Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Envelope Porosity
3.2. Surface Characteristics
3.3. Surface Morphology
3.4. Pore Size and Surface Area
3.5. X-Ray Scattering
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Gunasekaran, J.; Sevvel, P.; John Solomon, I. Metallic materials fabrication by selective laser melting: A review. Mater. Today Proc. 2021, 37, 252–256. [Google Scholar] [CrossRef]
- Ali, M.H.; Sabyrov, N.; Shehab, E. Powder bed fusion–laser melting (PBF–LM) process: Latest review of materials, process parameter optimization, application, and up-to-date innovative technologies. Prog. Addit. Manuf. 2022, 7, 1395–1422. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Shankar, S.; Jawahir, I.S.; Dixit, S.; Buddhi, D. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J. Mater. Res. Technol. 2022, 18, 4641–4661. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Hassani, V. An investigation of additive manufacturing technologies for development of end-use components: A case study. Int. J. Press. Vessel. Pip. 2020, 187, 104171. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Zhang, W.-H.; Xia, L. Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comput. Methods Eng. 2016, 23, 595–622. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Liu, Y.-J.; Bai, H.-W.; Wu, X.; Gao, Y.-H.; Liu, X.-C.; Wang, J.-C.; Wang, Q. Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion. J. Mater. Res. Technol. 2024, 31, 298–310. [Google Scholar] [CrossRef]
- Gatto, M.L.; Cerqueni, G.; Groppo, R.; Santecchia, E.; Tognoli, E.; Defanti, S.; Mattioli-Belmonte, M.; Mengucci, P. Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion. J. Mech. Behav. Biomed. Mater. 2023, 144, 105989. [Google Scholar] [CrossRef]
- Fleißner-Rieger, C.; Pfeifer, T.; Jörg, T.; Kremmer, T.; Brabetz, M.; Clemens, H.; Mayer, S. Selective Laser Melting of a Near-α Ti6242S Alloy for High-Performance Automotive Parts. Adv. Eng. Mater. 2021, 23, 2001194. [Google Scholar] [CrossRef]
- Ziółkowski, M.; Dyl, T. Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review. Machines 2020, 8, 84. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Li, J.; Zhu, Y.; Peng, T.; Yang, H. Additive manufacturing of products with functional fluid channels: A review. Addit. Manuf. 2020, 36, 101490. [Google Scholar] [CrossRef]
- Constantin, L.; Wu, Z.; Li, N.; Fan, L.; Silvain, J.-F.; Lu, Y.F. Laser 3D printing of complex copper structures. Addit. Manuf. 2020, 35, 101268. [Google Scholar] [CrossRef]
- Fortunato, A.; Valli, G.; Liverani, E.; Ascari, A. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers Manuf. Mater. Process. 2019, 6, 247–262. [Google Scholar] [CrossRef]
- Scalzo, F.; Totis, G.; Vaglio, E.; Sortino, M. Passive Chatter Suppression of Thin-Walled Parts by Means of High-Damping Lattice Structures Obtained from Selective Laser Melting. J. Manuf. Mater. Process. 2020, 4, 117. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liu, Y.J.; Wu, X.; Liu, X.; Wang, J.C.; Wang, Q. Fatigue performance of beta titanium alloy topological porous structures fabricated by laser powder bed fusion. J. Mater. Res. Technol. 2024, 29, 4772–4780. [Google Scholar] [CrossRef]
- Balzarotti, R.; Ambrosetti, M.; Arnesano, M.; Anglani, A.; Groppi, G.; Tronconi, E. Periodic open cellular structures (POCS) as enhanced catalyst supports: Optimization of the coating procedure and analysis of mass transport. Appl. Catal. B Environ. 2021, 283, 119651. [Google Scholar] [CrossRef]
- Lawson, S.; Li, X.; Thakkar, H.; Rownaghi, A.A.; Rezaei, F. Recent Advances in 3D Printing of Structured Materials for Adsorption and Catalysis Applications. Chem. Rev. 2021, 121, 6246–6291. [Google Scholar] [CrossRef]
- Lind, A.; Vistad, Ø.; Sunding, M.F.; Andreassen, K.A.; Cavka, J.H.; Grande, C.A. Multi-purpose structured catalysts designed and manufactured by 3D printing. Mater. Des. 2020, 187, 108377. [Google Scholar] [CrossRef]
- Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [Google Scholar] [CrossRef]
- Ferroni, C.; Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A Fundamental Investigation of Gas/Solid Heat and Mass Transfer in Structured Catalysts Based on Periodic Open Cellular Structures (POCS). Ind. Eng. Chem. Res. 2021, 60, 10522–10538. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wei, M.; Dong, D.; Lan, L.; Yan, G.; Yan, X.; Wang, Y.; Yi, J.; Chang, C.; Liu, M. Applied research on methane steam reforming properties of porous structural catalyst fabricated by selective laser melting technology. Mater. Res. Express 2024, 11, 016521. [Google Scholar] [CrossRef]
- Rosseau, L.R.S.; Middelkoop, V.; Willemsen, H.A.M.; Roghair, I.; Van Sint Annaland, M. Review on Additive Manufacturing of Catalysts and Sorbents and the Potential for Process Intensification. Front. Chem. Eng. 2022, 4, 834547. [Google Scholar] [CrossRef]
- Lawson, S.; Baamran, K.; Newport, K.; Alghamadi, T.; Jacobs, G.; Rezaei, F.; Rownaghi, A.A. Integrated direct air capture and oxidative dehydrogenation of propane with CO2 at isothermal conditions. Appl. Catal. B Environ. 2022, 303, 120907. [Google Scholar] [CrossRef]
