel, K.D.; Bandyopadhyay, A. First Demonstration of Additive Manufacturing of Cutting Tools Using Directed Energy Deposition System: StelliteTM-Based Cutting Tools. Addit. Manuf. 2019, 25, 460–468. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Y.; Wang, J.; Liu, C.; Wang, J.; Xu, T.; Lu, T.; Zhang, H.; Lu, J.; Ma, S.; et al. Characterization of Microstructure and Mechanical Properties of Stellite 6 Part Fabricated by Wire Arc Additive Manufacturing. Metals 2019, 9, 474. [Google Scholar] [CrossRef]
- Mostafaei, A.; Rodriguez De Vecchis, P.; Buckenmeyer, M.J.; Wasule, S.R.; Brown, B.N.; Chmielus, M. Microstructural Evolution and Resulting Properties of Differently Sintered and Heat-Treated Binder-Jet 3D-Printed Stellite 6. Mat. Sci. Eng. C 2019, 102, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Sadhu, A.; Das, A.K.; Pratihar, D.K.; Roy Choudhury, A. An Approach towards Energy and Material Efficient Additive Manufacturing: Multi-Objective Optimization of Stellite-6 Deposition on SS304. Opt. Laser Technol. 2022, 148, 107799. [Google Scholar] [CrossRef]
- Lin, Z.; Ya, W.; Subramanian, V.V.; Goulas, C.; di Castri, B.; Hermans, M.J.M.; Pathiraj, B. Deposition of Stellite 6 Alloy on Steel Substrates Using Wire and Arc Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2020, 111, 411–426. [Google Scholar] [CrossRef]
- Alvarez-Vera, M.; Hdz-García, H.M.; Muñoz-Arroyo, R.; Hernandez-Rodriguez, M.A.L.; Ortega, J.A.; Mtz-Enriquez, A.I.; Hernandez-García, F.A.; Carrera-Espinoza, R.; Ortega-Ramos, I.A. Wear Resistance of Surfaced Modified CoCr Alloy with Stellite Alloys and Boron Carbide Coating via Laser Alloying. Wear 2023, 524–525, 204811. [Google Scholar] [CrossRef]
- Toozandehjani, M.; Ostovan, F.; Shamshirsaz, M. Twin Hot-Wire Arc Welding Additive Manufacturing Deposition of High Tungsten Stellite-6 Hard-Facing Coating: Processing, Microstructure and Wear Properties. Mater. Today Commun. 2023, 35, 105572. [Google Scholar] [CrossRef]
- Marandi, S.; Beidokhti, B.; Sharifi, M.; Mousavi, M.; Farshidianfar, M.H. Investigation of Microstructure and Wear Properties of Stellite 6 Laser Additive Manufactured Layers on Martensitic Stainless Steel Substrate. JOM 2023, 75, 4108–4114. [Google Scholar] [CrossRef]
- Durejko, T.; Łazińska, M. Characterization of Cobalt-Based Stellite 6 Alloy Coating Fabricated by Laser-Engineered Net Shaping (LENS). Materials 2021, 14, 7442. [Google Scholar] [CrossRef]
- Rajeev, G.P.; Rahul, M.R.; Kamaraj, M.; Bakshi, S.R. Microstructure and High Temperature Mechanical Properties of Wire Arc Additively Deposited Stellite 6 Alloy. Materialia 2020, 12, 100724. [Google Scholar] [CrossRef]
- Nadarajan Murugan, J.; Duraisamy, S.V.; Priya, V.P.; Arulmani, R. Production and Evaluation of Microstructure and Mechanical Properties of Stellite 6 Prototype Parts by Robotic Wire Arc Additive Manufacturing. Trans. Indian Inst. Met. 2023, 76, 175–185. [Google Scholar] [CrossRef]
- Moradi, M.; Ashoori, A.; Hasani, A. Additive Manufacturing of Stellite 6 Superalloy by Direct Laser Metal Deposition—Part 1: Effects of Laser Power and Focal Plane Position. Opt. Laser Technol. 2020, 131, 106328. [Google Scholar] [CrossRef]
- Moradi, M.; Hasani, A.; Malekshahi Beiranvand, Z.; Ashoori, A. Additive Manufacturing of Stellite 6 Superalloy by Direct Laser Metal Deposition—Part 2: Effects of Scanning Pattern and Laser Power Reduction in Different Layers. Opt. Laser Technol. 2020, 131, 106455. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Starr, T.; Stucker, B. The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated By Selective Laser Melting and Electron Beam Melting. In Proceedings of the 2013 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2013; pp. 424–439. [Google Scholar]
