Si Characterization on Thinning and Singulation Processes for 2.5/3D HBM Package Integration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- -
- Ra: Arithmetic average of the absolute values of the surface height deviations measured from the mean plane;
- -
- Rt: Maximum vertical distance between the highest and lowest data points in the image following the plane fit;
- -
- Rz: Average difference in height between the highest peaks and valleys relative to the mean plane.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piscataway, N.J. Chapter 20. Thermal. In Heterogeneous Integration Roadmap 2019 Edition; IEEE Electronics Packaging Society: Piscataway, NJ, USA, 2019. [Google Scholar]
- Natarajan, V.; Deshpande, A.; Solanki, S.; Chandrasekhar, A. Thermal and Power Challenges in High Performance Computing Systems. Jpn. J. Appl. Phys. 2009, 48, 5S2. [Google Scholar] [CrossRef]
- Tu, K.N. Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 2011, 51, 517–523. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, K.N. Low melting point solders based on Sn, Bi, and in elements. Mater. Today Adv. 2020, 8, 100–115. [Google Scholar] [CrossRef]
- Cheng, H.C.; Huang, T.C.; Hwang, P.W.; Chen, W.H. Heat dissipation assessment of through silicon via (TSV)-based 3D IC packaging for CMOS image sensing. Microelectron. Reliab. 2016, 59, 84–94. [Google Scholar] [CrossRef]
- Kim, Y.S.; Maedaa, N.; Kitadaa, H.; Fujimotoa, K.; Kodamaa, S.; Kawaib, A.; Araib, K.; Suzukic, K.; Nakamurad, T.; Ohba, T. Advanced wafer thinning technology and feasibility test for 3D integration. Microelectron. Eng. 2013, 107, 65–71. [Google Scholar] [CrossRef]
- Gibbons, J.F.; Lee, K.F. One-gate-wide CMOS Inverter on laser-recrystallized polysilicon. IEEE Trans. Electron Devices Lett. 1980, 1, 117–118. [Google Scholar] [CrossRef]
- Kawamura, S.; Sasaki, N.; Iwai, T.; Mukai, R.; Nakano, M.; Takagi, M. Electrical characteristics of three-dimensional SOI/CMOS IC’s. IEEE Trans. Electron Devices Lett. 1984, 4, 366–368. [Google Scholar] [CrossRef]
- Koyanagi, M.; Kurino, H.; Lee, K.W.; Sakuma, K.; Miyakawa, N.; Itani, H. Future system-on-silicon LSI chips. IEEE Micro 1998, 18, 17–22. [Google Scholar] [CrossRef]
- Lee, K.W.; Nakamura, T.; Ono, T.; Yamada, Y.; Mizukusa, T.; Hashimoto, H.; Park, K.T.; Kurino, H.; Koyanagi, M. Three-dimensional shared memory fabricated using wafer stacking technology. In Proceedings of the International Electron Devices Meeting 2000, Technical Digest, IEDM, San Francisco, CA, USA, 10–13 December 2000; pp. 165–168. [Google Scholar]
- Harrison, M.R.; Vincent, J.H.; Steen, H.A.H. Lead-free reflow soldering for electronics assembly. Solder. Surf. Mount Technol. 2001, 13, 21–38. [Google Scholar] [CrossRef]
- Ha, S.S.; Kim, J.W.; Yoon, J.W.; Ha, S.O.; Jung, S.B. Electromigration Behavior in Sn-37Pb and Sn-3.0Ag-0.5Cu Flip-Chip Solder Joints under High Current Density. J. Electron. Mater. 2009, 38, 70–77. [Google Scholar] [CrossRef]
- Frear, D.R.; Ramanathan, L.N.; Jang, J.W.; Owens, N.L. Emerging reliability challenges in electronic packaging. In Proceedings of the 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008; pp. 450–454. [Google Scholar]
- Savastiouk, S.; Siniaguine, O.; Reche, J.; Korczynski, E. Thru-silicon interconnect technology. In Proceedings of the Twenty Sixth IEEE/CPMT International Electronics Manufacturing Technology Symposium, Santa Clara, CA, USA, 3 October 2000. [Google Scholar]
- Landesberger, C.; Klink, G.; Schwinn, G.; Aschenbrenner, R. New dicing and thinning concept improves mechanical reliability of ultra-thin silicon. In Proceedings of the International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces, Braselton, GA, USA, 11–14 March 2001. [Google Scholar]
- Nakamura, Y. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Sci. Technol. Adv. Mater. 2018, 19, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Cho, H.J.; Ryu, H.J.; Muhammad, I.; Chandreswar, M.; Kim, S.J. Tunable synaptic characteristics of a Ti/TiO2/Si Memory Device for reservoir computing. ACS Appl. Mater. Interfaces 2021, 13, 33244–33252. [Google Scholar]
- Chen, J.; Wolf, I.D. Study of damage and stress induced by backgrinding in Si wafers. Semicond. Sci. Technol. 2003, 18, 261–268. [Google Scholar] [CrossRef]
- McLellan, N.; Fan, N.; Liu, S.; Lau, K.; Wu, J. Effects of Wafer Thinning Condition on the Roughness, Morphology and Fracture Strength of Silicon Die. J. Electron. Packag. 2004, 126, 100–114. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, J.C.; Kim, K.M.; Kim, T.H.; Kwon, S.H.; Na, Y.N. Plasma dicing before grinding process for highly reliable singulation of low-profile and large die sizes in advanced packages. Micro Nano Syst. Lett. 2023, 11, 16. [Google Scholar] [CrossRef]