- Middelkoop, V.; Vamvakeros, A.; De Wit, D.; Jacques, S.D.M.; Danaci, S.; Jacquot, C.; De Vos, Y.; Matras, D.; Price, S.W.T.; Beale, A.M. 3D printed Ni/Al2O3 based catalysts for CO2 methanation-a comparative and operando XRD-CT study. J. CO2 Util. 2019, 33, 478–487. [Google Scholar] [CrossRef]
- Du, C.; Zhao, Y.; Jiang, J.; Wang, Q.; Wang, H.; Li, N.; Sun, J. Pore defects in Laser Powder Bed Fusion: Formation mechanism, control method, and perspectives. J. Alloys Compd. 2023, 944, 169215. [Google Scholar] [CrossRef]
- Shrestha, S.; Chou, K. Formation of keyhole and lack of fusion pores during the laser powder bed fusion process. Manuf. Lett. 2022, 32, 19–23. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Puncreobutr, C.; Kuimalee, S.; Phetrattanarangsi, T.; Boonchuduang, T.; Taweekitikul, P.; Panwisawas, C.; Shinjo, J.; Lohwongwatana, B. Laser-inherent porosity defects in additively manufactured Ti–6Al–4V implant: Formation, distribution, and effect on fatigue performance. J. Mater. Res. Technol. 2024, 30, 5121–5132. [Google Scholar] [CrossRef]
- Sangid, M.D.; Ravi, P.; Prithivirajan, V.; Miller, N.A.; Kenesei, P.; Park, J.-S. ICME Approach to Determining Critical Pore Size of IN718 Produced by Selective Laser Melting. JOM 2020, 72, 465–474. [Google Scholar] [CrossRef]
- Reijonen, J.; Revuelta, A.; Metsä-Kortelainen, S.; Salminen, A. Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Addit. Manuf. 2024, 85, 104180. [Google Scholar] [CrossRef]
- Du Plessis, A. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography. Addit. Manuf. 2019, 30, 100871. [Google Scholar] [CrossRef]
- Yeung, H.; Kim, F.H.; Donmez, M.A.; Neira, J. Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625. Int. J. Mach. Tools Manuf. 2022, 183, 103957. [Google Scholar] [CrossRef]
- Vaglio, E.; Totis, G.; Lanzutti, A.; Fedrizzi, L.; Sortino, M. A novel thermo-geometrical model for accurate keyhole porosity prediction in Laser Powder-Bed Fusion. Prog. Addit. Manuf. 2024, 9, 247–261. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Clark, S.J.; Fezzaa, K.; Chen, L. Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing. Addit. Manuf. Lett. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Abele, E.; Stoffregen, H.A.; Kniepkamp, M.; Lang, S.; Hampe, M. Selective laser melting for manufacturing of thin-walled porous elements. J. Mater. Process. Technol. 2015, 215, 114–122. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Liu, Y.; Zhang, L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Adv. Powder Mater. 2023, 2, 100137. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.T.; Corfield, M.R.; Tuck, C.; Clare, A.T.; Leach, R.K.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.M. Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 2016, 111, 193–204. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. (1980–2015) 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Rezaeifar, H.; Elbestawi, M. Porosity formation mitigation in laser powder bed fusion process using a control approach. Opt. Laser Technol. 2022, 147, 107611. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Gasik, M.; Silva, F.S.; Miranda, G. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 2022, 12, 986. [Google Scholar] [CrossRef]
- Lu, W.Q.; Liu, Y.J.; Wu, X.; Liu, X.C.; Wang, J.C. Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: A comparative study of cast and 3D-printed specimens in a NaCl solution. Surf. Coat. Technol. 2023, 470, 129849. [Google Scholar] [CrossRef]
- Li, S.; Zhu, H.; Li, Y.; Chen, Q.; Jiang, J.; Ma, B.; Shu, Z.; He, M.; Li, D.; Hao, L. Superior Lightness-Strength and biocompatibility of bio-inspired heterogeneous glass sponge Ti6Al4V lattice structure fabricated via laser powder bed fusion. Mater. Des. 2024, 244, 113209. [Google Scholar] [CrossRef]
- Mahmud, A.; Huynh, T.; Zhou, L.; Hyer, H.; Mehta, A.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; Sohn, Y. Mechanical Behavior Assessment of Ti-6Al-4V ELI Alloy Produced by Laser Powder Bed Fusion. Metals 2021, 11, 1671. [Google Scholar] [CrossRef]
- Lanzutti, A.; Magnan, M.; Vaglio, E.; Totis, G.; Sortino, M.; Fedrizzi, L. Study of the Effect of L-PBF Technique Temporal Evolution on Microstructure, Surface Texture, and Fatigue Performance of Ti gr. 23 Alloy. Metals 2023, 13, 1247. [Google Scholar] [CrossRef]
- Vilar, R. 10.07-Laser Powder Deposition. In Comprehensive Materials Processing; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B., Eds.; Elsevier: Oxford, UK, 2014; pp. 163–216. ISBN 978-0-08-096533-8. [Google Scholar]
- Vaglio, E.; De Monte, T.; Lanzutti, A.; Totis, G.; Sortino, M.; Fedrizzi, L. Single tracks data obtained by selective laser melting of Ti6Al4V with a small laser spot diameter. Data Brief 2020, 33, 106443. [Google Scholar] [CrossRef]
- Lorenzon, A.; Vaglio, E.; Casarsa, L.; Totis, G. Effects of different cross-sections of Body Centered Cubic cells on pressure drop and heat transfer of additively manufactured heat sinks. Int. J. Heat Mass Transf. 2024, 222, 125170. [Google Scholar] [CrossRef]
- UNI EN ISO 4287:2009; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2009.
