Material, Aerodynamic, and Operational Aspects of Single-Skin Paraglider
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Expected Masses and Packing Volumes of the Wing
- Mx—mass of the paraglider wing [kg];
- S—summary surface of the upper surfaces, bottom surfaces, and ribs forming the wing [m2];
- ms—surface mass of the applied material [kg/m2];
- Vx—packing volume of the paraglider wing [m3];
- t—thickness of the applied material [m].
2.2.2. Computational Analysis
- Δu—displacement increment [m];
- n—iteration (subsequent) [-];
- Fext—applied force [N];
- Fint—computed internal force [N];
- Fres—residual force [N];
- K—stiffness matrix [Pa].
3. Results
3.1. Masses and Packing Volumes Comparison
3.2. Computational Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudek Paragliders. 2019. Available online: https://dudek.eu/en/produkt/v-king/ (accessed on 5 September 2024).
- Ozone Paragliders. 2019. Available online: https://flyozone.com/paragliders/products/gliders/xxlite-2 (accessed on 5 September 2024).
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 8th ed.; McGraw-Hill: New York, NY, USA, 2021. [Google Scholar]
- ANSYS, Inc. Introduction to ANSYS FLUENT; ANSYS, Inc.: Canonsburg, PA, USA, 2010. [Google Scholar]
- ANSYS, Inc. Introduction to ANSYS Mechanical APDL; ANSYS, Inc.: Canonsburg, PA, USA, 2010. [Google Scholar]
- Babinsky, H. The aerodynamic performance of Paragliders. Aeronaut. J. 1999, 103, 421–428. [Google Scholar] [CrossRef]
- Hanke, K.; Schenk, S. Evaluating the geometric shape of a flying paraglider. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-5, 265–272. [Google Scholar] [CrossRef]
- Benedetti, D.M.; Veras, C.A. Wind-tunnel measurement of differential pressure on the surface of a dynamically inflatable wing cell. Aerospace 2021, 8, 34. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Tang, G. Wind tunnel testing of flexible wing model with aileron freeplay nonlinearity. In Proceedings of the AIAA Aviation 2021 Forum, Virtual, 2–6 August 2021. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, X. Effects of characteristic geometric parameters on parafoil lift and drag. Aircr. Eng. Aerosp. Technol. 2013, 85, 280–292. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, Y. Effects of arc-anhedral angle, airfoil and leading edge cut on parafoil aerodynamic performance. Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin. 2012, 33, 1189–1200. [Google Scholar]
- Belloc, H.; Chapin, V.; Manara, F.; Sgarbossa, F.; Forsting, A.M. Influence of the air inlet configuration on the performances of a paraglider open airfoil. Int. J. Aerodyn. 2016, 5, 83. [Google Scholar] [CrossRef]
- Kim, M.J.; Hwang, H.G.; Lee, J.H.; Kim, J.; Park, J.; Song, G. Aerodynamic design optimization for a canopy based on response surface methodology and a multi-objective genetic algorithm. J. Mech. Sci. Technol. 2022, 36, 4509–4522. [Google Scholar] [CrossRef]
- Boffadossi, M.; Savorgnan, F. Analysis on aerodynamic characteristics of a paraglider airfoil. Aerotec. Missili Spaz. 2016, 95, 211–218. [Google Scholar] [CrossRef]
- Lolies, T.; Gourdain, N.; Charlotte, M.; Belloc, H.; Goldsmith, B. Numerical methods for efficient fluid–structure interaction simulations of paragliders. Aerotec. Missili Spaz. 2019, 98, 221–229. [Google Scholar] [CrossRef]
- Abdelqodus, A.A.; Kursakov, I.A. Optimal aerodynamic shape optimization of a paraglider airfoil based on the sharknose concept. MATEC Web Conf. 2018, 221, 05002. [Google Scholar] [CrossRef]
- Maślanka, P.; Korycki, R.; Szafrańska, H. Estimation of seams in Paraglider Wing. Autex Res. J. 2020, 22, 383–390. [Google Scholar] [CrossRef]
- Maślanka, P.; Aleksieiev, A.; Korycki, R.; Szafrańska, H.; Dąbrowska, A. Experimental and numerical determination of strength characteristics related to paraglider wing with Fourier transform infrared spectroscopy of applied materials. Materials 2022, 15, 7291. [Google Scholar] [CrossRef] [PubMed]
- Maślanka, P.; Szafrańska, H.; Aleksieiev, A.; Korycki, R.; Kaziur, P.; Dąbrowska, A. Influence of material degradation on deformation of paraglider during flight. Materials 2023, 16, 5396. [Google Scholar] [CrossRef] [PubMed]
- Frant, M.; Kachel, S.; Maślanka, W. Gust modeling with state-of-the-art computational fluid dynamics (CFD) software and its influence on the aerodynamic characteristics of an unmanned aerial vehicle. Energies 2023, 16, 6847. [Google Scholar] [CrossRef]
- Józefiak, T.; Kaluszka, M.; Okolewski, A. On an extension of the Choquet integral for multi-valued data. Fuzzy Sets Syst. 2024, 474, 108761. [Google Scholar] [CrossRef]
- Maślanka, P.; Korycki, R. Sensitivity of Aerodynamic Characteristics of Paraglider Wing to Properties of Covering Material. Autex Res. J. 2022, 22, 64–72. [Google Scholar] [CrossRef]
- Airfoil Tools. Available online: http://airfoiltools.com/airfoil/details?airfoil=s1223-il (accessed on 5 May 2024).
