Polylactide Composites Reinforced with Pre-Impregnated Natural Fibre and Continuous Cellulose Yarns for 3D Printing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Filament Production Methodology
2.2.1. Impregnation and Consolidation of Single Filament
2.2.2. Production of 3D Printing Filament
2.3. Characterisation of the Filaments
2.3.1. Optical Microscopy
2.3.2. Porosity and Reinforcement Weight Percentage Analysis
2.3.3. Tensile Properties of Composite Filaments
2.3.4. Scanning Electron Microscopy Analysis of Cryofracture Surfaces and Tensile Fracture Surfaces
2.4. FDM 3D Printing
2.5. Characterisation of the 3D-Printed Composite
2.5.1. Mechanical Characterisation
2.5.2. SEM of Fracture Surfaces
3. Results and Discussion
3.1. Single Yarn-Reinforced Filaments
3.2. Multiple Consolidated and 3D Printing Filaments
3.3. Fused Deposition Modelling 3D Printing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Wijk, A.; van Wijk, I. 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy; IOS Press: Amsterdam, The Netherlands, 2015; ISBN 9781614994862. [Google Scholar]
- Gkartzou, E.; Koumoulos, E.P.; Charitidis, C.A. Production and 3D Printing Processing of Bio-Based Thermoplastic Filament. Manuf. Rev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Muthe, L.P.; Pickering, K.; Gauss, C. A Review of 3D/4D Printing of Poly-Lactic Acid Composites with Bio-Derived Reinforcements. Compos. Part. C Open Access 2022, 8, 100271. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, K.; Chen, X.; Wang, J.; Peng, Y.; Ahzi, S.; Chen, C. Interfacial and Mechanical Properties of Continuous Ramie Fiber Reinforced Biocomposites Fabricated by In-Situ Impregnated 3D Printing. Ind. Crops Prod. 2021, 170, 113760. [Google Scholar] [CrossRef]
- Le Duigou, A.; Chabaud, G.; Matsuzaki, R.; Castro, M. Tailoring the Mechanical Properties of 3D-Printed Continuous Flax/PLA Biocomposites by Controlling the Slicing Parameters. Compos. B Eng. 2020, 203, 108474. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-Dimensional Printing of Continuous-Fiber Composites by in-Nozzle Impregnation. Sci. Rep. 2016, 6, 23058. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yu, L.; Cui, Y.; Jia, M.; Pan, K. Optimization of Printing Parameters of 3D-Printed Continuous Glass Fiber Reinforced Polylactic Acid Composites. Thin-Walled Struct. 2021, 164, 107717. [Google Scholar] [CrossRef]
- Gauss, C.; Pickering, K.L.; Muthe, L.P. The Use of Cellulose in Bio-Derived Formulations for 3D/4D Printing: A Review. Compos. Part. C Open Access 2021, 4, 100113. [Google Scholar] [CrossRef]
- Tian, X.; Todoroki, A.; Liu, T.; Wu, L.; Hou, Z.; Ueda, M.; Hirano, Y.; Matsuzaki, R.; Mizukami, K.; Iizuka, K.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Huber, T.; Kuckhoff, B.; Gries, T.; Veit, D.; Pang, S.; Graupner, N.; Müssig, J.; Staiger, M.P. Three-Dimensional Braiding of Continuous Regenerated Cellulose Fibres. J. Ind. Text. 2014, 45, 707–715. [Google Scholar] [CrossRef]
- Touchard, F.; Marchand, D.; Chocinski-Arnault, L.; Fournier, T.; Magro, C. 3D Printing of Continuous Cellulose Fibre Composites: Microstructural and Mechanical Characterisation. Rapid Prototyp. J. 2023, 29, 1879–1887. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Z.; Fu, K.; Yang, Z.; Li, Y. Design and Fabrication of High-Performance 3D Printed Continuous Flax Fibre/PLA Composites. J. Manuf. Process 2023, 99, 351–361. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Long, Y.; Fu, K.; Li, Y. Process Optimization of Continuous Flax Fiber/Polylactic Acid Prepreg Filaments toward High Performance 3D-Printed Composites. Polym. Compos. 2023, 44, 6242–6253. [Google Scholar] [CrossRef]
- Le Gall, M.; Davies, P.; Martin, N.; Baley, C. Recommended Flax Fibre Density Values for Composite Property Predictions. Ind. Crops Prod. 2018, 114, 52–58. [Google Scholar] [CrossRef]
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2000.