- Lorenzon, A.; Vaglio, E.; Casarsa, L.; Sortino, M. Experimental investigation of heat transfer and pressure losses across staggered Body Centered cubic arrays fabricated by Laser Powder Bed Fusion. Appl. Therm. Eng. 2023, 227, 120381. [Google Scholar] [CrossRef]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solids Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
Element | Ti | Al | V | Fe | C | H | O | N |
---|---|---|---|---|---|---|---|---|
Ti6Al4V (% weight) | Bal. | 5.96 | 4.13 | 0.22 | 0.01 | 0.001 | 0.1 | 0.01 |
Code | Laser Power [W] | Hatch Distance [mm] | Layer Thickness [mm] | Cuboid Samples | Lamellar Samples |
---|---|---|---|---|---|
Ti1 | 200 | 0.12 | 0.025 | ✓ | - |
Ti2 | 200 | 0.15 | 0.025 | ✓ | - |
Ti3 | 200 | 0.17 | 0.025 | ✓ | - |
Ti4 | 200 | 0.12 | 0.05 | ✓ | - |
Ti5 | 200 | 0.15 | 0.05 | ✓ | - |
Ti6 | 200 | 0.17 | 0.05 | ✓ | - |
Ti7 | 125 | 0.12 | 0.025 | ✓ | X |
Ti8 | 125 | 0.15 | 0.025 | ✓ | X |
Ti9 | 125 | 0.17 | 0.025 | ✓ | ✓ |
Ti10 | 125 | 0.12 | 0.05 | ✓ | ✓ |
Ti11 | 125 | 0.15 | 0.05 | ✓ | ✓ |
Ti12 | 125 | 0.17 | 0.05 | ✓ | ✓ |
Ti13 | 50 | 0.12 | 0.025 | ✓ | X |
Ti14 | 50 | 0.15 | 0.025 | ✓ * | - |
Ti15 | 50 | 0.17 | 0.025 | X | - |
Ti16 | 50 | 0.12 | 0.05 | X | - |
Ti17 | 50 | 0.15 | 0.05 | X | - |
Ti18 | 50 | 0.17 | 0.05 | X | - |
Ref. | 225 | 0.09 | 0.025 | - | - |
Sample | Cuboid | Lamellar | ||
---|---|---|---|---|
Surface Area (m2/kg) | Pore Volume (cm3/kg) | Surface Area (m2/kg) | Pore Volume (cm3/kg) | |
Ti7 | 16 | 0.5 | 106 | 4 |
Ti8 | 17 | 0.5 | 151 | 2 |
Ti9 | 25 | 0.5 | 276 | 5 |
Ti10 | 22 | 0.5 | 88 | 3 |
Ti11 | 34 | 0.6 | 115 | 2 |
Ti12 | 36 | 0.6 | 147 | 4 |
Ti13 | 47 | 0.8 | 210 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaglio, E.; Scalzo, F.; Sortino, M.; Totis, G.; Cremonese, R.; Boccia, M.; Danielis, M. Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components. Materials 2024, 17, 5572. https://doi.org/10.3390/ma17225572
Vaglio E, Scalzo F, Sortino M, Totis G, Cremonese R, Boccia M, Danielis M. Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components. Materials. 2024; 17(22):5572. https://doi.org/10.3390/ma17225572
Chicago/Turabian StyleVaglio, Emanuele, Federico Scalzo, Marco Sortino, Giovanni Totis, Roberto Cremonese, Massimiliano Boccia, and Maila Danielis. 2024. "Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components" Materials 17, no. 22: 5572. https://doi.org/10.3390/ma17225572
APA StyleVaglio, E., Scalzo, F., Sortino, M., Totis, G., Cremonese, R., Boccia, M., & Danielis, M. (2024). Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components. Materials, 17(22), 5572. https://doi.org/10.3390/ma17225572