- Guyard, C.; Barbangelo, A.; Allibert, C.H.; Driole, J. Solidification Path and Phase Equilibria in the Liquid-Solid Range of Cobalt-Base Alloy. J. Mater. Sci. 1981, 16, 604–612. [Google Scholar] [CrossRef]
- Ayad, A.; Allain-Bonasso, N.; Rouag, N.; Wagner, F. Grain Orientation Spread Values in IF Steels after Plastic Deformation and Recrystallization. In Proceedings of the Materials Science Forum. Trans. Tech. Publ. 2012, 702, 269–272. [Google Scholar]
- Hadadzadeh, A.; Mokdad, F.; Wells, M.; Chen, D. A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast-Homogenized Mg-Zn-Zr Alloy Using Electron Backscattered Diffraction. Mater. Sci. Eng. A 2018, 709, 285–289. [Google Scholar] [CrossRef]
- Vrancken, B. Study of Residual Stresses in Selective Laser Melting. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2016. [Google Scholar]
- Wrought Wear-Resistant Alloys, Deloro Wear Solutions Gmbh. Available online: https://www.deloro.com/fileadmin/users/redakteur/006_Downloads/Product_Information/Wrought_Wear-Resistant_Alloys_eng.pdf (accessed on 11 October 2024).
- Sun, S.; Teng, Q.; Xie, Y.; Liu, T.; Ma, R.; Bai, J.; Cai, C.; Wei, Q. Two-Step Heat Treatment for Laser Powder Bed Fusion of a Nickel-Based Superalloy with Simultaneously Enhanced Tensile Strength and Ductility. Addit. Manuf. 2021, 46, 102168. [Google Scholar] [CrossRef]
- Tan, Q.; Zhu, G.; Zhou, W.; Tian, Y.; Zhang, L.; Dong, A.; Shu, D.; Sun, B. Precipitation, Transformation, and Coarsening of Carbides in a High-Carbon Ni-Based Superalloy during Selective Laser Melting and Hot Isostatic Pressing Processes. J. Alloys Compd. 2022, 913, 165196. [Google Scholar] [CrossRef]
- Zhao, Y.; Bian, H.; Wang, H.; Kenta, A.; Kenta, Y.; Chiba, A. Non-Equilibrium Solidification Behavior Associated with Powder Characteristics during Electron Beam Additive Manufacturing. Mater. Des. 2022, 221, 110915. [Google Scholar] [CrossRef]
- Li, K.; Yang, P. The Formation of Strong {100} Texture by Dynamic Strain-Induced Boundary Migration in Hot Compressed Ti-5Al-5Mo-5V-1Cr-1Fe Alloy. Metals 2017, 7, 412. [Google Scholar] [CrossRef]
Laser Power (W) | Scanning Speed (mm/s) | Energy Density (J/mm3) | Melt Pool Depth (μm) | |
---|---|---|---|---|
Sample A | 300 | 750 | 139 | 209 |
Sample B | 275 | 1000 | 95 | 186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridar, S.; Jimenez, X.; To, A.C.; Xiong, W. Effect of Processing Parameters on Recrystallization During Hot Isostatic Pressing of Stellite-6 Fabricated Using Laser Powder Bed Fusion Technique. Materials 2024, 17, 5500. https://doi.org/10.3390/ma17225500
Sridar S, Jimenez X, To AC, Xiong W. Effect of Processing Parameters on Recrystallization During Hot Isostatic Pressing of Stellite-6 Fabricated Using Laser Powder Bed Fusion Technique. Materials. 2024; 17(22):5500. https://doi.org/10.3390/ma17225500
Chicago/Turabian StyleSridar, Soumya, Xavier Jimenez, Albert C. To, and Wei Xiong. 2024. "Effect of Processing Parameters on Recrystallization During Hot Isostatic Pressing of Stellite-6 Fabricated Using Laser Powder Bed Fusion Technique" Materials 17, no. 22: 5500. https://doi.org/10.3390/ma17225500
APA StyleSridar, S., Jimenez, X., To, A. C., & Xiong, W. (2024). Effect of Processing Parameters on Recrystallization During Hot Isostatic Pressing of Stellite-6 Fabricated Using Laser Powder Bed Fusion Technique. Materials, 17(22), 5500. https://doi.org/10.3390/ma17225500