- Wei, Z. Mechanical and Microstructural Characteristics of the Fiber-Reinforced Composite Materials. J. Miner. Mater. Charact. Eng. 2022, 2016, 6–7. [Google Scholar] [CrossRef]
- Fatile, O.B.; AkinruliI, J.F.; Amori, A.A. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide. Int. J. Eng. Technol. Innov. 2014, 4, 251–259. [Google Scholar]
- ISO 527-5:2021; Plastics—Determination of Tensile Properties. Part 5: Test Conditions for Unidirectional Fibre-Reinforced Plastic Composites. ISO: Geneva, Switzerland, 2021.
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties. Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2021.
- Hou, Z.; Tian, X.; Zheng, Z.; Zhang, J.; Zhe, L.; Li, D.; Malakhov, A.V.; Polilov, A.N. A Constitutive Model for 3D Printed Continuous Fiber Reinforced Composite Structures with Variable Fiber Content. Compos. B Eng. 2020, 189, 107893. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Jiang, Q.; He, L.; Bismarck, A.; Hu, Q. Recent Progress of 3D Printed Continuous Fiber Reinforced Polymer Composites Based on Fused Deposition Modeling: A Review. J. Mater. Sci. 2021, 56, 12999–13022. [Google Scholar] [CrossRef]
- Madsen, B.; Gamstedt, K. Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Adv. Mater. Sci. Eng. 2013, 2013, 1–14. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Moigne, N.L.; Caro-Bretelle, A.S.; Hage, R.E.; Duc, A.L.; Lozachmeur, M.; Bono, P.; Bergeret, A. Role of Flax Cell Wall Components on the Microstructure and Transverse Mechanical Behaviour of Flax Fabrics Reinforced Epoxy Biocomposites. Ind. Crops Prod. 2016, 85, 93–108. [Google Scholar] [CrossRef]
- Duchemin, B.; Thuault, A.; Vicente, A.; Rigaud, B.; Fernandez, C.; Eve, S. Ultrastructure of Cellulose Crystallites in Flax Textile Fibres. Cellulose 2012, 19, 1837–1854. [Google Scholar] [CrossRef]
- Ding, J.; Liang, L.; Meng, X.; Yang, F.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G.; Yu, C. The Physiochemical Alteration of Flax Fibers Structuring Components after Different Scouring and Bleaching Treatments. Ind. Crops Prod. 2021, 160, 1–45. [Google Scholar] [CrossRef]
- Li, Z.; Yu, T.; Yu, L. Study on the Scouring-Bleaching Technology of Xinjiang Scutched Flax. J. Eng. Fiber Fabr. 2020, 15. [Google Scholar] [CrossRef]
- Amiri, A.; Ulven, C.A.; Huo, S. Effect of Chemical Treatment of Flax Fiber and Resin Manipulation on Service Life of Their Composites Using Time-Temperature Superposition. Polymers 2015, 7, 1965–1978. [Google Scholar] [CrossRef]
- Lazic, B.D.; Janjic, S.D.; Rijavec, T.; Kostic, M.M. Effect of Chemical Treatments on the Chemical Composition and Properties of Flax Fibers. J. Serbian Chem. Soc. 2017, 82, 83–97. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Huang, T.; Hu, Q.; Lammer, H. Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine. Materials 2020, 13, 1678. [Google Scholar] [CrossRef]
- Couture, A.; Lebrun, G.; Laperrière, L. Mechanical Properties of Polylactic Acid (PLA) Composites Reinforced with Unidirectional Flax and Flax-Paper Layers. Compos. Struct. 2016, 154, 286–295. [Google Scholar] [CrossRef]
- Shah, D.U.; Schubel, P.J.; Clifford, M.J. Modelling the Effect of Yarn Twist on the Tensile Strength of Unidirectional Plant Fibre Yarn Composites. J. Compos. Mater. 2013, 47, 425–436. [Google Scholar] [CrossRef]