- Brnada, S.; Šomođi, Ž.; Kovačević, S. A new method for determination of Poisson’s ratio of woven fabric at higher stresses. J. Eng. Fibers Fabr. 2019, 14, 1558925019856225. [Google Scholar] [CrossRef]
- Abłamowicz, A.; Nowakowski, W. Podstawy Aerodynamiki i Mechaniki Lotu [Fundamentals of Aerodynamics and Flight Mechanics]; Wydawnictwo Komunikacji i Łączności: Sulejówek, Poland, 1980. [Google Scholar]
Sample | Surface Mass [g/m2] | Thickness [mm] | Number of Threads/1 dm | Max Force During Elongation [daN/5 cm] | Elongation at Break [%] | Air Permeability (Pressure Drop 200 Pa) | |||
---|---|---|---|---|---|---|---|---|---|
Warp | Weft | Warp | Weft | Warp | Weft | ||||
1 | 34 | 0.05 | 560 | 580 | 34 | 32 | 21 | 20 | 0.00 |
2 | 42 | 0.07 | 460 | 500 | 47 | 46 | 30 | 30 | 0.00 |
3 | 32 | 0.05 | 420 | 460 | 25 | 33 | 24 | 25 | 0.00 |
4 | 26 | 0.05 | 420 | 580 | 25 | 22 | 24 | 22 | 0.00 |
5 | 38 | 0.09 | 420 | 480 | 38 | 33 | 25 | 25 | 0.00 |
6 | 38 | 0.09 | 420 | 460 | 27 | 28 | 21 | 23 | 0.00 |
7 | 29 | 0.04 | 420 | 460 | 25 | 33 | 24 | 25 | 0.00 |
8 | 26 | 0.04 | 420 | 480 | 25 | 22 | 24 | 23 | 0.00 |
9 | 36 | 0.05 | 520 | 520 | 40 | 40 | 26 | 26 | 0.00 |
10 | 42 | 0.08 | 510 | 500 | 42 | 42 | 27 | 27 | 0.00 |
Sample | Stress [Pa] | Strain [%] | Deformation [m] * | |||
---|---|---|---|---|---|---|
Warp | Weft | Warp | Weft | Warp | Weft | |
Fabric no. 2 | 1.343 × 108 | 1.314 × 108 | 30 | 30 | 0.154 | 0.154 |
Geometry Element | Boundary Condition |
---|---|
Wing upper cover | wall |
Wing bottom cover (leading edge area) | wall |
Wing bottom cover (trailing edge area) | wall |
Wing ribs | wall |
Cross-sectional surface | symmetry |
External surfaces of the calculation domain | pressure far field |
Sample No. | Mass (Traditional Type of Paraglider) [18,19] | Mass (New Type of Paraglider) | Mass Decrease | Packing Volume (Traditional Type of Paraglider) [18,19] | Packing Volume (New Type of Paraglider) | Packing Volume Decrease |
---|---|---|---|---|---|---|
[kg] | [kg] | [kg] | [dm3] | [dm3] | [dm3] | |
1 | 2.436 | 1.802 | 0.634 | 3.582 | 2.651 | 0.931 |
2 | 3.009 | 2.227 | 0.782 | 5.015 | 3.711 | 1.304 |
3 | 2.293 | 1.696 | 0.597 | 3.582 | 2.651 | 0.931 |
4 | 1.863 | 1.378 | 0.485 | 3.582 | 2.651 | 0.931 |
5 | 2.723 | 2.014 | 0.709 | 6.448 | 4.771 | 1.677 |
6 | 2.723 | 2.014 | 0.709 | 6.448 | 4.771 | 1.677 |
7 | 2.078 | 1.537 | 0.541 | 2.866 | 2.121 | 0.745 |
8 | 1.863 | 1.378 | 0.485 | 2.866 | 2.121 | 0.745 |
9 | 2.579 | 1.909 | 0.670 | 3.582 | 2.651 | 0.931 |
10 | 3.009 | 2.227 | 0.782 | 5.732 | 4.241 | 1.491 |
Single-Cover Wing | Traditional Wing [18,19] | |
---|---|---|
v = 45 km/h; p = 101,325 Pa; α = 12° | v = 45 km/h; p = 101,325 Pa; α = 6° | |
Lift force | 3472 N | 1519 N |
Drag force | 307 N | 115 N |
cl/cd | 11.27 | 13.17 |
Sample | Stress [Pa] | Strain [%] | Deformation [m] | ||||||
---|---|---|---|---|---|---|---|---|---|
Min. | Av. | Max. | Min. | Av. | Max. | Min. | Av. | Max. | |
Fabric no. 2 Single-cover wing | 0.000 | 3.272 × 106 | 2.645 × 107 | 0.0 | 0.6 | 6.8 | 0.000 | 0.006 | 0.043 |
Fabric no. 2 Traditional wing | 0.000 | 3.598 × 106 | 2.220 × 107 | 0.0 | 0.9 | 6.4 | 0.000 | 0.008 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maślanka, P.; Korycki, R. Material, Aerodynamic, and Operational Aspects of Single-Skin Paraglider. Materials 2024, 17, 5553. https://doi.org/10.3390/ma17225553
Maślanka P, Korycki R. Material, Aerodynamic, and Operational Aspects of Single-Skin Paraglider. Materials. 2024; 17(22):5553. https://doi.org/10.3390/ma17225553
Chicago/Turabian StyleMaślanka, Paulina, and Ryszard Korycki. 2024. "Material, Aerodynamic, and Operational Aspects of Single-Skin Paraglider" Materials 17, no. 22: 5553. https://doi.org/10.3390/ma17225553
APA StyleMaślanka, P., & Korycki, R. (2024). Material, Aerodynamic, and Operational Aspects of Single-Skin Paraglider. Materials, 17(22), 5553. https://doi.org/10.3390/ma17225553