- Fumihiro, I.; Arnita, P.; Lan, P.; Alain, P.; Kenneth, J.R.; Akira, U.; Eric, B. Morphological characterization and mechanical behavior by dicing and thinning on direct bonded Si wafer. J. Manuf. Process. 2020, 58, 811–818. [Google Scholar]
- Renan, B.; Jeremy, M.; Agathe, A.; Stephan, B.; Jerome, D.; Lionel, V. Backside Thinning Process Development for High-Density TSV in a 3-layer Integration. In Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference, Denver, CO, USA, 28–31 May 2024. [Google Scholar]
- Lu, M. Advanced of Chip Stacking Architectures and Interconnect Technologies for Image Sensor. ASME J. Electron. Packag. 2021, 144, 020801. [Google Scholar] [CrossRef]
- Suarez-Berru, J.J.; Nicolas, S.; Bresson, N.; Assous, M.; Borel, S. Demonstration of a Wafer Level Face-To-Back (F2B) Fine Pitch Cu-Cu Hybrid Bonding with High Density TSV for 3D Integration Applications. In Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference, Orlando, FL, USA, 30 May–2 June May 2023. [Google Scholar]
- Son, Y.; Shin, J. The Study on Nanosecond Pulsed Laser Dicing Process of Full-Thickness Silicon Wafer. In Proceedings of the Conference on Lasers and Elctro-Optics Pacific Rim (CLEO-PR), Incheon, Republic of Korea, 4–8 August 2024; p. Mo3I_2. [Google Scholar]
- Parker, J.H.; Feldman, D.W.; Ashkin, M. Raman Scattering by Optical Modes of Metals. Phys. Rev. 1967, 21, 712–714. [Google Scholar] [CrossRef]
- Gaisler, S.V.; Semenova, O.I.; Sharafutdinov, R.G.; Kolesov, B.A. Analysis of Raman spectra of amorphous-nanocrystalline silicon films. Phys. Solid State 2004, 46, 1528–1532. [Google Scholar] [CrossRef]
- Paillard, V.; Puech, P.; Laguna, M.A.; Carles, R.; Kohn, B.; Huisken, F. Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals. J. Appl. Phys. 1999, 86, 1921–1924. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, Y.; Nyugen, P.; Alford, T.L. Silver diffusion and defect formation in Si (1 1 1) substrate at elevated temperatures. Mater. Chem. Phys. 2002, 76, 224–227. [Google Scholar] [CrossRef]
- Zarudi, I.; Zhang, L.C. Effect of ultraprecision grinding on the microstructural change in silicon monocrystals. J. Mater. Process. Technol. 1998, 84, 149–158. [Google Scholar] [CrossRef]
- Kulkarni, M.S.; Libbert, J.; Keltner, S.; Muléstagno, L. A Theoretical and Experimental Analysis of Macrodecoration of Defects in Monocrystalline Silicon. J. Electrochem. Soc. 2002, 149, 153–165. [Google Scholar] [CrossRef]
- Jiun, H.H.; Ahmad, I.; Jalar, A.; Omar, G. Effect of wafer thinning methods towards fracture strength and topography of silicon die. Microelectron. Reliab. 2006, 46, 836–845. [Google Scholar] [CrossRef]
- Takahashi, J.I.; Makino, T. Raman scattering measurement of silicon-on-insulator substrates formed by high-dose oxygen-ion implantation. J. Appl. Phys. 1998, 63, 87–91. [Google Scholar] [CrossRef]
- Wolf, I.D. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 1996, 11, 139–154. [Google Scholar] [CrossRef]
Initial Wafer Thickness (µm) | Thickness After Coarse Grinding (µm) | Thickness After Fine Grinding (µm) | Thickness After Fine Grinding (µm) | Thickness After Chemical Treatment | ||
---|---|---|---|---|---|---|
Sample | Fine grinding | 780 | 500 | 60, 90, 120 | - | - |
Poly-grinding | 780 | 500 | - | 60, 90, 120 | 60, 90, 120 | |
Polishing | 780 | 500 | - | - | - | |
Grinding Mesh | - | Mesh 1000 | Mesh 5000 | Mesh 8000 | Mesh 8000 SiO2 slurry | |
Grinding Speed (RPM) | - | 1700 | 2500 | 2500 | 250 | |
Feed Rate (µm/s) | - | 0.1~2 | 0.2~1 | 0.2~1 | 0.2~0.4 |
Wafer Singulation | Method of Wafer Singulation |
---|---|
Blade dicing | Wafer singulation by cutting blade |
Laser grooving | Grooving creation by laser irradiation and follow wafer singulation by cutting a blade |
Stealth dicing | Laser irradiation on wafer backside and follow wafer singulation by force loading to mount tape |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Kim, S.; Noh, T.; Kang, D.; Jung, S. Si Characterization on Thinning and Singulation Processes for 2.5/3D HBM Package Integration. Materials 2024, 17, 5529. https://doi.org/10.3390/ma17225529
Choi M, Kim S, Noh T, Kang D, Jung S. Si Characterization on Thinning and Singulation Processes for 2.5/3D HBM Package Integration. Materials. 2024; 17(22):5529. https://doi.org/10.3390/ma17225529
Chicago/Turabian StyleChoi, MiKyeong, SeaHwan Kim, TaeJoon Noh, DongGil Kang, and SeungBoo Jung. 2024. "Si Characterization on Thinning and Singulation Processes for 2.5/3D HBM Package Integration" Materials 17, no. 22: 5529. https://doi.org/10.3390/ma17225529
APA StyleChoi, M., Kim, S., Noh, T., Kang, D., & Jung, S. (2024). Si Characterization on Thinning and Singulation Processes for 2.5/3D HBM Package Integration. Materials, 17(22), 5529. https://doi.org/10.3390/ma17225529