- Meredith, J.; Coles, S.R.; Powe, R.; Collings, E.; Cozien-Cazuc, S.; Weager, B.; Müssig, J.; Kirwan, K. On the Static and Dynamic Properties of Flax and Cordenka Epoxy Composites. Compos. Sci. Technol. 2013, 80, 31–38. [Google Scholar] [CrossRef]
- Ganster, J.; Fink, H.P. Novel Cellulose Fibre Reinforced Thermoplastic Materials. Cellulose 2006, 13, 271–280. [Google Scholar] [CrossRef]
- Le Duigou, A.; Barbé, A.; Guillou, E.; Castro, M. 3D Printing of Continuous Flax Fibre Reinforced Biocomposites for Structural Applications. Mater. Des. 2019, 180, 107884. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. Compos. Part. A Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Ejaz, M.; Azad, M.M.; Shah, A.U.R.; Afaq, S.K.; Song, J.-I. Mechanical and Biodegradable Properties of Jute/Flax Reinforced PLA Composites. Fibers Polym. 2020, 21, 2635–2641. [Google Scholar] [CrossRef]
- Luo, H.A.; Chen, Y. Matrix Cracking in Fiber-Reinforced Composite Materials. J. Appl. Mech. 1991, 58, 846–848. [Google Scholar] [CrossRef]
- Irfan, M.S.; Harris, D.; Paget, M.A.; Ma, T.; Leek, C.; Machavaram, V.R.; Fernando, G.F. On-Site Evaluation of a Modified Pultrusion Process: Fibre Spreading and Resin Injection-Based Impregnation. J. Compos. Mater. 2021, 55, 77–93. [Google Scholar] [CrossRef]
- Belnoue, J.P.-H.; Nixon-Pearson, O.J.; Thompson, A.J.; Ivanov, D.S.; Potter, K.D.; Hallett, S.R. Consolidation-Driven Defect Generation in Thick Composite Parts. J. Manuf. Sci. Eng. 2018, 140, 71006. [Google Scholar] [CrossRef]
- Yang, G.; Bi, J.; Dong, Z.; Li, Y.; Liu, Y. Experimental Study on Dynamic Tensile Properties of Macro-Polypropylene Fiber Reinforced Cementitious Composites. Int. J. Concr. Struct. Mater. 2022, 16, 66. [Google Scholar] [CrossRef]
- Oliveira, C.; Carvalho, D.; Moura, I.; Ribeiro, B.; Ferreira, F. 3D Printing Using Natural Fibers—An Emerging Technology in Sustainable Manufacturing: A Review. In Proceedings of the Advanced Research in Technologies, Information, Innovation and Sustainability; Guarda, T., Portela, F., Diaz-Nafria, J.M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 343–356. [Google Scholar]
- Nassar, M.M.A.; Alzebdeh, K.I.; Pervez, T.; Al-Hinai, N.; Munam, A.; Al-Jahwari, F.; Sider, I. Polymer Powder and Pellets Comparative Performances as Bio-Based Composites. Iran. Polym. J. 2021, 30, 269–283. [Google Scholar] [CrossRef]
- Matumoto, K.; Takemura, K.; Kitamura, R.; Katogi, H.; Tanaka, T.; Takagi, H. Cellulose Nanofiber-Introduced Continuous-Ramie Yarn-Reinforced Polylactic Acid Filament for 3D Printing: Novel Fabrication Process and Mechanical Properties. Compos. Part. A Appl. Sci. Manuf. 2024, 176, 107836. [Google Scholar] [CrossRef]
- Baley, C.; Gomina, M.; Breard, J.; Bourmaud, A.; Drapier, S.; Ferreira, M.; Le Duigou, A.; Liotier, P.J.; Ouagne, P.; Soulat, D.; et al. Specific Features of Flax Fibres Used to Manufacture Composite Materials. Int. J. Mater. Form. 2019, 12, 1023–1052. [Google Scholar] [CrossRef]
- Velghe, I.; Buffel, B.; Vandeginste, V.; Thielemans, W.; Desplentere, F. Review on the Degradation of Poly(Lactic Acid) during Melt Processing. Polymers 2023, 15, 2047. [Google Scholar] [CrossRef]
- Nascimento, L.; Gamez-Perez, J.; Santana, O.O.; Velasco, J.I.; Maspoch, M.L.; Franco-Urquiza, E. Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid). J. Polym. Environ. 2010, 18, 654–660. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of Multi-Extruded Poly(Lactic Acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Le Moigne, N.; Otazaghine, B.; Corn, S.; Angellier-Coussy, H.; Bergeret, A. Interfaces in Natural Fibre Reinforced Composites: Definitions and Roles. In Surfaces and Interfaces in Natural Fibre Reinforced Composites: Fundamentals, Modifications and Characterization; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–34. ISBN 978-3-319-71410-3. [Google Scholar]
- Gholampour, A.; Ozbakkaloglu, T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Hou, Z.; Tian, X.; Zhang, J.; Li, D. 3D Printed Continuous Fibre Reinforced Composite Corrugated Structure. Compos. Struct. 2018, 184, 1005–1010. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Y.; Chen, L.; Zhang, L.; Wu, H.; Yao, Y. An Adaptive Matrix Material Extrusion Optimization Model for in Situ Impregnated Continuous Fiber-Reinforced 3D Printing. Int. J. Adv. Manuf. Technol. 2023, 129, 1527–1545. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, C.; Coppola, B.; Barra, G.; Di Maio, L.; Incarnato, L.; Lafdi, K. Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers 2019, 11, 1487. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Z.; Fu, K.; Li, Y. Efficient Plant Fibre Yarn Pre-Treatment for 3D Printed Continuous Flax Fibre/Poly(Lactic) Acid Composites. Compos. B Eng. 2021, 227, 109389. [Google Scholar] [CrossRef]
- Rahim, T.N.A.T.; Abdullah, A.M.; Md Akil, H. Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polym. Rev. 2019, 59, 589–624. [Google Scholar] [CrossRef]
- Hannah Mason, G.G. 3D Printing with Continuous Fiber: A Landscape. Available online: https://www.compositesworld.com/articles/3d-printing-with-continuous-fiber-a-landscape (accessed on 30 January 2020).
- Girard, H.; Doitrand, A.; Koohbor, B.; Rinaldi, R.G.; Godin, N.; Long, D.; Bikard, J. Influence of Nearby Fiber on Fiber–Matrix Debonding: Coupled Criterion Prediction and Debonding Shape Determination. J. Mech. Phys. Solids 2024, 183, 105498. [Google Scholar] [CrossRef]
- Xu, M.; Wagner, H.D.; An, B. An Analysis of Interfacial Debonding in Beaded Fiber Composites. Int. J. Fract. 2023, 245, 195–208. [Google Scholar] [CrossRef]
- Motru, S.; Adithyakrishna, V.H.; Bharath, J.; Guruprasad, R. Development and Evaluation of Mechanical Properties of Biodegradable PLA/Flax Fiber Green Composite Laminates. Mater. Today Proc. 2020, 24, 641–649. [Google Scholar] [CrossRef]
- Atakok, G.; Kam, M.; Koc, H.B. Tensile, Three-Point Bending and Impact Strength of 3D Printed Parts Using PLA and Recycled PLA Filaments: A Statistical Investigation. J. Mater. Res. Technol. 2022, 18, 1542–1554. [Google Scholar] [CrossRef]
- Ansari, A.A.; Kamil, M. Investigation of Flexural Properties in 3D Printed Continuous Fiber-Reinforced Polymer Composites. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1248, 12070. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, T.P.; Batish, A. On Flexural and Pull out Properties of 3D Printed PLA Based Hybrid Composite Matrix. Mater. Res. Express 2020, 7, 15330. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, Y.; Wang, Q.; Wei, W.; Huang, F.; Li, Y.; Li, J.; Zhou, Z. Improved Fracture Toughness and Ductility of PLA Composites by Incorporating a Small Amount of Surface-Modified Helical Carbon Nanotubes. Compos. B Eng. 2019, 162, 54–61. [Google Scholar] [CrossRef]
- Alimuzzaman, S.; Gong, R.H.; Akonda, M. Impact Property of PLA/Flax Nonwoven Biocomposite. Conf. Pap. Mater. Sci. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Xia, X.; Liu, W.; Zhou, L.; Hua, Z.; Liu, H.; He, S. Modification of Flax Fiber Surface and Its Compatibilization in Polylactic Acid/Flax Composites. Iran. Polym. J. 2016, 25, 25–35. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Wang, Q.; Dilmurat, A.; Li, D.; Ziegmann, G. Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. J. Clean. Prod. 2017, 142, 1609–1618. [Google Scholar] [CrossRef]
- Bax, B.; Müssig, J. Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites. Compos. Sci. Technol. 2008, 68, 1601–1607. [Google Scholar] [CrossRef]
- Gao, H.; Qiang, T. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites. Materials 2017, 10, 624. [Google Scholar] [CrossRef]
- Graupner, N.; Herrmann, A.S.; Müssig, J. Natural and Man-Made Cellulose Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites: An Overview about Mechanical Characteristics and Application Areas. Compos. Part. A Appl. Sci. Manuf. 2009, 40, 810–821. [Google Scholar] [CrossRef]
- Navaranjan, N.; Neitzert, T. Impact Strength of Natural Fibre Composites Measured by Different Test Methods: A Review. MATEC Web Conf. 2017, 109, 1003. [Google Scholar] [CrossRef]
- Frackowiak, S.; Ludwiczak, J.; Leluk, K. Man-Made and Natural Fibres as a Reinforcement in Fully Biodegradable Polymer Composites: A Concise Study. J. Polym. Environ. 2018, 26, 4360–4368. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Thomason, J.L.; Carruthers, J.; Kelly, J.; Johnson, G. Fibre cross-section determination and variability in sisal and flax and its effects on fibre performance characterisation. Compos Sci. Technol. 2011, 71, 1008–1015. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Joannès, S.; Marcellan, A. 2—Testing and characterization of fibers. In Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Bunsell, A.R., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 21–55. [Google Scholar] [CrossRef]
- ASTM D3379-75; Standard Test Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials. ASTM International: West Conshohocken, PA, USA, 2000.
- Pilla, S.; Gong, S.; O’Neill, E.; Rowell, R.M.; Krzysik, A.M. Polylactide-pine wood flour composites. Polym. Eng. Sci. 2008, 48, 578–587. [Google Scholar] [CrossRef]
Fibre | Viscose | Bleached Flax | ||||
---|---|---|---|---|---|---|
Property | Tensile Strength (MPa) | Young’s Modulus (GPa) | Strain at Break (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Strain at Break (%) |
Avg. | 724.2 | 22.8 | 13.2 | 921.6 | 30.7 | 3.3 |
Std Dev | 187.8 | 5.97 | 4.2 | 320.2 | 12.2 | 1.6 |
Formulation | Solution Impregnation |
10 wt% x1 | Single impregnation cycle with 10 wt% PLA/DCM solution |
10 wt% x2 | Two single impregnation cycles with 10 wt% PLA/DCM solution |
7 wt% x2 | Two single impregnation cycles with 7 wt% PLA/DCM solution |
7 wt% x3 | Three single impregnation cycles with 7 wt% PLA/DCM solution |
7 wt% x1 (tandem) | One tandem impregnation cycle with 7 wt% PLA/DCM solution |
7 wt% x2 (tandem) | Two tandem impregnation cycles with 7 wt% PLA/DCM solution |
Formulation | Emulsion Impregnation |
Emulsion x1 | Single impregnation cycle with 40 wt% PLA/water emulsion |
Emulsion x2 | Two single impregnation cycles with 40 wt% PLA/water emulsion |
Emulsion x3 | Three single impregnation cycles with 40 wt% PLA/water emulsion |
Emulsion x1 (tandem) | One tandem impregnation cycle with 40 wt% PLA/water emulsion |
Emulsion x2 (tandem) | Two tandem impregnation cycles with 40 wt% PLA/water emulsion |
Reinforcement | Processing Condition | Fibre wt% | Tensile Strength (MPa) | Young’s Modulus (GPa) | Strain at Break (%) |
---|---|---|---|---|---|
Viscose | 7 wt% x2 | 65.5 ± 2.0 | 240.8 ± 24.6 | 7.9 ± 1.5 | 15.4 ± 2.5 |
Emulsion x2 | 41.2 ± 1.3 | 254.7 ± 15.3 | 9.1 ± 0.4 | 14.7 ± 2.1 | |
Bleached Flax | 7 wt% x2 (tandem) | 60.0 ± 0.2 | 326.1 ± 15.5 | 17.6 ± 0.8 | 3.2 ± 0.3 |
Emulsion x2 (tandem) | 41.0 ± 0.5 | 296.2 ± 22.1 | 12.6 ± 1.1 | 3.2 ± 0.2 |
Impregnation Type | Composite Filament | Fibre wt% | Porosity (%) |
---|---|---|---|
Solution Impregnation | PLA/Viscose | 33.4 ± 1.3 | 6.3 ± 3.4 |
PLA/Bleached Flax | 27.8 ± 2.1 | 8.8 ± 1.2 | |
Emulsion Impregnation | PLA/Viscose | 32.8 ± 0.9 | 7.0 ± 2.4 |
PLA/Bleached Flax | 26.4 ± 2.8 | 9.2 ± 0.5 |
Impregnation Type | Material | Fibre wt% | Tensile Strength (MPa) (% Decrease) | Young’s Modulus (GPa) (% Decrease) | Strain at Break (%) (% Decrease) |
---|---|---|---|---|---|
Solution Impregnation | PLA/Viscose | 33.4 ± 1.3 | 139.9 ± 10.8 (30.7%) | 5.9 ± 2.3 (13.2%) | 7.5 ± 2.3 (57.1%) |
PLA/Bleached flax | 27.8 ± 2.1 | 127.3 ± 8.8 (29.6%) | 7.2 ± 0.5 (25.0%) | 3.9 ± 0.7 (23.0%) | |
Emulsion Impregnation | PLA/Viscose | 32.8 ± 0.9 | 158.0 ± 10.5 (17.0%) | 6.9 ± 0.7 (6.8%) | 8.3 ± 0.5 (62.3%) |
PLA/Bleached flax | 26.4 ± 2.8 | 108.4 ± 12.1 (29.9%) | 5.8 ± 1.0 (36.5%) | 3.2 ± 0.3 (5.9%) |
Impregnation Type | Material | Bending Strength (MPa) | Bending Modulus (GPa) |
---|---|---|---|
None | Neat PLA | 91.0 ± 5.5 | 3.0 ± 0.2 |
Solution Impregnation | PLA/Viscose | 154.3 ± 20.3 | 7.9 ± 2.1 |
PLA/Bleached flax | 127.0 ± 20.3 | 8.9 ± 1.0 | |
Emulsion Impregnation | PLA/Viscose | 163.8 ± 20 | 9.8 ± 1.1 |
PLA/Bleached flax | 122.4 ± 17.5 | 8.5 ± 1.4 |
Impregnation Type | Material | Impact Strength (kJ/m2) |
---|---|---|
None | Neat PLA | 20.9 ± 4.5 |
Solution Impregnation | PLA/Viscose | 125.8 ± 2.1 |
PLA/Bleached flax | 65.6 ± 5.1 | |
Emulsion Impregnation | PLA/Viscose | >127 |
PLA/Bleached flax | 67.2 ± 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priya Muthe, L.; Pickering, K.; Gauss, C. Polylactide Composites Reinforced with Pre-Impregnated Natural Fibre and Continuous Cellulose Yarns for 3D Printing Applications. Materials 2024, 17, 5554. https://doi.org/10.3390/ma17225554
Priya Muthe L, Pickering K, Gauss C. Polylactide Composites Reinforced with Pre-Impregnated Natural Fibre and Continuous Cellulose Yarns for 3D Printing Applications. Materials. 2024; 17(22):5554. https://doi.org/10.3390/ma17225554
Chicago/Turabian StylePriya Muthe, Lakshmi, Kim Pickering, and Christian Gauss. 2024. "Polylactide Composites Reinforced with Pre-Impregnated Natural Fibre and Continuous Cellulose Yarns for 3D Printing Applications" Materials 17, no. 22: 5554. https://doi.org/10.3390/ma17225554
APA StylePriya Muthe, L., Pickering, K., & Gauss, C. (2024). Polylactide Composites Reinforced with Pre-Impregnated Natural Fibre and Continuous Cellulose Yarns for 3D Printing Applications. Materials, 17(22), 5554. https://doi.org/10.3390/ma17225554